
Statistical Machine Learning (BE4M33SSU)
Lecture 10: Markov Models

Czech Technical University in Prague

■ Markov models on sequences

■ Inference algorithms for Markov models

■ Parameter learning for Markov models
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Structured hidden states

Models discussed so far: mainly classifiers predicting a categorical (class) variable y ∈ Y

Often in applications: the hidden state y is a structured variable.

Here: the hidden state y is a sequence of categorical variables.

Application examples:

■ text recognition (printed, handwritten, “in the wild”),

■ speech recognition (single word recognition, continuous speech recognition, translation),

■ robot self localisation.

Markov Models and Hidden Markov Models on chains:
a class of generative probabilistic models for sequences of features and sequences of
categorical variables.

http://cmp.felk.cvut.cz
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Markov Models

Let s = (s1,s2, . . . ,sn) denote a sequence of length n with elements from a finite set K.

Any joint probability distribution on Kn can be written as

p(s1,s2, . . . ,sn) = p(s1)p(s2 |s1)p(s3 |s2,s1) · . . . ·p(sn |s1, . . . ,sn−1)

Definition 1. A joint p.d. on Kn is a Markov model if

p(s) = p(s1)p(s2 |s1)p(s3 |s2) · . . . ·p(sn |sn−1) = p(s1)

n∏
i=2

p(si |si−1)

holds for any s = (s1,s2, . . . ,sn).

p(s2 | s1)s1 s2 s3 s4p(s3 | s2) p(s4 | s3)

http://cmp.felk.cvut.cz


4/10
Markov Models

Example 1 (Random walk on a graph).

■ Let (V,E) be a directed graph. A random walk in (V,E) is described by a sequence
s = (s1, . . . ,st, . . .) of visited nodes, i.e. st ∈ V .

■ The walker starts in node i ∈ V with probability p(s1 = i).

■ The edges of the graph are weighted by w : E → R+, s.t.∑
j : (i,j)∈E

wij = 1 ∀i ∈ V

■ In the current position st = i, the walker randomly chooses an outgoing edge with
probability given by the weights and moves along this edge, i.e.

p(st+1 = j |st = i) =

{
wij if (i, j) ∈ E

0 otherwise

http://cmp.felk.cvut.cz
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Algorithms: Computing the most probable sequence

we want to compute the most probable sequence s∗ ∈ argmax
s∈Kn

[
p(s1)

n∏
i=2

p(si |si−1)
]

Take the logarithm of p(s): s∗ ∈ argmax
s∈Kn

[
g1(s1)+

n∑
i=2

gi(si−1,si)
]

and apply dynamic programming: Set ϕ1(s1) ≡ g1(s1) and compute

ϕi(si) = max
si−1∈K

[
ϕi−1(si−1)+gi(si−1,si)

]
∀si ∈ K.

Finally, find s∗
n ∈ argmaxsn∈K ϕn(sn) and back-track the solution. This corresponds to

searching the best path in the graph

s1 s2 s3 s4g2(s1, s2) g4(s3, s4)g1(s1) g3(s2, s3)

The run-time complexity is O(nK2).

http://cmp.felk.cvut.cz
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Algorithms: Computing marginal probabilities

How to compute marginal probabilities for the sequence element sj in position j

p(sj) =
∑

s1∈K

· · ·
�
�
�
�
�
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∑
sj∈K

· · ·
∑

sn∈K

p(s1)

n∏
i=2

p(si |si−1)

p(s2 | s1)s1 s2 s3 s4p(s3 | s2) p(s4 | s3)

Summation over the trailing variables is easily done because:∑
sn∈K

p(s1) · · ·p(sn−1 |sn−2)p(sn |sn−1) = p(s1) · · ·p(sn−1 |sn−2)

The summation over the leading variables is done dynamically: Begin with p(s1) and
compute

p(si) =
∑

si−1∈K

p(si |si−1)p(si−1) ∀si ∈ K

http://cmp.felk.cvut.cz
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Algorithms: Computing marginal probabilities

This computation is equivalent to a matrix vector multiplication: Consider the values
p(si = k |si−1 = k′) as elements of a matrix Pkk′(i) and the values of p(si = k′) as elements
of a vector πi. Then the computation above reads as πi = P (i)πi−1.
Remark 1.

■ A Markov model is called homogeneous if the transition probabilities
p(si = k |si−1 = k′) do not depend on the position i in the sequence. In this case the
formula πi = P i−1π1 holds for the computation of the marginal probabilities.

■ Notice that the preferred direction (from first to last) in the Def. 1 of a Markov model
is only apparent. By computing the marginal probabilities p(si) and by using
p(si |si−1)p(si−1) = p(si−1,si) = p(si−1 |si)p(si), we can rewrite the model in reverse
order.

http://cmp.felk.cvut.cz
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Algorithms: Learning a Markov model

Suppose we are given i.i.d. training data T m = {sj ∈ Kn |j = 1, . . . ,m} and want to estimate
the parameters of the Markov model by the maximum likelihood estimate. This is very easy:

■ Denote by α(si−1 = ℓ,si = k) the number of sequences in T m for which si−1 = ℓ and
si = k.

■ The estimates for the conditional probabilities are then given by

p(si = k |si−1 = ℓ) =
α(si−1 = ℓ,si = k)∑
k α(si−1 = ℓ,si = k)

.

Proof (idea):

Consider all terms in the log-likelihood that depend on the transition probability from
(i−1) → i and rewrite them using transition counts α(si−1 = ℓ,si = k)

1

m

∑
s∈T m

logp(si |si−1) =
1

m

∑
k,ℓ∈K

α(si−1 = ℓ,si = k) logp(si = k |si−1 = ℓ)

Maximise this w.r.t. p(si |si−1) under the constraint
∑

si∈K p(si |si−1) = 1.

http://cmp.felk.cvut.cz
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Algorithms: Learning a Markov model

Markov models are exponential families. For simplicity we show this for the family of
homogeneous Markov models on sequences s = (s1,s2, . . . ,sn) of length n under the
additional assumption that p(s1) =

1
K .

We have
p(s) =

1

K

n∏
i=2

p(si |si−1)

■ sufficient statistic: Φ(s) is a K ×K matrix with entries Φkl(s) counting the number of
transitions from state l to state k in the sequence s.

■ natural parameter: H is a K ×K matrix with entries Hkl = logp(si = k |si−1 = l)

We can write the probability of sequences as

p(s; H) = exp
[
⟨Φ(s),H⟩− log(K)

]

Remark 2. This can be generalised for models with non-uniform p(s1) and also for general
(i.e. non-homogeneous) Markov models.

http://cmp.felk.cvut.cz
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Return times and limiting distributions

■ A homogeneous Markov model is irreducible if each state l can be reached starting from
any state k with non-zero probability (after some number of transitions).

■ A state k has return time τ if it can be reached with non-zero probability after τ
transitions when starting from itself.

■ A state k ∈ K is a-periodic if the greatest common divisor of its return times is 1.
Theorem 1. Let P be the transition probability matrix of an irreducible homogeneous
Markov model with a-periodic states. Then there exists a unique marginal probability vector
π∗ s.t. Pπ∗ = π∗. Moreover, it is a limiting distribution, i.e.

lim
t→∞

P tπ = π∗

for arbitrary starting distributions π.

Q: What conditions on the graph in Example 1 ensure that this theorem applies for the
random walk considered there?

http://cmp.felk.cvut.cz
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