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Error decomposition @
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R* = inf; cyx R(h) best attainable risk
R(hy) best risk in the class where hy € Argming, 4, R(h)

R(h,,) generalization error of h,, = A(7,,) learned from data 7™

Error decomposition:

R(hy) = (R(hm) - R(hH)> + (R(hﬂ) - R*) +R*

N\ J/ \ . J

-~

estimation error approximation error

The approximation error: depends on ‘H chosen prior to learning.

The estimation error: depends on H, data 7 and the algorithm A.
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Probably Approximately Correct (PAC) learning
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Successful PAC learning algorithm

Given a hypothesis space H and the loss /¢, the algorithm

The following can be arbitrary: desired estimation error € > 0,
probability of failure 6 € (0,1), and data distribution p(z, ).

Definition. Algorithm is a for hypothesis space ‘H
w.r.t. loss £: Y x Y — R if there exists a function (called sample complexity)
m3,“: Ry x (0,1) = N such that: For every € > 0, § € (0,1), and every
distribution p(x,y), when running the algorithm on m > m73," (¢, d) examples
T™ ii.d. drawn from p(x,y), then the algorithm returns h,, = A(T™) such

that
P(R(hm) ~ R(hy) < e) >1-4.
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ULLN implies that ERM is successful PAC learner @ -
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. there exists mY;: R x (0,1) — N such that for
every € > 0,0 € (0,1), every distribution p(x,y) and every m > mY (e, d) it
holds that

P( sup |R(h) — Rym(h)| > ) <4
heH

S

ER can fail

there exists m3,“: R5¢ x (0,1) = N
such that when running the algorithm on m > mz(¢, d) examples
T™ ~ p™ then it returns h,, = A(7T™) such that

P(ﬁ(hm) ~ R(hy) < g) >1-§.

N

low estimation error

Theorem: If ULLN applies for H C Y with a function mlﬁ then ERM is a
successful PAC learner for ‘H with the sample complexity

my“(e,0) = H(e J).


http://cmp.felk.cvut.cz

. ‘ ()
ULLN implies that ERM is successful PAC learner: proof (1) @
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m > mii(e,0) = IP’( sup |R(h) — Rym(h)| > s) <5
heH

J/

VY a

R(hn) = R(hw) < 250py.c3 |[R(h) — R (h)

-~

R(hy) — R(hy) >& = suppey |R(h) — Rym(h)| >

N M

P(R(hm) — R(hy) > ?:) < P(suphEH [R(h) — Rym(h)| >

)

D[ Ml

3
'V

3
LE
Gio
&

Y
ac)
N\
)

hon) — R(hy) > 5) )

m > mb(E,5) = P(R(hm) — R(hy) < g) <1-6

where m5/°(g, 8) = m¥(5, 0)
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ULLN implies that ERM is successful PAC learner: proof (2) @
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For fixed 7™ and h,, € Argmin, o, R7m(h) we have:

Rltn) = R(t0) = (Bltn) = Roen) ) + (Bro(hn) = Rl
< (Rlm) = Brntlin) ) + (B (h) = R

< 2 sup ‘R(h) — RTm(h)‘
heH
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ERM is successful PAC learner for finite hypothesis space @
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We showed that for finite hypothesis space H = {hq,...,hg} it holds

2

_ 2m e
P( masx [Rym(h) — R(h)| > € ) < 2[H]e” Tt = §
-

and hence ULLN applies with mY/(g,d) = 10g2|§€|2_10g5(€max — Lrin ).

Therefore ERM is successful PAC learner for H with sample complexity

1 2|H| — log o
05 ‘ _‘2 05 (gmax_gmin)za

pac
(,0) = =

that is, when running ERM on 7™ with m > m2,(g,0) then it returns
hpm = A(T™) such that

P(R(hm) ~ R(hy) < g:) >1-45.
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Linear classifier minimizing classification error @

X is a set of observations and Y = {41, —1} a set of hidden labels
¢: X — R" is fixed feature map embedding X to R"

find linear classification strategy h: X — ), parametrized by a
vector w € R",

h(x;w,b) = sign({(w, p(x)) +b) = { —_Fi :]: EZ: ig;i 12 i 8

with minimal expected risk
R (h) = Bz y)~p (50/ "y, h(fb‘))) where (1 (y, ") = [y # /]
We are given a set of training examples
T ={(2"y") € (X xY)|i=1,...,m}

drawn from i.i.d. with the distribution p(z,vy).

8/13
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ERM learning for linear classifiers @
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ERM for H = {h(x;w,b) = sign({(w, ¢(x)) +b) | (w,b) € R*"*1} leads
to

(w*,b*) € Argmin RY(h) = Argmin RV (h(-;w,b)) (1)
heH (w,b)e(R™*xR)

where the empirical risk is

m

RO (h(w,b) = 3 [y # hia'; w,b)]

i=1
Algorithmic issues (next lecture): in general, there is no known

algorithm solving the task (1) in time polynomial in m.

Does ULLN applies for the class of two-class linear classifiers?

If yes then ERM is PAC successful learner.
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Vapnik-Chervonenkis (VC) dimension @
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VC dimension is a concept to measure complexity of an infinite
hypothesis space # C {—1,+1}.

Definition: Let H C {—1,+1}* and {z!,..., 2™} € X™ be a set of m
input observations. The set {z!,... 2™} if for
all y € {+1,—1}™ there exists h € H such that h(z*) =4*, 1 € {1,...,m}.

Definition: Let H C {—1,+1}*. The of H
is the cardinality of the largest set of points from X which can be shattered

by H.
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CAm ¢
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VC dimension of class of two-class linear classifiers

Theorem: The VC-dimension of the hypothesis class of all two-class linear
classifiers operating in n-dimensional feature space

H ={h(z;w,b) =sign((w, p(z)) +0b) | (w,b) € (R" xR)} isn+1.

Example for n = 2-dimensional feature space
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ULLN for two class predictors and 0/1-loss @
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Theorem: Let H C {+1,—1}* be a hypothesis class with VC dimension
d<ooand T™={(z',y!),..., (2™, y™)} € (X x V)™ a training set draw
from i.i.d. rand vars with distribution p(x,y). Then for any € > 0 it holds

d
2 m e
P(Sup Ro/l(h)—R%}L(h)| 26) §4( em) e s
heH d

Corollary: Let H C {+1, -1} be a hypothesis class with a
d < oo. Then, ULLN applies for { and there exists a constant C

such that
d — log d

c2

my“(e,0) < C
that is,

Remark: Recall that in case of finite hypothesis space H = {h1,..., hg}

and 0/1-loss we have the sample complexity mz,“(e,0) = 210g2|7§|2_10g6.
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Summary
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Error decomposition: Generalization error = estimation error +
approximation error + Bayes risk.

Probably Approximately Correct (PAC) learning.

ULLN implies that ERM is successful PAC learner.

VC dimension: hypothesis space complexity of two-class classifier.
VC dimension of linear hypothesis space.

Finite VC dimension implies that ERM is a successful PAC learner.
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