Tractable classes of games. Learning.
 Lecture 3

Tomáš Kroupa

Solving normal-form games

- Nash equilibrium is very difficult to compute even in a twoplayer general-sum game
- Maxmin/minmax strategies in a two-player zero-sum game are optimal solutions to dual linear programs

What to do?

1. Find tractable classes of games in-between
2. Introduce online learning to recover equilibria
3. Design tractable solution concepts

Polymatrix games

A normal-form game $\left(N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ is a polymatrix game if there is an undirected graph (N, E) without loops and, for each $\{i, j\} \in E$, pairwise utility functions

$$
u_{i j}: S_{i} \times S_{j} \rightarrow \mathbb{R}, \quad u_{j i}: S_{j} \times S_{i} \rightarrow \mathbb{R}
$$

such that the utility of player $i \in N$ is

$$
u_{i}(\mathbf{s})=\sum_{\{i, j\} \in E} u_{i j}\left(s_{i}, s_{j}\right), \quad \mathbf{s} \in \mathbf{S}
$$

Example of polymatrix game

$$
\begin{aligned}
& u_{1}(\mathbf{s})=u_{12}\left(s_{1}, s_{2}\right) \\
& u_{2}(\mathbf{s})=u_{21}\left(s_{2}, s_{1}\right)+u_{23}\left(s_{2}, s_{3}\right)+u_{24}\left(s_{2}, s_{4}\right)
\end{aligned}
$$

Size of normal-form games

Assumptions: n players and $\left|S_{i}\right|=k$ for each $i \in N$

- A two-player zero-sum game has the size k^{2}
- A normal-form game has the size $n \cdot k^{n}$
- A polymatrix game has the size at most

$$
\binom{n}{2} \cdot 2 k^{2}=n(n-1) k^{2}
$$

Zero-sum polymatrix games

A polymatrix game is zero-sum if, for each $\mathbf{s} \in \mathbf{S}$,

$$
\sum_{i \in N} u_{i}(\mathbf{s})=0
$$

- For example, pairwise games may be zero-sum:

$$
u_{i j}+u_{j i}=0
$$

- But the last property is not necessary for a polymatrix game to be zero-sum

Solving zero-sum polymatrix games

Minimize $\sum_{i \in N} w_{i}$ subject to the constraints

$$
\begin{aligned}
U_{i}\left(s_{i}, p_{-i}\right) & \leq w_{i}, & \forall i \in N, \forall s_{i} \in S_{i} \\
w_{i} & \in \mathbb{R}, p_{i} \in \Delta_{i} & \forall i \in N
\end{aligned}
$$

Claim. The following are equivalent for $\mathbf{p}^{*} \in \Delta$.

1. \mathbf{p}^{*} is a Nash equilibrium.
2. $\left(\mathbf{p}^{*}, \mathbf{w}^{*}\right)$ is an optimal solution to the LP above with

$$
w_{i}^{*}=\max _{s_{i} \in S_{i}} U_{i}\left(s_{i}, \mathbf{p}_{-i}^{*}\right), \quad i \in N
$$

Potential games

A normal-form game $\left(N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ is a potential game if there exists a function $P: \mathbf{S} \rightarrow \mathbb{R}$ such that for all $i \in N$, every $\mathbf{s}_{-i} \in \mathbf{S}_{-i}$, and every $s_{i}, t_{i} \in S_{i}$,

$$
u_{i}\left(s_{i}, \mathbf{s}_{-i}\right)-u_{i}\left(t_{i}, \mathbf{s}_{-i}\right)=P\left(s_{i}, \mathbf{s}_{-i}\right)-P\left(t_{i}, \mathbf{s}_{-i}\right) .
$$

Claim
Every potential game has a pure Nash equilibrium

$$
\mathbf{s}^{*} \in \underset{\mathbf{s} \in \mathbf{S}}{\arg \max } P(\mathbf{s}) .
$$

Learning in normal-formal games

- The algorithms discussed so far are offline in the sense that the entire game is processed at once
- The players must compute equilibria first and only then they can play optimally
- It seems natural to explore dynamics defining iterative methods that converge to the equilibria

Best response dynamics for pure NE

1. Initialization: an arbitrary strategy profile $\mathbf{s} \in \mathbf{S}$
2. If $s_{i} \in \mathbf{B R}\left(\mathbf{s}_{-i}\right)$ for each player $i \in N$, then \mathbf{s} is a pure NE
3. If $s_{i} \notin \mathbf{B R}\left(\mathbf{s}_{-i}\right)$ for some player $i \in N$, then pick $t_{i} \in \mathbf{B R}\left(\mathbf{s}_{-i}\right)$, update $\mathbf{s}:=\left(t_{i}, \mathbf{s}_{-i}\right)$, and go to 2.

The BR dynamics fail to terminate for most games.
Claim
In a potential game, BR dynamics converge to a pure NE starting from an arbitrary initial strategy profile.

Fictitious Play for two-player games

An iterative method for approximating a mixed strategy NE:

- In the step k the history is $\left(s_{1}^{1}, s_{2}^{1}\right), \ldots,\left(s_{1}^{k-1}, s_{2}^{k-1}\right)$
- Player 1 believes that Player 2 is using the mixed strategy

$$
\hat{p}_{2}^{k}:=\frac{1}{k-1} \sum_{j=1}^{k-1} \delta_{s_{2}^{j}}
$$

and plays the best response

- Player 2 behaves analogously

FP: Algorithm

1. Initialization: any strategy profile $\left(s_{1}^{1}, s_{2}^{1}\right)$ and $k \leftarrow 2$
2. In the round k
i. Player 1 plays $s_{1}^{k} \in \mathbf{B R}\left(\hat{p}_{2}^{k}\right)$
ii. Player 2 plays $s_{2}^{k} \in \mathbf{B R}\left(\hat{p}_{1}^{k}\right)$
3. $k \leftarrow k+1$ and go to 2 .

Claim
If the sequences $\hat{p}_{1}^{1}, \hat{p}_{1}^{2}, \ldots$ and $\hat{p}_{2}^{1}, \hat{p}_{2}^{2}, \ldots$ converge, then their limit is a Nash equilibrium.

FP: Failure of convergence

In the bimatrix game

$$
\left[\begin{array}{lll}
0,0 & 1,0 & 0,1 \\
0,1 & 0,0 & 1,0 \\
1,0 & 0,1 & 0,0
\end{array}\right]
$$

the unique NE consists of the uniform distributions. However, the empirical frequencies fail to converge when FP starts at strategy profile $(1,2)$.

FP: Convergence

The empirical frequencies of play in FP converge in the following classes of games:

1. Two-player zero-sum games.
2. Potential games.
3. The games solvable by iterated elimination of strictly dominated strategies.

FP: Summary

Every player

- observes only the history of play and its utility values
- assumes that the opponent is playing according to the observed empirical frequencies, yet this strategy is not used by the player itself
- is focusing only on the opponent's actions

