
Normal-form games
Lecture 1

Tomáš Kroupa

Computational Game Theory - Lecture 1



Game theory
Mathematical theory of interactive decision-making

Game involves multiple players such that the choice of
strategy of each player determines the outcome

The seminal work:

J. von Neumann, O. Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, 1944.



Problems in game theory
Compute optimal strategies in extremely large games

Design optimal auctions

Allocate the cost among investors fairly

Evaluate power of voters in collective decision-making



Game theory in AI and applications
Checkers (1994)

Chess (1998)

AlphaGo (2015)

DeepStack (2017)

AlphaStar (2019)

security games

cybersecurity

auctions

voting

social choice

generative AI (GANs)

explainable ML

robotics



Game theory and other disciplines
Economics

Rationality assumption

The concept of equilibrium

Optimization

From unilateral optimization to
fixed point computation

RL

From MDPs to multiagent RL

Computer science

PPAD completeness

Optimal control

Pursuit-evasion
games

Mathematics

Fixed point theory



Plan of the course
1. Normal-form (strategic) games

2. Extensive-form games with imperfect information

3. Bayesian games and auctions

4. Cooperative games



Game theory in other FEL courses
Řešení problémů a hry (RPH)

Prisoner’s dilemma and rock-paper-scissors

Introduction to Artificial Intelligence (ZUI)

Two-player zero-sum extensive-form games with perfect
information (chess, go)

Backward induction and MCTS

AI in robotics (UIR)

Solving very large matrix games

Solving two-player zero-sum stochastic games



Classification of games
Game forms

normal

extensive

cooperative

Dynamics

static

sequential

Strategy sets

finite

infinite

Utility functions

general-sum

zero-sum

Information

complete

incomplete



Normal-form game
1. Player set 

2. Strategy set  for each , let 

3. Utility function  for each player 

This captures a one-shot strategic situation:

Each player  selects , let .

Each player  gets utility .

N = {1, … , n}

Si i ∈ N S = S1 × ⋯ × Sn

ui: S → R i ∈ N

i si ∈ Si s = (s1, … , sn)
i ui(s)



Two-player zero-sum games
1. Player set 

2. Strategy sets  and 

3. Utility functions:  and  

We o"en simply write 

Constant-sum games ( ) are not more general:
define  and observe that 

N = {1, 2}

S1 S2

u1: S1 × S2 → R u2 = −u1

u1 + u2 = 0

u = u1:

u1 + u2 = c
u′

2 = u2 − c: u1 + u′
2 = 0



Pure and mixed strategies
A strategy  is called pure

Assumption: every  is finite

Mixed strategy is a probability distribution  over 

The set of all mixed strategies is denoted by 

Every pure strategy  is mixed:

si ∈ Si

Si

pi Si

∆i

si ∈ Si

δsi(ti) = {1 ti = si

0 otherwise



Expected utility
The expected utility of player  is ,

It is an extension of utility function since

for every .

i Ui: ∆1 × ⋯ × ∆n → R

Ui(p1, … , pn) = ∑
s∈S

ui(s) ∏
j∈N

pj(sj).

Ui(δs1 , … , δsn
) = ui(s1, … , sn)

(s1, … , sn) ∈ S⎢ ⎥



Examples of normal-form games (1)
Rock paper scissors:  with the payoff
matrix

Prisoner’s dilemma:  with the bimatrix

S1 = S2 = {r, p, s}

⎡⎢⎣ 0 −1 1
1 0 −1

−1 1 0

⎤⎥⎦S1 = S2 = {c, d}

[ ]−1, −1 −4, 0
0, −4 −3, −3



⎢ ⎥Examples of normal-form games (2)
Matching pennies:  with the payoff matrix

Expected utility of player 1 is

where  and 

S1 = S2 = {h, t}

[ ]1 −1
−1 1

U(p, q) = 4pq − 2p − 2q + 1,

p = p1(h): q = p2(h):



⎢ ⎥
Examples of normal-form games (3)
Two-player zero-sum continuous game:  and 

.
S1 = S2 = [0, 1]

u(x, y) = 4xy − 2x − y + 3



Nash equilibrium in pure strategies
A strategy profile  is a Nash equilibrium
if, for each  and every ,

Equivalently: for each ,

where 
.

s∗ = (s∗
1, … , s∗

n) ∈ S
i ∈ N si ∈ Si

ui(si, s∗
−i) ≤ ui(s∗).

i ∈ N

s∗
i ∈ BRi(s∗

−i),

BRi(s∗
−i) = {si ∈ Si ∣ ui(si, s∗

−i) = max
ti∈Si

ui(ti, s∗
−i)}



NE in pure strategies - Examples
Matching pennies and rock paper scissors have no pure NE

Prisoner’s dilemma has a pure NE with utilities 

The continuous game  on the
unit square has the unique NE  with value 

−3

[ ]−1, −1 −4, 0
0, −4 −3, −3

u(x, y) = 4xy − 2x − y + 3
( 1

4 , 1
2 ) 5

2



NE in mixed strategies for finite games
A profile of mixed strategies  is a Nash
equilibrium if, for each  and every ,

Equivalently: for each ,

where 
.

p∗ = (p∗
1, … , p∗

n)
i ∈ N pi ∈ ∆i

Ui(pi, p∗
−i) ≤ Ui(p∗).

i ∈ N

p∗
i ∈ BRi(p∗

−i),

BRi(p∗
−i) = {pi ∈ ∆i ∣ Ui(pi, p∗

−i) = max
qi∈∆i

Ui(qi, p∗
−i)}



NE in mixed strategies - Examples
The unique NE in Matching pennies and rock paper scissors
are uniform probability distributions

Battle of the sexes game

has two pure NE (with payoffs  and ) and one mixed NE

[ ]2, 1 0, 0
0, 0 1, 2

2 1

(( 1
3 , 2

3 ), ( 2
3 , 1

3 ))



Existence of Nash equilibria
Nash’s theorem (1950)

Every -player strategic game with finite strategy spaces has at
least NE in mixed strategies.

A minimax theorem
Every two-player zero-sum strategic game with compact
convex strategy sets and continuous concave-convex utility
function  has a pure NE.

n

u



Dominated strategies
A strategy  strongly dominates  if, for every , 

.

A strategy  weakly dominates  if, for every , 
 and there exists some 

such that .

A rational player doesn’t adopt strongly dominated strategy.

si s′
i s−i ∈ S−i

ui(si, s−i) > ui(s′
i, s−i)

si s′
i s−i ∈ S−i

ui(si, s−i) ≥ ui(s′
i, s−i) s−i ∈ S−i

ui(si, s−i) > ui(s′
i, s−i)



Removal of dominated strategies
An iterative procedure yields a smaller game and does not
depend on the order of elimination if we remove only strictly
dominated strategies

It preserves all the existing pure NE

Example: Iterated removal applied to

yields a unique NE with payoffs 

[ ]1, 0 1, 2 0, 1
0, 3 0, 1 2, 0

(1, 2)


