Statistical Machine Learning (BE4M33SSU) Lecture 3: Empirical Risk Minimization

Czech Technical University in Prague V. Franc

2/10

- Goal: Given a training set $\mathcal{T}^m \sim p^m$, find a strategy $h \colon \mathcal{X} \to \mathcal{Y}$ with minimizing the generalization error $R(h) = \mathbb{E}_{(x,y) \sim p}[\ell(y,h(x)]]$.
- Hypothesis class (space): fixed before learning based on prior knowledge

$$\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}} = \{h \colon \mathcal{X} \to \mathcal{Y}\}\$$

Learning algorithm: a function

$$A \colon \bigcup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$$

returns a strategy $h_m = A(\mathcal{T}^m)$ from \mathcal{H} based on a training set \mathcal{T}^m

The generalization error R(h) is approximated by the empirical risk $R_{\mathcal{T}^m}(h)$ computed on the training examples $\mathcal{T}^m \sim p^m$:

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \left(\ell(y^1, h(x^1)) + \dots + \ell(y^m, h(x^m)) \right) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

lacktriangle The ERM based learning algorithm returns h_m such that

$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h) \tag{1}$$

• Depending on the choince of \mathcal{H} and ℓ and algorithm solving (1) we get individual instances e.g. Support Vector Machines, Linear Regression, Logistic Regression, Neural Networks learned by back-propagation, AdaBoost, Gradient Boosted Trees, ...

ERM can fail due to overfitting

- Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.
- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.
- lacktriangle Learning algorithm "lookup table": given training set \mathcal{T}^m it returns

$$h_m(x) = \left\{ \begin{array}{ll} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{array} \right.$$

- Implements ERM principle as $\mathbb{P}(R_{\mathcal{T}^m}(h_m)=0)=1$.
- Fails to find a good solution as $\mathbb{P}(R(h_m) = 0.8) = 1$, $\forall m \in \mathbb{N}$.
- Overfitting: the case when $h_m = A(\mathcal{T}^m)$ and the training error $R_{\mathcal{T}^k}(h_m)$ is low while the generalization error $R(h_m)$ is high.
- Problem: under which conditions the overfitting can be eliminated?

Why the law of large numbers does not apply for learning?

- Hoeffding inequality $\mathbb{P}(|\hat{\mu} \mu| \geq \varepsilon) \leq 2e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$, $\hat{\mu} = \frac{1}{m}\sum_{i=1}^m z^i$, requires (z^1,\ldots,z^m) to be sample from independent random variables with the expected value μ .
- $\mathcal{T}^m = ((x^1, y^1), \dots, (x^m, y^m))$ is drawn from i.i.d. rv. with p(x, y).

Evaluation:

- lacktriangledown h fixed independently on \mathcal{T}^m , $z^i=\ell(y^i,h(x^i))$ and (z^1,\ldots,z^m) is i.i.d.
- We can apply Hoeffding $\mathbb{P}(|R_{\mathcal{T}^m}(h) R(h)| \ge \varepsilon) \le 2e^{-\frac{2m\,\varepsilon^2}{(\ell_{\max} \ell_{\min})^2}}$

Learning:

- $lacktriangledown h_m = A(\mathcal{T}^m)$, $z^i = \ell(y^i, h_m(x^i))$ and thus (z^1, \dots, z^m) is not i.i.d.
- We cannot apply Hoeffding to bound $\mathbb{P}(|R_{\mathcal{T}^m}(h_m) R(h_m)| \geq \varepsilon)$

The overfitting can be eliminited in case of the finite hypothesis space

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- ERM learning: $h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$.

The probability that the empirical risk fails can be reduced to zero if we have anough examples:

$$\mathbb{P}\Big(\underbrace{\left|R(h_{m}) - R_{\mathcal{T}^{m}}(h_{m})\right| \geq \varepsilon}\Big) \overset{(1)}{\leq} \mathbb{P}\Big(\max_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^{m}}(h)\right| \geq \varepsilon\Big)$$
ER fails
$$\overset{(2)}{\leq} \sum_{h \in \mathcal{H}} \mathbb{P}\Big(\left|R(h) - R_{\mathcal{T}^{m}}(h)\right| \geq \varepsilon\Big)$$

$$\overset{(3)}{\leq} 2\left|\mathcal{H}\right| e^{-\frac{2m\varepsilon^{2}}{(\ell_{\max} - \ell_{\min})^{2}}}$$

- 1. $\mathbb{P}(\mathsf{ER} \mathsf{ fails} \mathsf{ for } h_m \in \mathcal{H})$ is replaced by $\mathbb{P}(\mathsf{ER} \mathsf{ can fail for some } h \in \mathcal{H})$.
- 2. Union bound.
- 3. Hoeffding inequality.

Uniform Law of Large Numbers

We have shown for that for the finite hypothesis space, $\mathcal{H} = \{h_1, \dots, h_K \}_{r=1}^{7/10}$ the Law of Large Numbers holds simultaneously (uniformly) for every $h \in \mathcal{H}$:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}\big|R(h)-R_{\mathcal{T}^m}(h)\big|\geq\varepsilon\Big)\leq \underbrace{2|\mathcal{H}|e^{-\frac{2m\,\varepsilon^2}{(\ell_{\max}-\ell_{\min})^2}}}_{\text{converges to 0 for }m\to\infty}$$

Definition: We say that Uniform Law of Large Numbers applies for hypothesis space $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$ if there exists a function $m_{\mathcal{H}} \colon \mathbb{R}_{>0} \times (0,1) \to \mathbb{N}$ such that for every $\varepsilon > 0, \delta \in (0,1)$, every distribution p(x,y) and every $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ the following inequality holds

$$\mathbb{P}\Big(\sup_{h\in\mathcal{H}} |R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon\Big) \le \delta.$$

The next lecture:

- If ULLN applies then ERM learning is guaranteed to succeed.
- VC dimension as a tool to recognize that ULLN applies for given \mathcal{H} .

m p

Generalization bound for finite hypothesis class

8/10

Theorem: Let $\mathcal{T}^m = \left((x^1,y^1),\ldots,(x^m,y^m)\right) \in (\mathcal{X} \times \mathcal{Y})^m$ be draw from i.i.d. rv. with p.d.f. p(x,y) and let \mathcal{H} be a finite hypothesis class. Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

$$R(h) \leq \underbrace{R_{\mathcal{T}^m}(h)}_{\text{empirical risk}} + \underbrace{(\ell_{\max} - \ell_{\min}) \sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\text{complexity term}}$$

holds for all $h \in \mathcal{H}$ simultaneously.

- lacktriangle To decreases the complexity term: increase m or decrease $|\mathcal{H}|$.
- The generalization bound holds for any learning algorithm not just ERM.
- Recommendations for learning:
 - 1. Minimize the empirical risk.
 - 2. Use as much training examples m as you can.
 - 3. Limit the size of the hypothesis space $|\mathcal{H}|$, i.e. use prior knowledge.

9/10

Generalization bound for finite hypothesis class: the proof

lacktriangle We have shown that ULLN holds for finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\,\varepsilon^2}{(\ell_{\max}-\ell_{\min})^2}}$$

• Prob. $R_{\mathcal{T}^m}(h)$ is a good proxy of R(h) for all $h \in \mathcal{H}$ simultaneously:

$$\mathbb{P}\Big(|R_{\mathcal{T}^m}(h) - R(h)| < \varepsilon, \, \forall h \in \mathcal{H}\Big) = \mathbb{P}\Big(\max_{h \in \mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| < \varepsilon\Big) \\
= 1 - \mathbb{P}\Big(\max_{h \in \mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big) \\
\ge 1 - 2|\mathcal{H}|e^{-\frac{2m\,\varepsilon^2}{(\ell_{\max} - \ell_{\min})^2}} = 1 - \delta$$

• Solving the last equality for ε yields $\varepsilon = L\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$ so that:

$$\mathbb{P}\left(\left|R_{\mathcal{T}^m}(h) - R(h)\right| < L\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}, \, \forall h \in \mathcal{H}\right) \ge 1 - \delta$$

Summary

- Learning algorithm: the definition.
- Empirical Risk Minimization.
- Unrestricted hypothesis space: the ERM can overfit regardless the number of training examples.
- Finite hypothesis space: the chance of overfitting can be always eliminated.
- Uniform Law of Large Numbers.
- Generalization bound for finite hypothesis space.