Statistical Machine Learning (BE4M33SSU)
Lecture 10: Markov Models

Czech Technical University in Prague

¢ Markov models on sequences
¢ Inference algorithms for Markov models

¢ Parameter learning for Markov models
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Models discussed so far: mainly classifiers predicting a categorical (class) variable y € Y
Often in applications: the hidden state y is a structured variable.
Here: the hidden state y is a sequence of categorical variables.

Application examples:
text recognition (printed, handwritten, “in the wild"),
speech recognition (single word recognition, continuous speech recognition, translation),
robot self localisation.

Markov Models and Hidden Markov Models on chains:
a class of generative probabilistic models for sequences of features and sequences of

categorical variables.
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Let s = (s1,89,...,5,) denote a sequence of length n with elements from a finite set K.

Any joint probability distribution on K™ can be written as

p(s1,82;---,8n) =p(s1)p(s2|s1) p(s3|s2,81) .. p(sn|S1,. - Sn—1)

Definition 1. A joint p.d. on K" is a Markov model if

p(s) =p(s1)p(s2|s1) p(s3|s2) ... p(sp | $n-1) = p(51) Hp(sz- |5i-1)

holds for any s = (s1,$2,...,5n).

S1 p(SQ | 31) S92 P(S3 | 82) 53 p(54 | 33) S4
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Example 1 (Random walk on a graph).

Let (V, E) be a directed graph. A random walk in (V. E) is described by a sequence
s = (81,...,5¢,...) of visited nodes, i.e. s; € V.

The walker starts in node ¢ € V' with probability p(s; =1).
The edges of the graph are weighted by w: £ — R, s.t.

Z wijzl VieV

j:(i,j)eE

In the current position s; =1, the walker randomly chooses an outgoing edge with
probability given by the weights and moves along this edge, i.e.

W; if (Z,]) cF

P(stir =Jls: ) {0 otherwise
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n
we want to compute the most probable sequence s* € argmax [p(sl) I p(s;] si_l)}
sEK™ i=2

Take the logarithm of p(s): s* € argmax [91(81) + Zgi(si—lasi)]
sEKn i=2

and apply dynamic programming: Set ¢1(s1) = ¢g1(s1) and compute

¢i(si) = max |¢;i_1(si—1)+gi(si—1,8:)] Vs € K.

s;i_1€EK

Finally, find s}, € argmax, x ¢n(sn) and back-track the solution. This corresponds to
searching the best path in the graph

g1(s1) 51 ga(s1, 52) 59 g3(s2, 53) S3 ga(s3, 54) S4

The run-time complexity is O(nKk?).



http://cmp.felk.cvut.cz

o N
Algorithms: Computing marginal probabilities @
6/10

How to compute marginal probabilities for the sequence element s; in position j

=2 ZMH (si5i-1)

%K%

S1 p(s2 \ s1) 59 p(s3 | S2) 53 p(s4 | 53) Sy

Summation over the trailing variables is easily done because:

> p(s1)p(sn—t] $Sn—2) p(sn | Sn—1) = p(s1) - P(Sn—1] Sn—2)
sneK

The summation over the leading variables is done dynamically: Begin with p(s;) and
compute

p(8;i) = Z p(si|si—1)p(si—1) Vsi€ K
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This computation is equivalent to a matrix vector multiplication: Consider the values

p(s;i =k|s;_1 =Fk") as elements of a matrix P;;/(7) and the values of p(s; = k') as elements
of a vector 7r;. Then the computation above reads as ; = P(i)m;_1.

Remark 1.

¢ A Markov model is called homogeneous if the transition probabilities
p(s; =k|s;_1 =Fk") do not depend on the position 7 in the sequence. In this case the
formula 7v; = P*~ !y holds for the computation of the marginal probabilities.

¢ Notice that the preferred direction (from first to last) in the Def. 1 of a Markov model
is only apparent. By computing the marginal probabilities p(s;) and by using
p(si|si—1)p(si—1) = p(si—1,8:) = p(si—1|si)p(s;), we can rewrite the model in reverse
order.
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Suppose we are given i.i.d. training data 7" = {s/ € K"|j=1,...,m} and want to estimate
the parameters of the Markov model by the maximum likelihood estimate. This is very easy:

¢ Denote by a(s; 1 =¥,s; = k) the number of sequences in 7" for which s; 1 =/ and

® The estimates for the conditional probabilities are then given by

Oé(Si_l = K,Sz' = k)

Pl =klsia=0=g (i =ts=h

Proof (idea):

Consider all terms in the log-likelihood that depend on the transition probability from
(1—1) — ¢ and rewrite them using transition counts a(s;_1 =/¥,s; = k)

1 1
— > logp(silsi)=— > alsii1=0si=k)logp(si=kl[si1="0)
seTm k.le K

Maximise this w.r.t. p(s;|s;—1) under the constraint > p(si|si—1)=1.
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Algorithms: Learning a Markov model

Markov models are exponential families. For simplicity we show this for the family of

homogeneous Markov models on sequences s = (s1, S9,...,5,) of length n under the

additional assumption that p(s;) = +.

We have
1 n
p(s) = Egp(si |$i—1)

¢ sufficient statistic: ®(s) is a K x K matrix with entries ®;(s) counting the number of
transitions from state [ to state k£ in the sequence s.

¢ natural parameter: H is a K x K matrix with entries Hy; = logp(s; = k|s;_1 =1)

We can write the probability of sequences as

p(s; H) = exp |(®(s), H) —log(K)]

Remark 2. This can be generalised for models with non-uniform p(s;) and also for general
(i.e. non-homogeneous) Markov models.


http://cmp.felk.cvut.cz

Sad 0

Return times and limiting distributions @

10/10

¢ A homogeneous Markov model is irreducible if each state [ can be reached starting from
any state k£ with non-zero probability (after some number of transitions).

¢ A state k has return time 7 if it can be reached with non-zero probability after
transitions when starting from itself.

¢ A state k € K is a-periodic if the greatest common divisor of its return times is 1.

Theorem 1. Let P be the transition probability matrix of an irreducible homogeneous
Markov model with a-periodic states. Then there exists a unique marginal probability vector
7* s.t. Pm* =m*. Moreover, it is a limiting distribution, i.e.

lim Plw =n*
t— o0

for arbitrary starting distributions .

Q: What conditions on the graph in Example 1 ensure that this theorem applies for the
random walk considered there?
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