Normal-form games Lecture 1

Tomáš Kroupa

Game theory

- Mathematical theory of interactive decision-making
- Game involves multiple players such that the choice of strategy of each player determines the outcome
- The seminal work:

J. von Neumann, O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, 1944.

Problems in game theory

- Compute optimal strategies in extremely large games
- Design optimal auctions
- Allocate the cost among investors fairly
- Evaluate power of voters in collective decision-making

Game theory in AI and applications

- Checkers (1994)
- Chess (1998)
- AlphaGo (2015)
- DeepStack (2017)
- AlphaStar (2019)
- security games
- cybersecurity
- auctions
- voting
- social choice
- generative AI (GANs)
- explainable ML
- robotics

Game theory and other disciplines

- Economics
- Rationality assumption
- The concept of equilibrium
- Optimization
- From unilateral optimization to fixed point computation
- RL
- From MDPs to multiagent RL
- Computer science
- PPAD completeness
- Optimal control
- Pursuit-evasion games
- Mathematics
- Fixed point theory

Plan of the course

1. Normal-form (strategic) games
2. Extensive-form games with imperfect information
3. Bayesian games and auctions
4. Cooperative games

Game theory in other FEL courses

- Řešení problémů a hry (RPH)
- Prisoner's dilemma and rock-paper-scissors
- Introduction to Artificial Intelligence (ZUI)
- Two-player zero-sum extensive-form games with perfect information (chess, go)
- Backward induction and MCTS
- Al in robotics (UIR)
- Solving very large matrix games
- Solving two-player zero-sum stochastic games

Classification of games

- Game forms
- normal
- extensive
- cooperative
- Dynamics
- static
- sequential
- Strategy sets
- finite
- infinite
- Utility functions
- general-sum
- zero-sum
- Information
- complete
- incomplete

Normal-form game

1. Player set $N=\{1, \ldots, n\}$
2. Strategy set S_{i} for each $i \in N$, let $\mathbf{S}=S_{1} \times \cdots \times S_{n}$
3. Utility function $u_{i}: \mathbf{S} \rightarrow \mathbb{R}$ for each player $i \in N$

This captures a one-shot strategic situation:

- Each player i selects $s_{i} \in S_{i}$, let $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$.
- Each player i gets utility $u_{i}(\mathbf{s})$.

Two-player zero-sum games

1. Player set $N=\{1,2\}$
2. Strategy sets S_{1} and S_{2}
3. Utility functions: $u_{1}: S_{1} \times S_{2} \rightarrow \mathbb{R}$ and $u_{2}=-u_{1}$

- $u_{1}+u_{2}=0$
- We often simply write $u:=u_{1}$
- Constant-sum games ($u_{1}+u_{2}=c$) are not more general: define $u_{2}^{\prime}:=u_{2}-c$ and observe that $u_{1}+u_{2}^{\prime}=0$

Pure and mixed strategies

- A strategy $s_{i} \in S_{i}$ is called pure

Assumption: every S_{i} is finite

- Mixed strategy is a probability distribution p_{i} over S_{i}
- The set of all mixed strategies is denoted by Δ_{i}

Every pure strategy $s_{i} \in S_{i}$ is mixed:

$$
\delta_{s_{i}}\left(t_{i}\right)= \begin{cases}1 & t_{i}=s_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Expected utility

The expected utility of player i is $U_{i}: \Delta_{1} \times \cdots \times \Delta_{n} \rightarrow \mathbb{R}$,

$$
U_{i}\left(p_{1}, \ldots, p_{n}\right)=\sum_{\mathbf{s} \in \mathbf{S}} u_{i}(\mathbf{s}) \prod_{j \in N} p_{j}\left(s_{j}\right) .
$$

It is an extension of utility function since

$$
U_{i}\left(\delta_{s_{1}}, \ldots, \delta_{s_{n}}\right)=u_{i}\left(s_{1}, \ldots, s_{n}\right)
$$

for every $\left(s_{1}, \ldots, s_{n}\right) \in \mathbf{S}$.

Examples of normal-form games (1)

Rock paper scissors: $S_{1}=S_{2}=\{r, p, s\}$ with the payoff matrix

$$
\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

Prisoner's dilemma: $S_{1}=S_{2}=\{c, d\}$ with the bimatrix

$$
\left[\begin{array}{cc}
-1,-1 & -4,0 \\
0,-4 & -3,-3
\end{array}\right]
$$

Examples of normal-form games (2)
Matching pennies: $S_{1}=S_{2}=\{h, t\}$ with the payoff matrix

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Expected utility of player 1 is

$$
U(p, q)=4 p q-2 p-2 q+1
$$

where $p:=p_{1}(h)$ and $q:=p_{2}(h)$

Examples of normal-form games (3)

Two-player zero-sum continuous game: $S_{1}=S_{2}=[0,1]$ and $u(x, y)=4 x y-2 x-y+3$.

Nash equilibrium in pure strategies

A strategy profile $\mathbf{s}^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right) \in \mathbf{S}$ is a Nash equilibrium if, for each $i \in N$ and every $s_{i} \in S_{i}$,

$$
u_{i}\left(s_{i}, \mathbf{s}_{-i}^{*}\right) \leq u_{i}\left(\mathbf{s}^{*}\right) .
$$

Equivalently: for each $i \in N$,

$$
s_{i}^{*} \in \mathbf{B R}_{i}\left(\mathbf{s}_{-i}^{*}\right),
$$

where
$\mathbf{B R}_{i}\left(\mathbf{s}_{-i}^{*}\right)=\left\{s_{i} \in S_{i} \mid u_{i}\left(s_{i}, \mathbf{s}_{-i}^{*}\right)=\max _{t_{i} \in S_{i}} u_{i}\left(t_{i}, \mathbf{s}_{-i}^{*}\right)\right\}$.

NE in pure strategies - Examples

- Matching pennies and rock paper scissors have no pure NE
- Prisoner's dilemma has a pure NE with utilities -3

$$
\left[\begin{array}{cc}
-1,-1 & -4,0 \\
0,-4 & -3,-3
\end{array}\right]
$$

- The continuous game $u(x, y)=4 x y-2 x-y+3$ on the unit square has the unique $\operatorname{NE}\left(\frac{1}{4}, \frac{1}{2}\right)$ with value $\frac{5}{2}$

NE in mixed strategies for finite games

 A profile of mixed strategies $\mathbf{p}^{*}=\left(p_{1}^{*}, \ldots, p_{n}^{*}\right)$ is a Nash equilibrium if, for each $i \in N$ and every $p_{i} \in \Delta_{i}$,$$
U_{i}\left(p_{i}, \mathbf{p}_{-i}^{*}\right) \leq U_{i}\left(\mathbf{p}^{*}\right)
$$

Equivalently: for each $i \in N$,

$$
p_{i}^{*} \in \mathbf{B R}_{i}\left(\mathbf{p}_{-i}^{*}\right)
$$

where
$\mathbf{B R}_{i}\left(\mathbf{p}_{-i}^{*}\right)=\left\{p_{i} \in \Delta_{i} \mid U_{i}\left(p_{i}, \mathbf{p}_{-i}^{*}\right)=\max _{q_{i} \in \Delta_{i}} U_{i}\left(q_{i}, \mathbf{p}_{-i}^{*}\right)\right\}$.

NE in mixed strategies - Examples

- The unique NE in Matching pennies and rock paper scissors are uniform probability distributions
- Battle of the sexes game

$$
\left[\begin{array}{ll}
2,1 & 0,0 \\
0,0 & 1,2
\end{array}\right]
$$

has two pure NE (with payoffs 2 and 1) and one mixed NE

$$
\left(\left(\frac{1}{3}, \frac{2}{3}\right),\left(\frac{2}{3}, \frac{1}{3}\right)\right)
$$

Existence of Nash equilibria

Nash's theorem (1950)
Every n-player strategic game with finite strategy spaces has at least NE in mixed strategies.

A minimax theorem

Every two-player zero-sum strategic game with compact convex strategy sets and continuous concave-convex utility function u has a pure NE.

Dominated strategies

- A strategy s_{i} strongly dominates s_{i}^{\prime} if, for every $\mathbf{s}_{-i} \in \mathbf{S}_{-i}$, $u_{i}\left(s_{i}, \mathbf{s}_{-i}\right)>u_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-i}\right)$.
- A strategy s_{i} weakly dominates s_{i}^{\prime} if, for every $\mathbf{s}_{-i} \in \mathbf{S}_{-i}$, $u_{i}\left(s_{i}, \mathbf{s}_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-i}\right)$ and there exists some $\mathbf{s}_{-i} \in \mathbf{S}_{-i}$ such that $u_{i}\left(s_{i}, \mathbf{s}_{-i}\right)>u_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-i}\right)$.

A rational player doesn't adopt strongly dominated strategy.

Removal of dominated strategies

- An iterative procedure yields a smaller game and does not depend on the order of elimination if we remove only strictly dominated strategies
- It preserves all the existing pure NE
- Example: Iterated removal applied to

$$
\left[\begin{array}{lll}
1,0 & 1,2 & 0,1 \\
0,3 & 0,1 & 2,0
\end{array}\right]
$$

yields a unique NE with payoffs $(1,2)$

