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■ Hidden Markov Models

■ Inference algorithms for HMMs

■ Parameter learning for HMMs
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Hidden Markov Models

■ Let s= (s1,s2, . . . ,sn) denote a sequence of hidden states from a finite set K.

■ Let x= (x1,x2, . . . ,xn) denote a sequence of features from some feature space X .

Definition 1. A joint p.d. on X n ×Kn is a Hidden Markov model if

(a) the prior p.d. p(s) for the sequences of hidden states is a Markov model, and

(b) the conditional distribution p(x |s) for the feature sequence is independent, i.e.

p(x |s) =
n∏

i=1

p(xi |si).

The joint model is given by

p(x,s) = p(s1)

n∏
i=2

p(si |si−1)

n∏
i=1

p(xi |si).

http://cmp.felk.cvut.cz
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Hidden Markov Models

Example 1 (Text recognition, OCR).

p(x1 | s1)

s1
p(s2 | s1)

s2

p(s3 | s2) p(s4 | s3)
s4

p(x4 | s4)

x4x3x2x1

p(x2 | s2) p(x3 | s3)

s3

■ x= (x1,x2, . . . ,xn) – sequence of images with characters,

■ s= (s1,s2, . . . ,sn) – sequence of alphabetic characters,

■ p(si |si−1) – language model,

■ p(xi |si) – appearance model for characters.

http://cmp.felk.cvut.cz
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Hidden Markov Models

Example 2 (Skin layer segmentation, OCT).

■ x= (x1,x2, . . . ,xn) – sequence of image columns (features),

■ s= (s1,s2, . . . ,sn) – sequence of boundary height values,

■ p(si |si−1) – boundary model,

■ p(xi |si) – appearance model for image columns.

http://cmp.felk.cvut.cz
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Inference algorithms for HMMs

How to find the most probable sequence of hidden states given the sequence of features x

s∗ ∈ argmax
s∈Kn

p(s1)

n∏
i=2

p(si |si−1)

n∏
i=1

p(xi |si)

Take the logarithm, with

g1(s1,x1) = log[p(s1)p(x1 |s1)]
gi(si−1,si,xi) = log[p(si |si−1)p(xi |si)], i= 2, . . . ,n

Solve the task
s∗ ∈ argmax

s∈Kn

[
g1(s1,x1)+

n∑
i=2

gi(si−1,si,xi)
]

by dynamic programming as before for Markov models.

http://cmp.felk.cvut.cz
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Inference algorithms for HMMs

How to compute marginal probabilities for hidden states given the sequence of features?

We want to compute p(si = k,x), ∀k ∈K in some sequence position j.

p(sj,x) =
∑

s1∈K

· · ·
�
�
�
�
�
�S

S
S
S
S
S

∑
sj∈K

· · ·
∑

sn∈K

p(s1)p(x1 |s1)
n∏

i=2

[
p(si |si−1)p(xi |si)

]
This is now more complicated, because we need to sum over the leading and trailing hidden
state variables. Do this by dynamic matrix-vector multiplication from the left and from the
right.

Initialise ϕ1(s1) = p(s1)p(x1 |s1) and ψn(sn) ≡ 1 and recursively compute

ϕi(si) =
∑

si−1∈K

p(xi |si)p(si |si−1)ϕi−1(si−1) ∀si ∈K

ψi(si) =
∑

si+1∈K

p(xi+1 |si+1)p(si+1 |si)ψi+1(si+1) ∀si ∈K

Denoting the transition probability matrices by P (i), we can write this equivalently as
matrix-vector multiplications: ϕi = P (i)ϕi−1 and ψi = PT (i+1)ψi+1.

http://cmp.felk.cvut.cz
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Inference algorithms for HMMs

The marginal probabilities are then obtained from

p(si = k,x) = ϕi(si = k)ψi(si = k)

The computational complexity for computing all marginal probabilities in all positions
i= 1, . . . ,n is thus O(nK2).

Remark 1.

■ We can also compute pairwise marginal probabilities from the ϕ-s and ψ-s

p(si−1,si,x) = ϕi−1(si−1)
[
p(si |si−1)p(xi |si)

]
ψi(si)

■ Computing conditional marginal probabilities is then easy:

p(si = k |x) = p(si = k,x)∑
k′∈K p(si = k′,x)

■ The same holds for computing the probability that the model will generate the sequence
of features x: p(x) =

∑
k∈K p(si = k,x).

http://cmp.felk.cvut.cz
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Learning algorithms for HMMs

Supervised learning:

Given i.i.d. training data T m = {(xj,sj) ∈ X n ×Kn |j = 1, . . . ,m}, estimate the parameters
of the HMM by the maximum likelihood estimator.

This is done by simple “counting” as before for Markov models.

■ Denote by ai(si−1 = ℓ,si = k) the number of examples in T m for which si−1 = ℓ and
si = k.

■ Denote by bi(si = k,xi = x) the number of examples in T m for which si = k and xi = x.

The estimates for the model parameters are then given by

p(si = k |si−1 = ℓ) =
ai(si−1 = ℓ,si = k)∑
k′ ai(si−1 = ℓ,si = k′)

, p(xi = x |si = k) =
bi(si = k,xi = x)∑
x′ bi(si = k,xi = x′)

Remark 2. This is easy to generalise for the case that X = Rm and p(xi |si) is from some
parametric distribution family.
Remark 3. Learning HMMs by empirical risk minimisation has been discussed in Lecture 5.
(Structured output SVMs).
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Learning algorithms for HMMs

Unsupervised learning:

Given i.i.d. training data T m = {xj ∈ X n |j = 1, . . . ,m}, estimate the parameters of the
HMM by the maximum likelihood estimator.

We apply the EM-algorithm (aka Baum-Welch algorithm): Initialise the model, then iterate

E-step Use the current model estimate and compute the pairwise marginal probabilities

αx(si,si−1) = p(si,si−1 |x) si−1,si ∈K

for each training example x ∈ T m and all positions i= 2, . . . ,n. See Remark 1.

M-step Use the α-s as soft labels for computing the counts as in supervised learning

ai(si−1,si) =
∑

x∈T m

αx(si,si−1), bi(si,x) =
∑

x∈T (xi=x)

αx(si)

where T (xi = x) is the set of training examples with xi = x and αx(si) is given by
αx(si) =

∑
si−1

αx(si,si−1).

http://cmp.felk.cvut.cz


10/10
Summary

■ Hidden Markov models are statistical models for pairs of processes (sequences) (s,x),
where s is a sequence of hidden states and not directly observable.

■ Markov models and HMMs are exponential families.

■ Their parameters can be estimated by supervised leaning using either Maximum
likelihood estimates or Empirical risk minimisation.

■ Their parameters can be estimated by unsupervised learning using the EM-algorithm.

■ All important inference and learning algorithms for HMMs have time complexity linear
in the length of the sequence and quadratic in the size of the hidden state space.

■ What if the space of hidden states is very large, e.g. si ∈ Zk? We can use recurrent
neural networks for modelling p(si |si−1), e.g. Gated recurrent Units (GRU) or Long
short-term memory models (LSTM).

http://cmp.felk.cvut.cz
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