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Learning

� Goal: Given a training set T m ∼ pm, find a strategy h : X → Y with
minimizing the generalization error R(h) = E(x,y)∼p[`(y, h(x)].
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Learning

� Goal: Given a training set T m ∼ pm, find a strategy h : X → Y with
minimizing the generalization error R(h) = E(x,y)∼p[`(y, h(x)].

� Hypothesis class (space): fixed before learning based on prior knowledge

H ⊆ YX = {h : X → Y}

� Learning algorithm: a function

A : ∪∞m=1 (X × Y)m→ H

returns a strategy hm = A(T m) from H based on a training set T m
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� The ERM based learning algorithm returns hm such that

hm ∈ Argmin
h∈H

RT m(h) (1)

3/10
Empirical Risk Minimization learning

� The generalization error R(h) is approximated by the empirical risk
RT m(h) computed on the training examples T m ∼ pm:

RT m(h) =
1

m

(
`(y1, h(x1)) + . . .+ `(ym, h(xm))

)
=

1

m

m∑
i=1

`(yi, h(xi))
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� The ERM based learning algorithm returns hm such that

hm ∈ Argmin
h∈H

RT m(h) (1)

� Depending on the choince of H and ` and algorithm solving (1) we get
individual instances e.g. Support Vector Machines, Linear Regression,
Logistic Regression, Neural Networks learned by back-propagation,
AdaBoost, Gradient Boosted Trees, ...
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4/10
ERM can fail due to overfitting

� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.
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and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.

� The optimal strategy is h(x) = +1 with the Bayes risk R∗ = 0.2.

� Learning algorithm “lookup table”: given training set T m it returns

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . ,m}
−1 otherwise

• Implements ERM principle as P(RT m(hm) = 0) = 1.

• Fails to find a good solution as P(R(hm) = 0.8) = 1, ∀m ∈ N.

� Overfitting: the case when hm = A(T m) and the training error
RT k(hm) is low while the generalization error R(hm) is high.

� Problem: under which conditions the overfitting can be eliminated?
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5/10
Why the law of large numbers does not apply for learning?

� Hoeffding inequality P(|µ̂− µ| ≥ ε) ≤ 2e
− 2mε2

(b−a)2 , µ̂ = 1
m

∑m
i=1 z

i,
requires (z1, . . . , zm) to be sample from independent random variables
with the expected value µ.
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− 2mε2

(b−a)2 , µ̂ = 1
m

∑m
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requires (z1, . . . , zm) to be sample from independent random variables
with the expected value µ.

� T m = ((x1, y1), . . . , (xm, ym)) is drawn from i.i.d. rv. with p(x, y).

Evaluation:

� h fixed independently on T m, zi = `(yi, h(xi)) and (z1, . . . , zm) is i.i.d.

� We can apply Hoeffding P(|RT m(h)−R(h)| ≥ ε) ≤ 2e
− 2mε2

(`max−`min)
2
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� Hoeffding inequality P(|µ̂− µ| ≥ ε) ≤ 2e
− 2mε2

(b−a)2 , µ̂ = 1
m

∑m
i=1 z

i,
requires (z1, . . . , zm) to be sample from independent random variables
with the expected value µ.

� T m = ((x1, y1), . . . , (xm, ym)) is drawn from i.i.d. rv. with p(x, y).

Evaluation:

� h fixed independently on T m, zi = `(yi, h(xi)) and (z1, . . . , zm) is i.i.d.

� We can apply Hoeffding P(|RT m(h)−R(h)| ≥ ε) ≤ 2e
− 2mε2

(`max−`min)
2

Learning:

� hm = A(T m), zi = `(yi, hm(x
i)) and thus (z1, . . . , zm) is not i.i.d.

� We cannot apply Hoeffding to bound P(|RT m(hm)−R(hm)| ≥ ε)
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The overfitting can be eliminited in case of
the finite hypothesis space

� Assume a finite hypothesis class H = {h1, . . . , hK}.

� ERM learning: hm ∈ Argminh∈HRT m(h).
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The overfitting can be eliminited in case of
the finite hypothesis space

� Assume a finite hypothesis class H = {h1, . . . , hK}.

� ERM learning: hm ∈ Argminh∈HRT m(h).

The probability that the empirical risk fails can be reduced to zero if we have
anough examples:

1. P
(
ER fails for hm ∈ H

)
is replaced by P

(
ER can fail for some h ∈ H

)
.

2. Union bound.

3. Hoeffding inequality.
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7/10
Uniform Law of Large Numbers

We have shown for that for the finite hypothesis space, H = {h1, . . . , hK},
the Law of Large Numbers holds simultaneously (uniformly) for every h ∈ H:

P
(
max
h∈H

∣∣R(h)−RT m(h)∣∣ ≥ ε︸ ︷︷ ︸
ER can fail

)
≤ 2|H|e

− 2mε2

(`max−`min)
2︸ ︷︷ ︸

converges to 0 for m→∞
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P
(
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ER can fail

)
≤ 2|H|e

− 2mε2

(`max−`min)
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converges to 0 for m→∞

Definition: We say that Uniform Law of Large Numbers applies for
hypothesis space H ⊂ YX if there exists a function mH : R>0 × (0, 1)→ N
such that for every ε > 0, δ ∈ (0, 1), every distribution p(x, y) and every
m ≥ mH(ε, δ) the following inequality holds

P
(
sup
h∈H

∣∣R(h)−RT m(h)∣∣ ≥ ε) ≤ δ .
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converges to 0 for m→∞

Definition: We say that Uniform Law of Large Numbers applies for
hypothesis space H ⊂ YX if there exists a function mH : R>0 × (0, 1)→ N
such that for every ε > 0, δ ∈ (0, 1), every distribution p(x, y) and every
m ≥ mH(ε, δ) the following inequality holds

P
(
sup
h∈H

∣∣R(h)−RT m(h)∣∣ ≥ ε) ≤ δ .
The next lecture:

� If ULLN applies then ERM learning is guaranteed to succeed.
� VC dimension as a tool to recognize that ULLN applies for given H.
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8/10
Generalization bound for finite hypothesis class

Theorem: Let T m =
(
(x1, y1), . . . , (xm, ym)

)
∈ (X × Y)m be draw from

i.i.d. rv. with p.d.f. p(x, y) and let H be a finite hypothesis class. Then, for
any 0 < δ < 1, with probability at least 1− δ the inequality

R(h) ≤ RT m(h)︸ ︷︷ ︸
empirical risk

+(`max − `min)

√
log 2|H|+ log 1

δ

2m︸ ︷︷ ︸
complexity term

holds for all h ∈ H simultaneously.
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∈ (X × Y)m be draw from
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http://cmp.felk.cvut.cz


8/10
Generalization bound for finite hypothesis class

Theorem: Let T m =
(
(x1, y1), . . . , (xm, ym)

)
∈ (X × Y)m be draw from

i.i.d. rv. with p.d.f. p(x, y) and let H be a finite hypothesis class. Then, for
any 0 < δ < 1, with probability at least 1− δ the inequality

R(h) ≤ RT m(h)︸ ︷︷ ︸
empirical risk

+(`max − `min)

√
log 2|H|+ log 1

δ

2m︸ ︷︷ ︸
complexity term

holds for all h ∈ H simultaneously.

� To decreases the complexity term: increase m or decrease |H|.

� The generalization bound holds for any learning algorithm not just ERM.

http://cmp.felk.cvut.cz


8/10
Generalization bound for finite hypothesis class

Theorem: Let T m =
(
(x1, y1), . . . , (xm, ym)

)
∈ (X × Y)m be draw from

i.i.d. rv. with p.d.f. p(x, y) and let H be a finite hypothesis class. Then, for
any 0 < δ < 1, with probability at least 1− δ the inequality

R(h) ≤ RT m(h)︸ ︷︷ ︸
empirical risk

+(`max − `min)

√
log 2|H|+ log 1

δ

2m︸ ︷︷ ︸
complexity term

holds for all h ∈ H simultaneously.

� To decreases the complexity term: increase m or decrease |H|.

� The generalization bound holds for any learning algorithm not just ERM.
� Recommendations for learning:
1. Minimize the empirical risk.
2. Use as much training examples m as you can.
3. Limit the size of the hypothesis space |H|, i.e. use prior knowledge.
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Generalization bound for finite hypothesis class: the proof

� We have shown that ULLN holds for finite hypothesis class H:

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e

− 2mε2

(`max−`min)
2
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� Prob. RT m(h) is a good proxy of R(h) for all h ∈ H simultaneously:

P
(
|RT m(h)−R(h)| < ε , ∀h ∈ H

)
= P

(
max
h∈H
|RT m(h)−R(h)| < ε

)
= 1− P

(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≥ 1− 2|H|e

− 2mε2

(`max−`min)
2 = 1− δ

http://cmp.felk.cvut.cz


9/10
Generalization bound for finite hypothesis class: the proof

� We have shown that ULLN holds for finite hypothesis class H:

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e

− 2mε2

(`max−`min)
2

� Prob. RT m(h) is a good proxy of R(h) for all h ∈ H simultaneously:
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)
= P

(
max
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= 1− P

(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≥ 1− 2|H|e

− 2mε2

(`max−`min)
2 = 1− δ

� Solving the last equality for ε yields ε = L

√
log 2|H|+log 1

δ
2m so that:

P

(
|RT m(h)−R(h)| < L

√
log 2|H|+ log 1

δ

2m
, ∀h ∈ H

)
≥ 1− δ
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Summary

� Learning algorithm: the definition.

� Empirical Risk Minimization.

� Unrestricted hypothesis space: the ERM can overfit regardless the
number of training examples.

� Finite hypothesis space: the chance of overfitting can be always
eliminated.

� Uniform Law of Large Numbers.

� Generalization bound for finite hypothesis space.
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