Normal-form games

Lecture 1

Tomáš Kroupa

Game theory

- Mathematical theory of interactive decision-making
- **Game** involves multiple *players* such that the choice of *strategy* of each player determines the *outcome*
- The seminal work:

J. von Neumann, O. Morgenstern. *Theory of Games and Economic Behavior.* Princeton University Press, 1944.

Problems in game theory

- Compute optimal strategies in extremely large games
- Design optimal auctions
- Allocate the cost among investors fairly
- Evaluate power of voters in collective decision-making

Game theory in AI and applications

- Checkers (1994)
- Chess (1998)
- AlphaGo (2015)
- DeepStack (2017)
- AlphaStar (2019)

- security games
- cybersecurity
- auctions
- voting
- social choice
- generative AI (GANs)
- explainable ML
- robotics

Game theory and other disciplines

- Economics
 - Rationality assumption
 - The concept of equilibrium
- Optimization
 - From unilateral optimization to fixed point computation
- RL
 - From MDPs to multiagent RL

- Computer science
 - PPAD completeness
- Optimal control
 - Pursuit-evasion games
- Mathematics
 - Fixed point theory

Plan of the course

- 1. Normal-form (strategic) games
- 2. Extensive-form games with imperfect information
- 3. Bayesian games and auctions
- 4. Cooperative games

Game theory in other FEL courses

- Řešení problémů a hry (RPH)
 - Prisoner's dilemma and rock-paper-scissors
- Introduction to Artificial Intelligence (ZUI)
 - Two-player zero-sum extensive-form games with perfect information (chess, go)
 - Backward induction and MCTS
- AI in robotics (UIR)
 - Solving very large matrix games
 - Solving two-player zero-sum stochastic games

Classification of games

- Game forms
 - normal
 - extensive
 - cooperative
- Dynamics
 - static
 - sequential

- Strategy sets
 - finite
 - infinite
- Utility functions
 - general-sum
 - zero-sum
- Information
 - complete
 - incomplete

Normal-form game

- 1. Player set $N = \{1, \ldots, n\}$
- 2. Strategy set S_i for each $i \in N$, let $\mathbf{S} = S_1 imes \cdots imes S_n$
- 3. Utility function $u_i : \mathbf{S} o \mathbb{R}$ for each player $i \in N$

This captures a one-shot strategic situation:

- Each player i selects $s_i \in S_i$, let $\mathbf{s} = (s_1, \dots, s_n).$
- Each player i gets utility $u_i(\mathbf{s})$.

Two-player zero-sum games

- 1. Player set $N = \{1, 2\}$
- 2. Strategy sets S_1 and S_2
- 3. Utility functions: $u_1:S_1 imes S_2 o \mathbb{R}$ and $u_2=-u_1$
 - $u_1 + u_2 = 0$
 - We often simply write $u := u_1$
 - Constant-sum games $(u_1+u_2=c)$ are not more general: define $u_2':=u_2-c$ and observe that $u_1+u_2'=0$

Pure and mixed strategies

• A strategy $s_i \in S_i$ is called *pure*

Assumption: every S_i is finite

- *Mixed strategy* is a probability distribution p_i over S_i
- The set of all mixed strategies is denoted by Δ_i

Every pure strategy $s_i \in S_i$ is mixed:

$$\delta_{s_i}(t_i) = egin{cases} 1 & t_i = s_i \ 0 & ext{otherwise} \end{cases}$$

Expected utility

The *expected utility* of player i is $U_i: \Delta_1 ig \times \cdots imes \Delta_n o \mathbb{R}$,

$$U_i(p_1,\ldots,p_n) = \sum_{\mathbf{s}\in\mathbf{S}} u_i(\mathbf{s}) \prod_{j\in N} p_j(s_j).$$

It is an extension of utility function since

$$U_i(\delta_{s_1},\ldots,\delta_{s_n})=u_i(s_1,\ldots,s_n)$$
 for every $(s_1,\ldots,s_n)\in {f S}.$

Examples of normal-form games (1)

Rock paper scissors: $S_1 = S_2 = \{r, p, s\}$ with the payoff matrix

$$egin{bmatrix} 0 & -1 & 1 \ 1 & 0 & -1 \ -1 & 1 & 0 \end{bmatrix}$$

Prisoner's dilemma: $S_1=S_2=\{c,d\}$ with the bimatrix

$$egin{bmatrix} -1,-1&-4,0\ 0,-4&-3,-3 \end{bmatrix}$$

Examples of normal-form games (2)

Matching pennies: $S_1 = S_2 = \{h, t\}$ with the payoff matrix

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Expected utility of player 1 is

$$U(p,q)=4pq-2p-2q+1,$$

where $p \coloneqq p_1(h)$ and $q \coloneqq p_2(h)$

Examples of normal-form games (3)

Two-player zero-sum *continuous game*: $S_1 = S_2 = [0,1]$ and u(x,y) = 4xy - 2x - y + 3.

Nash equilibrium in pure strategies

A strategy profile $\mathbf{s}^* = (s_1^*, \dots, s_n^*) \in \mathbf{S}$ is a Nash equilibrium if, for each $i \in N$ and every $s_i \in S_i$,

$$u_i(s_i, \mathbf{s}^*_{-i}) \leq u_i(\mathbf{s}^*).$$

Equivalently: for each $i \in N$,

$$s_i^* \in \mathbf{BR}_i(\mathbf{s}_{-i}^*),$$

where

 $\mathbf{BR}_i(\mathbf{s}_{-i}^*) = \{s_i \in S_i \mid u_i(s_i, \mathbf{s}_{-i}^*) = \max_{t_i \in S_i} u_i(t_i, \mathbf{s}_{-i}^*) \}.$

NE in pure strategies - Examples

- Matching pennies and rock paper scissors have no pure NE
- Prisoner's dilemma has a pure NE with utilities -3

$$egin{bmatrix} -1, -1 & -4, 0 \ 0, -4 & -3, -3 \end{bmatrix}$$

• The continuous game u(x,y)=4xy-2x-y+3 on the unit square has the unique NE $(rac{1}{4},rac{1}{2})$ with value $rac{5}{2}$

NE in mixed strategies for finite games

A profile of mixed strategies $\mathbf{p}^*=(p_1^*,\ldots,p_n^*)$ is a Nash equilibrium if, for each $i\in N$ and every $p_i\in\Delta_i$,

$$U_i(p_i, \mathbf{p}^*_{-i}) \leq U_i(\mathbf{p}^*).$$

Equivalently: for each $i \in N$,

$$p_i^* \in \mathbf{BR}_i(\mathbf{p}_{-i}^*),$$

where $\mathbf{BR}_i(\mathbf{p}^*_{-i}) = \{p_i \in \Delta_i \mid U_i(p_i,\mathbf{p}^*_{-i}) = \max_{q_i \in \Delta_i} U_i(q_i,\mathbf{p}^*_{-i})\}.$

NE in mixed strategies - Examples

- The unique NE in *Matching pennies* and *rock paper scissors* are uniform probability distributions
- Battle of the sexes game

$$\begin{bmatrix} 2,1 & 0,0\\ 0,0 & 1,2 \end{bmatrix}$$

has two pure NE (with payoffs 2 and 1) and one mixed NE

$$\left(\left(\tfrac{1}{3},\tfrac{2}{3}\right),\left(\tfrac{2}{3},\tfrac{1}{3}\right)\right)$$

Existence of Nash equilibria

Nash's theorem (1950)

Every n-player strategic game with finite strategy spaces has at least NE in mixed strategies.

A minimax theorem

Every two-player zero-sum strategic game with compact convex strategy sets and continuous concave-convex utility function u has a pure NE.

Dominated strategies

- A strategy s_i strongly dominates s_i' if, for every $\mathbf{s}_{-i} \in \mathbf{S}_{-i}$, $u_i(s_i, \mathbf{s}_{-i}) > u_i(s_i', \mathbf{s}_{-i})$.
- A strategy s_i weakly dominates s'_i if, for every $\mathbf{s}_{-i} \in \mathbf{S}_{-i}$, $u_i(s_i, \mathbf{s}_{-i}) \ge u_i(s'_i, \mathbf{s}_{-i})$ and there exists some $\mathbf{s}_{-i} \in \mathbf{S}_{-i}$ such that $u_i(s_i, \mathbf{s}_{-i}) > u_i(s'_i, \mathbf{s}_{-i})$.

A rational player doesn't adopt strongly dominated strategy.

Removal of dominated strategies

- An iterative procedure yields a smaller game and does not depend on the order of elimination if we remove only *strictly* dominated strategies
- It preserves all the existing pure NE
- Example: Iterated removal applied to

$$\begin{bmatrix} 1, 0 & 1, 2 & 0, 1 \\ 0, 3 & 0, 1 & 2, 0 \end{bmatrix}$$

yields a unique NE with payoffs (1,2)