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Normal-form games
1. Player set 

2. Finite strategy set  for each , 

3. Utility function  for each 

Player  can use a mixed strategy 

Mixed strategy profile  yields the
expected utility  of player 

If player  uses pure strategy  and the rest plays ,
the expected utility of  is 

N = {1, … , n}

Si i ∈ N S = S1 × ⋯ × Sn:

ui: S → R i ∈ N

i ∈ N pi ∈ ∆i

p = (p1, … , pn) ∈ ∆
Ui(p) i

i si ∈ Si p−i

i Ui(si, p−i) = Ui(δsi
, p−i):



Nash equilibria
The following are equivalent for a NE .

1. , for each  and every .

2. , for each  and every .

The second condition says that a candidate for NE can be
tested using only (finitely) many pure strategies

We can use it to frame a NE computation as an optimization
problem

p∗ = (p∗
1, … , p∗

n) ∈ ∆

Ui(pi, p∗
−i) ≤ Ui(p∗) i ∈ N pi ∈ ∆i

Ui(si, p∗
−i) ≤ Ui(p∗) i ∈ N si ∈ Si



Computing NE: Opt. problem (1)
Vector variable  for each 

Auxiliary variables  representing the equilibrium
utility of player 

The objective is to minimize  subject

to the constraints

1.  for all  and each 

2.  for each 

pi ∈ ∆i i ∈ N

ei ∈ R
i ∈ N

∑
i∈N

(ei − Ui(p1, … , pn))

ei ≥ Ui(si, p−i) i ∈ N si ∈ Si

pi ∈ ∆i i ∈ N



Computing NE: Opt. problem (2)
The following are equivalent for .

1.  is a NE with 

2.  is the minimizer of the opt. problem with optimal value 

But

this optimization problem is nonconvex

it has typically many local minima

p∗ = (p∗
1, … , p∗

n)

p∗ e∗
i = Ui(p∗)

p∗ 0



Supports of mixed strategies
The support of a mixed strategy  is the set

The indifference principle
For every NE , each player , and every ,

pi ∈ ∆i

S(pi) = {si ∈ Si ∣ pi(si) > 0}.:

p∗ i ∈ N si, ti ∈ S(p∗
i )

Ui(si, p∗
−i) = Ui(ti, p∗

−i) = Ui(p∗).



Supports of equilibrium strategies
The following are equivalent for .

1.  is a Nash equilibrium.

2. , for each , where the best-
response map here is

p∗ = (p∗
1, … , p∗

n) ∈ ∆

p∗

S(p∗
i ) ⊆ BRi(p∗

−i) i ∈ N

BRi(p∗
−i) = {si ∈ Si ∣ Ui(si, p∗

−i) = max
s′

i∈Si

Ui(s′
i, p∗

−i)}



Computing NE: Testing supports (1)
Assumption: two players, 

Take ,  and consider the linear feasibility
problem

n = 2

Σ1 ⊆ S1 Σ2 ⊆ S2

Ui(si, p−i) = ei, i = 1, 2, ∀si ∈ Σi,
Ui(si, p−i) ≤ ei, i = 1, 2, ∀si ∉ Σi,

pi ∈ ∆i,
pi(si) = 0, i = 1, 2, ∀si ∉ Σi.



Computing NE: Testing supports (2)
If there is a NE with supports  and , then it is a solution
to the linear feasibility problem

Any solution to the linear feasibility problem is a NE 
such that  and  (caveat)

This leads to the simple enumerating algorithm to find one NE.

Σ1 Σ2

(p∗
1, p∗

2)
S(p∗

1) ⊆ Σ1 S(p∗
2) ⊆ Σ2



Computing NE: Support enumeration
This method will find at least one NE for a two-player game:

1. Generate subsets  and 

2. Solve the linear feasibility problem for  and 

i. If solvable, then end.

ii. If unsolvable, try 1.

The performance is increased with heuristics to search the
space of supports (for example, preference of small supports).

Σ1 ⊆ S1 Σ2 ⊆ S2

Σ1 Σ2



Two-player zero-sum games (TPZS)
This class of games is computationally tractable:

1. Player set 

2. Finite strategy sets  and 

3. Utility functions:  and 

We write 

Player  is maximizing (row player) and player  is
minimizing (column player)

N = {1, 2}

S1 S2

u1: S1 × S2 → R u2 = −u1

u1 + u2 = 0

u = u1:

1 2



Solving TPZS games
Nash equilibrium applies to TPZS games

We will refine the equilibrium concept using the zero-sum
assumption

We use the well-known decision rule minimax to recover the
worst-case minimum gain/maximum loss and show that this
principle is equivalent to NE



Maximin strategy and lower value
1. If player  uses a mixed strategy , then player  can

achieve the loss

2. Player  then employs the mixed strategy  achieving the
worst-case minimum gain

1 p1 2

min
p2∈∆2

U(p1, p2)

1 p∗
1

v– = min
p2∈∆2

U(p∗
1, p2) = max

p1∈∆1

min
p2∈∆2

U(p1, p2):



Minimax strategy and upper value
1. If player  uses a mixed strategy , then player  can

achieve the utility

2. Player  then employs the mixed strategy  achieving the
worst-case maximum loss

2 p2 1

max
p1∈∆1

U(p1, p2)

2 p∗
2

–v = max
p1∈∆1

U(p1, p∗
2) = min

p2∈∆2

max
p1∈∆1

U(p1, p2):



Value of the TPZS game
It is easy to see that . The converse is non-trivial:

Minimax theorem of von Neumann (1928)

, for every TPZS game.

The common value  is called the value of the game

If players use maximin/minimax strategies , the
resulting utility of player  is

v– ≤ –v

v– = –v

v

(p∗
1, p∗

2)
1

v– = U(p∗
1, p∗

2) = –v



Nash equilibria in TPZS games
The following are equivalent for a mixed strategy profile

 in a TPZS.

1. For every  and every ,

2. For every  and every ,

3. 

(p∗
1, p∗

2) ∈ ∆

p1 ∈ ∆1 p2 ∈ ∆2

U(p1, p∗
2) ≤ U(p∗

1, p∗
2) ≤ U(p∗

1, p2).

s1 ∈ S1 s2 ∈ S2

U(s1, p∗
2) ≤ U(p∗

1, p∗
2) ≤ U(p∗

1, s2).

v– = U(p∗
1, p∗

2) = –v



Solving TPZS games by LP (1)
We know that

since linear function  on the convex polyhedron 
achieves minima over the extreme points

The maximization problem for player  then becomes a
linear program since we are maximizing a piecewise-linear
concave function under linear constraints

max
p1∈∆1

min
p2∈∆2

U(p1, p2) = max
p1∈∆1

min
s2∈S2

U(p1, s2)

U(p1, . ) ∆2

1



Solving TPZS games by LP (Player 1)
The LP for player  has variables  and 

Maximize  subject to the constraints

The optimal solution is the maximin strategy  and the
lover value of the game 

1 v1 ∈ R p1 ∈ ∆1

v1

U(p1, s2) ≥ v1, ∀s2 ∈ S2

p1 ∈ ∆1

p∗
1

v∗
1 = v–



Solving TPZS games by LP (Player 2)
The LP for player  has variables  and 

Minimize  subject to the constraints

The optimal solution is the minimax strategy  and the
upper value of the game 

2 v2 ∈ R p2 ∈ ∆2

v2

U(s1, p2) ≤ v2, ∀s1 ∈ S1

p2 ∈ ∆2

p∗
2

v∗
2 = –v



Solving TPZS games: Stocktaking
The two LPs are in fact dual to each other

This means that in the optimum  of the first LP and
the second LP , respectively, we obtain 

The profile of maximin/minmax strategies  is a NE

(p∗
1, v∗

1)
(p∗

2, v∗
2) v∗

1 = v∗
2

(p∗
1, p∗

2)



Computational experiments
Two-player games

Randomly generated (normal distribution) general-sum
vs. zero-sum games with different sizes of strategy spaces

SCIP solver

The state-of-the-art multilinear formulation vs. standard LP



Computational experiments (1)

T. Votroubek - General-sum games vs. zero-sum games



Computational experiments (2)

T. Votroubek - General-sum games



Computational experiments (3)

T. Votroubek - Zero-sum games (note the artefact at 100)


