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Error decomposition:
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� R∗ = infh∈YX R(h) best attainable risk

� R(hH) best risk in the class where hH ∈ Argminh∈HR(h)
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(
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)
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� The approximation error: depends on H chosen prior to learning.

� The estimation error: depends on H, data T and the algorithm A.
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Probably Approximately Correct (PAC) learning

Successful PAC learning algorithm

� Given a hypothesis space H and the loss `, the algorithm with high
probability learns a predictor that has low estimation error.

� The following can be arbitrary: desired estimation error ε > 0,
probability of failure δ ∈ (0, 1), and data distribution p(x, y).
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Successful PAC learning algorithm

� Given a hypothesis space H and the loss `, the algorithm with high
probability learns a predictor that has low estimation error.

� The following can be arbitrary: desired estimation error ε > 0,
probability of failure δ ∈ (0, 1), and data distribution p(x, y).

Definition. Algorithm is a successful PAC learner for hypothesis space H
w.r.t. loss ` : Y ×Y → R if there exists a function (called sample complexity)
mpac
H : R>0 × (0, 1)→ N such that: For every ε > 0, δ ∈ (0, 1), and every

distribution p(x, y), when running the algorithm on m ≥ mpac
H (ε, δ) examples

T m i.i.d. drawn from p(x, y), then the algorithm returns hm = A(T m) such
that

P
(
R(hm)−R(hH) ≤ ε

)
≥ 1− δ .
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ULLN implies that ERM is successful PAC learner

ULLN applies for H ⊂ YX : there exists mul
H : R>0 × (0, 1)→ N such that for

every ε > 0, δ ∈ (0, 1), every distribution p(x, y) and every m ≥ mul
H(ε, δ) it

holds that
P
(

sup
h∈H

∣∣R(h)−RT m(h)
∣∣ ≥ ε︸ ︷︷ ︸

ER can fail

)
≤ δ .
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H : R>0 × (0, 1)→ N

such that when running the algorithm on m ≥ mpac
H (ε, δ) examples

T m ∼ pm then it returns hm = A(T m) such that

P
(
R(hm)−R(hH) ≤ ε︸ ︷︷ ︸
low estimation error

)
≥ 1− δ .

Theorem: If ULLN applies for H ⊂ YX with a function mul
H then ERM is a

successful PAC learner for H with the sample complexity
mpac
H (ε, δ) = mul

H(ε2, δ).
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ULLN implies that ERM is successful PAC learner: proof (2)

For fixed T m and hm ∈ Argminh∈HRT m(h) we have:

R(hm)−R(hH) =

(
R(hm)−RT m(hm)

)
+

(
RT m(hm)−R(hH)

)
≤
(
R(hm)−RT m(hm)

)
+

(
RT m(hH)−R(hH)

)
≤ 2 sup

h∈H

∣∣∣∣R(h)−RT m(h)

∣∣∣∣
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ERM is successful PAC learner for finite hypothesis space

� We showed that for finite hypothesis space H = {h1, . . . , hK} it holds

P
(

max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e

− 2mε2

(`max−`min)2 = δ

and hence ULLN applies with mul
H(ε, δ) = log 2|H|−log δ

2 ε2 (`max − `min)2.
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� We showed that for finite hypothesis space H = {h1, . . . , hK} it holds

P
(

max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e

− 2mε2

(`max−`min)2 = δ

and hence ULLN applies with mul
H(ε, δ) = log 2|H|−log δ

2 ε2 (`max − `min)2.

� Therefore ERM is successful PAC learner for H with sample complexity

mpac
H (ε̄, δ) = 2

log 2|H| − log δ

ε̄2 (`max − `min)2 ,

that is, when running ERM on T m with m ≥ mpac
H (ε̄, δ) then it returns

hm = A(T m) such that

P
(
R(hm)−R(hH) ≤ ε̄

)
≥ 1− δ .

http://cmp.felk.cvut.cz


8/13
Linear classifier minimizing classification error

� X is a set of observations and Y = {+1,−1} a set of hidden labels
� φ : X → Rn is fixed feature map embedding X to Rn

� Task: find linear classification strategy h : X → Y, parametrized by a
vector w ∈ Rn,

h(x;w, b) = sign(〈w,φ(x)〉+ b) =

{
+1 if 〈w,φ(x)〉+ b ≥ 0

−1 if 〈w,φ(x)〉+ b < 0

with minimal expected risk

R0/1(h) = E(x,y)∼p

(
`0/1(y, h(x))

)
where `0/1(y, y′) = [[y 6= y′]]

� We are given a set of training examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. with the distribution p(x, y).
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ERM learning for linear classifiers

� ERM for H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ Rn+1} leads
to

(w∗, b∗) ∈ Argmin
h∈H

R
0/1
T m(h) = Argmin

(w,b)∈(Rn×R)

R
0/1
T m(h(·;w, b)) (1)

where the empirical risk is

R
0/1
T m(h(·;w, b)) =

1

m

m∑
i=1

[[yi 6= h(xi;w, b)]]
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� ERM for H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ Rn+1} leads
to

(w∗, b∗) ∈ Argmin
h∈H

R
0/1
T m(h) = Argmin

(w,b)∈(Rn×R)

R
0/1
T m(h(·;w, b)) (1)

where the empirical risk is

R
0/1
T m(h(·;w, b)) =

1

m

m∑
i=1

[[yi 6= h(xi;w, b)]]

� Algorithmic issues (next lecture): in general, there is no known
algorithm solving the task (1) in time polynomial in m.

� Does ULLN applies for the class of two-class linear classifiers?
If yes then ERM is PAC successful learner.
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� VC dimension is a concept to measure complexity of an infinite
hypothesis space H ⊆ {−1,+1}X .
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Definition: Let H ⊆ {−1,+1}X and {x1, . . . , xm} ∈ Xm be a set of m
input observations. The set {x1, . . . , xm} is said to be shattered by H if for
all y ∈ {+1,−1}m there exists h ∈ H such that h(xi) = yi, i ∈ {1, . . . ,m}.
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� VC dimension is a concept to measure complexity of an infinite
hypothesis space H ⊆ {−1,+1}X .

Definition: Let H ⊆ {−1,+1}X and {x1, . . . , xm} ∈ Xm be a set of m
input observations. The set {x1, . . . , xm} is said to be shattered by H if for
all y ∈ {+1,−1}m there exists h ∈ H such that h(xi) = yi, i ∈ {1, . . . ,m}.

Definition: Let H ⊆ {−1,+1}X . The Vapnik-Chervonenkis dimension of H
is the cardinality of the largest set of points from X which can be shattered
by H.
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VC dimension of class of two-class linear classifiers

Theorem: The VC-dimension of the hypothesis class of all two-class linear
classifiers operating in n-dimensional feature space
H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ (Rn × R)} is n+ 1.
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VC dimension of class of two-class linear classifiers

Theorem: The VC-dimension of the hypothesis class of all two-class linear
classifiers operating in n-dimensional feature space
H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ (Rn × R)} is n+ 1.

Example for n = 2-dimensional feature space
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ULLN for two class predictors and 0/1-loss

Theorem: Let H ⊂ {+1,−1}X be a hypothesis class with VC dimension
d <∞ and T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw
from i.i.d. rand vars with distribution p(x, y). Then for any ε > 0 it holds

P
(

sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d
e−

m ε2

8
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Theorem: Let H ⊂ {+1,−1}X be a hypothesis class with VC dimension
d <∞ and T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw
from i.i.d. rand vars with distribution p(x, y). Then for any ε > 0 it holds

P
(

sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d
e−

m ε2
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Corollary: Let H ⊂ {+1,−1}X be a hypothesis class with a finite VC
dimension d <∞. Then, ULLN applies for H and there exists a constant C
such that

mpac
H (ε, δ) ≤ Cd− log δ

ε2

that is, ERM is PAC successful learner.
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Theorem: Let H ⊂ {+1,−1}X be a hypothesis class with VC dimension
d <∞ and T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw
from i.i.d. rand vars with distribution p(x, y). Then for any ε > 0 it holds

P
(

sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
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Corollary: Let H ⊂ {+1,−1}X be a hypothesis class with a finite VC
dimension d <∞. Then, ULLN applies for H and there exists a constant C
such that

mpac
H (ε, δ) ≤ Cd− log δ

ε2

that is, ERM is PAC successful learner.

Remark: Recall that in case of finite hypothesis space H = {h1, . . . , hK}
and 0/1-loss we have the sample complexity mpac

H (ε, δ) = 2log 2|H|−log δ
ε2 .
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Summary

� Error decomposition: Generalization error = estimation error +
approximation error + Bayes risk.

� Probably Approximately Correct (PAC) learning.

� ULLN implies that ERM is successful PAC learner.

� VC dimension: hypothesis space complexity of two-class classifier.

� VC dimension of linear hypothesis space.

� Finite VC dimension implies that ERM is a successful PAC learner.
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