Statistical Machine Learning (BE4M33SSU) Lecture 3: Empirical Risk Minimization

Czech Technical University in Prague V. Franc

BE4M33SSU – Statistical Machine Learning, Winter 2023

Learning

• **Goal:** Given a training set $\mathcal{T}^m \sim p^m$, find a strategy $h: \mathcal{X} \to \mathcal{Y}$ with minimizing the generalization error $R(h) = \mathbb{E}_{(x,y)\sim p}[\ell(y,h(x))]$.

р

Learning

Hypothesis class (space): fixed before learning based on prior knowledge

$$\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}} = \{h \colon \mathcal{X} \to \mathcal{Y}\}$$

Learning

• **Goal:** Given a training set $\mathcal{T}^m \sim p^m$, find a strategy $h: \mathcal{X} \to \mathcal{Y}$ with minimizing the generalization error $R(h) = \mathbb{E}_{(x,y)\sim p}[\ell(y,h(x)]]$.

2/10

Hypothesis class (space): fixed before learning based on prior knowledge

$$\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}} = \{h \colon \mathcal{X} \to \mathcal{Y}\}$$

Learning algorithm: a function

$$A\colon \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$$

returns a strategy $h_m = A(\mathcal{T}^m)$ from \mathcal{H} based on a training set \mathcal{T}^m

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \left(\ell(y^1, h(x^1)) + \ldots + \ell(y^m, h(x^m)) \right) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

• The ERM based learning algorithm returns h_m such that

$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h) \tag{1}$$

• The generalization error R(h) is approximated by the empirical risk $R_{\mathcal{T}^m}(h)$ computed on the training examples $\mathcal{T}^m \sim p^m$:

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \left(\ell(y^1, h(x^1)) + \ldots + \ell(y^m, h(x^m)) \right) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

$$\mathcal{H} = \{h(x) = \operatorname{sign}(x - \theta) \mid \theta \in \mathbb{R}\}, \ \ell(y, y') = [y \neq y']$$

• The generalization error R(h) is approximated by the empirical risk $R_{\mathcal{T}^m}(h)$ computed on the training examples $\mathcal{T}^m \sim p^m$:

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \left(\ell(y^1, h(x^1)) + \ldots + \ell(y^m, h(x^m)) \right) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

$$\mathcal{H} = \{h(x) = \operatorname{sign}(x - \theta) \mid \theta \in \mathbb{R}\}, \ \ell(y, y') = [y \neq y']$$

• The generalization error R(h) is approximated by the empirical risk $R_{\mathcal{T}^m}(h)$ computed on the training examples $\mathcal{T}^m \sim p^m$:

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \left(\ell(y^1, h(x^1)) + \ldots + \ell(y^m, h(x^m)) \right) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

• The ERM based learning algorithm returns h_m such that

$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h) \tag{1}$$

 Depending on the choince of H and l and algorithm solving (1) we get individual instances e.g. Support Vector Machines, Linear Regression, Logistic Regression, Neural Networks learned by back-propagation, AdaBoost, Gradient Boosted Trees, ...

• Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.

- Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.
- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.

- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.
- ullet Learning algorithm "lookup table": given training set \mathcal{T}^m it returns

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

• Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.

- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.
- ullet Learning algorithm "lookup table": given training set \mathcal{T}^m it returns

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

- Implements ERM principle as $\mathbb{P}(R_{\mathcal{T}^m}(h_m) = 0) = 1$.
- Fails to find a good solution as $\mathbb{P}(R(h_m) = 0.8) = 1$, $\forall m \in \mathbb{N}$.

• Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.

- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.
- ullet Learning algorithm "lookup table": given training set \mathcal{T}^m it returns

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

- Implements ERM principle as $\mathbb{P}(R_{\mathcal{T}^m}(h_m) = 0) = 1$.
- Fails to find a good solution as $\mathbb{P}(R(h_m) = 0.8) = 1$, $\forall m \in \mathbb{N}$.
- Overfitting: the case when $h_m = A(\mathcal{T}^m)$ and the training error $R_{\mathcal{T}^k}(h_m)$ is low while the generalization error $R(h_m)$ is high.

• Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.

4/10

- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.
- ullet Learning algorithm "lookup table": given training set \mathcal{T}^m it returns

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

- Implements ERM principle as $\mathbb{P}(R_{\mathcal{T}^m}(h_m) = 0) = 1$.
- Fails to find a good solution as $\mathbb{P}(R(h_m) = 0.8) = 1$, $\forall m \in \mathbb{N}$.
- Overfitting: the case when $h_m = A(\mathcal{T}^m)$ and the training error $R_{\mathcal{T}^k}(h_m)$ is low while the generalization error $R(h_m)$ is high.

Problem: under which conditions the overfitting can be eliminated?

• Hoeffding inequality
$$\mathbb{P}(|\hat{\mu} - \mu| \ge \varepsilon) \le 2e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$
, $\hat{\mu} = \frac{1}{m}\sum_{i=1}^m z^i$,

requires (z^1, \ldots, z^m) to be sample from independent random variables with the expected value μ .

• Hoeffding inequality
$$\mathbb{P}(|\hat{\mu} - \mu| \ge \varepsilon) \le 2e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$
, $\hat{\mu} = \frac{1}{m}\sum_{i=1}^m z^i$, requires (z^1, \ldots, z^m) to be sample from independent random variables with the expected value μ .

• $\mathcal{T}^m = ((x^1, y^1), \dots, (x^m, y^m))$ is drawn from i.i.d. rv. with p(x, y).

• Hoeffding inequality $\mathbb{P}(|\hat{\mu} - \mu| \ge \varepsilon) \le 2e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$, $\hat{\mu} = \frac{1}{m} \sum_{i=1}^m z^i$, requires (z^1, \ldots, z^m) to be sample from independent random variables with the expected value μ .

•
$$\mathcal{T}^m = ((x^1, y^1), \dots, (x^m, y^m))$$
 is drawn from i.i.d. rv. with $p(x, y)$.

Evaluation:

- h fixed independently on \mathcal{T}^m , $z^i = \ell(y^i, h(x^i))$ and (z^1, \ldots, z^m) is i.i.d.
- We can apply Hoeffding $\mathbb{P}(|R_{\mathcal{T}^m}(h) R(h)| \ge \varepsilon) \le 2e^{-\frac{2m\varepsilon^2}{(\ell_{\max} \ell_{\min})^2}}$

• Hoeffding inequality $\mathbb{P}(|\hat{\mu} - \mu| \ge \varepsilon) \le 2e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$, $\hat{\mu} = \frac{1}{m} \sum_{i=1}^m z^i$, requires (z^1, \ldots, z^m) to be sample from independent random variables with the expected value μ .

•
$$\mathcal{T}^m = ((x^1, y^1), \dots, (x^m, y^m))$$
 is drawn from i.i.d. rv. with $p(x, y)$.

Evaluation:

• h fixed independently on \mathcal{T}^m , $z^i = \ell(y^i, h(x^i))$ and (z^1, \ldots, z^m) is i.i.d.

• We can apply Hoeffding $\mathbb{P}(|R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon) \le 2e^{-\frac{2m\varepsilon^2}{(\ell_{\max} - \ell_{\min})^2}}$

Learning:

• $h_m = A(\mathcal{T}^m)$, $z^i = \ell(y^i, h_m(x^i))$ and thus (z^1, \dots, z^m) is not i.i.d. • We cannot apply Hoeffding to bound $\mathbb{P}(|R_{\mathcal{T}^m}(h_m) - R(h_m)| \ge \varepsilon)$

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.
- ERM learning: $h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$.

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

$$\mathbb{P}\Big(\underbrace{|R(h_m) - R_{\mathcal{T}^m}(h_m)| \ge \varepsilon}_{\mathsf{ER fails}}\Big)$$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

$$\mathbb{P}\left(\underbrace{|R(h_m) - R_{\mathcal{T}^m}(h_m)| \ge \varepsilon}_{\mathsf{ER fails}}\right)$$

$$\mathcal{B}(h_1)$$

$$\mathcal{B}(h) = \left\{\mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

$$\mathbb{P}\left(\underbrace{|R(h_m) - R_{\mathcal{T}^m}(h_m)| \ge \varepsilon}_{\mathsf{ER fails}}\right)$$

$$\mathbb{B}(h_2)$$

$$\mathcal{B}(h_3)$$

$$\mathcal{B}(h) = \left\{\mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

$$\mathbb{P}\left(\frac{|R(h_{m}) - R_{\mathcal{T}^{m}}(h_{m})| \ge \varepsilon}{\mathsf{ER fails}}\right) \le \mathbb{P}\left(\begin{array}{c|c} |R(h_{1}) - R_{\mathcal{T}^{m}}(h_{1})| \ge \varepsilon & \cup \\ |R(h_{2}) - R_{\mathcal{T}^{m}}(h_{2})| \ge \varepsilon & \cup \\ \vdots & \\ |R(h_{K}) - R_{\mathcal{T}^{m}}(h_{K})| \ge \varepsilon \\ \hline \mathsf{ER can fail} \end{array}\right)$$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

The probability that the empirical risk fails can be reduced to zero if we have anough examples:

$$\mathbb{P}\left(\underbrace{|R(h_m) - R_{\mathcal{T}^m}(h_m)| \ge \varepsilon}_{\mathsf{ER fails}}\right) \le \mathbb{P}\left(\begin{array}{ccc} |R(h_1) - R_{\mathcal{T}^m}(h_1)| \ge \varepsilon & \cup \\ |R(h_2) - R_{\mathcal{T}^m}(h_2)| \ge \varepsilon & \cup \\ \vdots \\ |R(h_K) - R_{\mathcal{T}^m}(h_K)| \ge \varepsilon \end{array}\right)$$

 $\mathcal{B}(h_{2})$ $\mathcal{B}(h_{2})$ $\mathcal{B}(h_{2})$ $\mathcal{B}(h_{2})$ $\mathcal{B}(h_{2})$ $\mathcal{B}(h_{3})$ $\mathcal{B}(h_{3})$ $\mathcal{B}(h) = \left\{ \mathcal{T}^{m} \in (\mathcal{X} \times \mathcal{Y})^{m} \middle| \left| R_{\mathcal{T}^{m}}(h) - R(h) \right| \geq \varepsilon \right\}$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

$$\mathbb{P}\left(\underbrace{|R(h_m) - R_{\mathcal{T}^m}(h_m)| \ge \varepsilon}_{\mathsf{ER fails}}\right) \leq \mathbb{P}\left(\begin{array}{ccc} |R(h_1) - R_{\mathcal{T}^m}(h_1)| \ge \varepsilon & \cup \\ |R(h_2) - R_{\mathcal{T}^m}(h_2)| \ge \varepsilon & \cup \\ \vdots \\ |R(h_K) - R_{\mathcal{T}^m}(h_K)| \ge \varepsilon \end{array}\right)$$
Union bound:
$$\mathbb{P}(\mathcal{B}(h_1) \cup \mathcal{B}(h_2) \cup \mathcal{B}(h_3)) \le \\ \mathbb{P}(\mathcal{B}(h_1)) + \mathbb{P}(\mathcal{B}(h_2)) + \mathbb{P}(\mathcal{B}(h_3)) \le \\ \mathbb{P}(\mathcal{B}(h_2)) + \mathbb{P}(\mathcal{B}(h_3)) \le \\ \mathbb{P}(\mathcal{B}(h_3)) + \mathbb{P}(\mathcal{B}(h_$$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

4

The probability that the empirical risk fails can be reduced to zero if we have anough examples: $\int |R(h_1) - R_{T^m}(h_1)| \ge \varepsilon \cup$

$$\mathbb{P}\left(\underbrace{|R(h_m) - R_{\mathcal{T}^m}(h_m)| \ge \varepsilon}_{\mathsf{ER fails}}\right) \leq \mathbb{P}\left(\begin{array}{ccc} |R(h_2) - R_{\mathcal{T}^m}(h_2)| \ge \varepsilon & \cup \\ \vdots \\ |R(h_K) - R_{\mathcal{T}^m}(h_K)| \ge \varepsilon \end{array}\right) \\
\leq \sum_{h \in \mathcal{H}} \mathbb{P}\left(|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon\right) \\
\text{Union bound:} \\
\mathbb{P}(\mathcal{B}(h_1) \cup \mathcal{B}(h_1) \cup \mathcal{B}(h_2)) \le \\
\mathbb{P}(\mathcal{B}(h_1)) + \mathbb{P}(\mathcal{B}(h_2)) + \mathbb{P}(\mathcal{B}(h_3)) \\
\mathcal{B}(h) = \left\{\mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\right\}$$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

 $\mathcal{B}(h_2)$

 $\mathcal{B}(h_3)$

 $\mathcal{B}(h_1)$

The probability that the empirical risk fails can be reduced to zero if we have anough examples: $\int |R(h_1) - R_{Tm}(h_1)| > \varepsilon \cup$

$$\mathbb{P}\left(\underbrace{|R(h_m) - R_{\mathcal{T}^m}(h_m)| \ge \varepsilon}_{\mathsf{ER fails}}\right) \leq \mathbb{P}\left(\begin{array}{ccc} |R(h_1) - R_{\mathcal{T}^m}(h_1)| \ge \varepsilon & \varepsilon \\ |R(h_2) - R_{\mathcal{T}^m}(h_2)| \ge \varepsilon & \cup \\ & \vdots \\ |R(h_K) - R_{\mathcal{T}^m}(h_K)| \ge \varepsilon \end{array}\right)$$
$$\leq \sum_{h \in \mathcal{H}} \mathbb{P}\left(|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon\right)$$

$$a \ge \varepsilon \quad \text{or} \quad b \ge \varepsilon \iff \max\{a, b\} \ge \varepsilon$$

 $\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

$$\mathbb{P}\left(\left|\frac{R(h_m) - R_{\mathcal{T}^m}(h_m)| \ge \varepsilon}{\mathsf{ER fails}}\right) \le \mathbb{P}\left(\max_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \varepsilon\right) \\
\le \sum_{h \in \mathcal{H}} \mathbb{P}\left(\left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \varepsilon\right)$$

$$a \ge \varepsilon \quad \text{or} \quad b \ge \varepsilon \iff \max\{a, b\} \ge \varepsilon$$
$$\mathcal{B}(h_3) \qquad \qquad \mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

$$\mathbb{P}\left(\left|\frac{|R(h_m) - R_{\mathcal{T}^m}(h_m)| \ge \varepsilon}{\mathsf{ER fails}}\right) \le \mathbb{P}\left(\max_{h \in \mathcal{H}} |R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon\right) \\
\le \sum_{h \in \mathcal{H}} \mathbb{P}\left(|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon\right)$$

$$\begin{aligned} & \left| \begin{array}{c} \mathcal{B}(h_{2}) \\ \mathcal{B}(h_{3}) \end{array} \right| & \left| \begin{array}{c} \mathsf{Hoeffding inequality:} \\ \mathbb{P}(|R(h) - R_{\mathcal{T}^{m}}| \geq \varepsilon) \leq 2e^{-\frac{2m\varepsilon^{2}}{(\ell_{\max} - \ell_{\min})^{2}}} \\ \mathcal{B}(h) = \left\{ \mathcal{T}^{m} \in (\mathcal{X} \times \mathcal{Y})^{m} \middle| \left| R_{\mathcal{T}^{m}}(h) - R(h) \right| \geq \varepsilon \right\} \end{aligned}$$

 ${\mathcal E}$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

$$\mathbb{P}\left(\underbrace{|R(h_{m}) - R_{\mathcal{T}^{m}}(h_{m})| \geq \varepsilon}_{\mathsf{ER fails}}\right) \leq \mathbb{P}\left(\max_{h \in \mathcal{H}} |R(h) - R_{\mathcal{T}^{m}}(h)| \geq \varepsilon\right) \\
\leq \sum_{h \in \mathcal{H}} \mathbb{P}\left(|R(h) - R_{\mathcal{T}^{m}}(h)| \geq \varepsilon\right) \\
\leq 2|\mathcal{H}| e^{-\frac{2m\varepsilon^{2}}{(\ell_{\max} - \ell_{\min})^{2}}} \\
\text{Hoeffding inequality:} \\
\mathbb{P}(|R(h) - R_{\mathcal{T}^{m}}| \geq \varepsilon) \leq 2e^{-\frac{2m\varepsilon^{2}}{(\ell_{\max} - \ell_{\min})^{2}}} \\
\mathcal{B}(h) = \left\{\mathcal{T}^{m} \in (\mathcal{X} \times \mathcal{Y})^{m} \middle| |R_{\mathcal{T}^{m}}(h) - R(h)| \geq \varepsilon\right\}$$

• Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.

• ERM learning:
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$$
.

The probability that the empirical risk fails can be reduced to zero if we have anough examples:

$$\mathbb{P}\left(\underbrace{\left|R(h_{m})-R_{\mathcal{T}^{m}}(h_{m})\right| \geq \varepsilon}_{\mathsf{ER fails}}\right) \stackrel{(1)}{\leq} \mathbb{P}\left(\max_{h\in\mathcal{H}}\left|R(h)-R_{\mathcal{T}^{m}}(h)\right| \geq \varepsilon\right) \\
\stackrel{(2)}{\leq} \sum_{h\in\mathcal{H}}\mathbb{P}\left(\left|R(h)-R_{\mathcal{T}^{m}}(h)\right| \geq \varepsilon\right) \\
\stackrel{(3)}{\leq} 2\left|\mathcal{H}\right|e^{-\frac{2m\varepsilon^{2}}{(\ell_{\max}-\ell_{\min})^{2}}}$$

1. $\mathbb{P}(\mathsf{ER fails for } h_m \in \mathcal{H})$ is replaced by $\mathbb{P}(\mathsf{ER can fail for some } h \in \mathcal{H})$.

- 2. Union bound.
- 3. Hoeffding inequality.

Uniform Law of Large Numbers

We have shown for that for the finite hypothesis space, $\mathcal{H} = \{h_1, \ldots, h_K\}$ the Law of Large Numbers holds simultaneously (uniformly) for every $h \in \mathcal{H}$:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \varepsilon\Big) \le \underbrace{2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(\ell_{\max} - \ell_{\min})^2}}}_{\text{converges to 0 for }m \to \infty}$$

Uniform Law of Large Numbers

We have shown for that for the finite hypothesis space, $\mathcal{H} = \{h_1, \ldots, h_K\}$ the Law of Large Numbers holds simultaneously (uniformly) for every $h \in \mathcal{H}$:

$$\mathbb{P}\left(\max_{h\in\mathcal{H}}\left|R(h)-R_{\mathcal{T}^{m}}(h)\right|\geq\varepsilon\right)\leq\underbrace{2|\mathcal{H}|e^{-\frac{2m\varepsilon^{2}}{(\ell_{\max}-\ell_{\min})^{2}}}}_{\text{converges to 0 for }m\to\infty}$$

Definition: We say that Uniform Law of Large Numbers applies for hypothesis space $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$ if there exists a function $m_{\mathcal{H}} \colon \mathbb{R}_{>0} \times (0,1) \to \mathbb{N}$ such that for every $\varepsilon > 0, \delta \in (0,1)$, every distribution p(x,y) and every $m \ge m_{\mathcal{H}}(\varepsilon, \delta)$ the following inequality holds

$$\mathbb{P}\Big(\sup_{h\in\mathcal{H}} |R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon\Big) \le \delta.$$

Uniform Law of Large Numbers

We have shown for that for the finite hypothesis space, $\mathcal{H} = \{h_1, \ldots, h_K\}$ the Law of Large Numbers holds simultaneously (uniformly) for every $h \in \mathcal{H}$:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}} |R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon\Big) \le \underbrace{2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(\ell_{\max} - \ell_{\min})^2}}}_{\text{converges to 0 for } m \to \infty}$$

Definition: We say that Uniform Law of Large Numbers applies for hypothesis space $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$ if there exists a function $m_{\mathcal{H}} \colon \mathbb{R}_{>0} \times (0,1) \to \mathbb{N}$ such that for every $\varepsilon > 0, \delta \in (0,1)$, every distribution p(x,y) and every $m \ge m_{\mathcal{H}}(\varepsilon, \delta)$ the following inequality holds

$$\mathbb{P}\Big(\sup_{h\in\mathcal{H}} |R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon\Big) \le \delta.$$

The next lecture:

If ULLN applies then ERM learning is guaranteed to succeed.

VC dimension as a tool to recognize that ULLN applies for given \mathcal{H} .

Theorem: Let $\mathcal{T}^m = ((x^1, y^1), \dots, (x^m, y^m)) \in (\mathcal{X} \times \mathcal{Y})^m$ be draw from i.i.d. rv. with p.d.f. p(x, y) and let \mathcal{H} be a finite hypothesis class. Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

$$R(h) \leq \underbrace{R_{\mathcal{T}^m}(h)}_{\text{empirical risk}} + \underbrace{(\ell_{\max} - \ell_{\min})}_{\text{complexity term}} \sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$$

holds for all $h \in \mathcal{H}$ simultaneously.

Theorem: Let $\mathcal{T}^m = ((x^1, y^1), \dots, (x^m, y^m)) \in (\mathcal{X} \times \mathcal{Y})^m$ be draw from i.i.d. rv. with p.d.f. p(x, y) and let \mathcal{H} be a finite hypothesis class. Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

$$R(h) \leq \underbrace{R_{\mathcal{T}^m}(h)}_{\text{empirical risk}} + \underbrace{(\ell_{\max} - \ell_{\min})}_{\text{complexity term}} \sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$$

holds for all $h \in \mathcal{H}$ simultaneously.

• To decreases the complexity term: increase m or decrease $|\mathcal{H}|$.

Theorem: Let $\mathcal{T}^m = ((x^1, y^1), \dots, (x^m, y^m)) \in (\mathcal{X} \times \mathcal{Y})^m$ be draw from i.i.d. rv. with p.d.f. p(x, y) and let \mathcal{H} be a finite hypothesis class. Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

$$R(h) \leq \underbrace{R_{\mathcal{T}^m}(h)}_{\text{empirical risk}} + \underbrace{(\ell_{\max} - \ell_{\min})\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\text{complexity term}}$$

holds for all $h \in \mathcal{H}$ simultaneously.

- To decreases the complexity term: increase m or decrease $|\mathcal{H}|$.
- The generalization bound holds for any learning algorithm not just ERM.

Theorem: Let $\mathcal{T}^m = ((x^1, y^1), \dots, (x^m, y^m)) \in (\mathcal{X} \times \mathcal{Y})^m$ be draw from i.i.d. rv. with p.d.f. p(x, y) and let \mathcal{H} be a finite hypothesis class. Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

8/10

$$R(h) \leq \underbrace{R_{\mathcal{T}^m}(h)}_{\text{empirical risk}} + \underbrace{(\ell_{\max} - \ell_{\min})\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\text{complexity term}}$$

holds for all $h \in \mathcal{H}$ simultaneously.

- To decreases the complexity term: increase m or decrease $|\mathcal{H}|$.
- The generalization bound holds for any learning algorithm not just ERM.
- Recommendations for learning:
 - 1. Minimize the empirical risk.
 - 2. Use as much training examples m as you can.
 - 3. Limit the size of the hypothesis space $|\mathcal{H}|$, i.e. use prior knowledge.

Generalization bound for finite hypothesis class: the proof

• We have shown that ULLN holds for finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(\ell_{\max}-\ell_{\min})^2}}$$

Generalization bound for finite hypothesis class: the proof

• We have shown that ULLN holds for finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(\ell_{\max}-\ell_{\min})^2}}$$

р

m

9/10

• Prob. $R_{\mathcal{T}^m}(h)$ is a good proxy of R(h) for all $h \in \mathcal{H}$ simultaneously: $\mathbb{P}\Big(|R_{\mathcal{T}^m}(h) - R(h)| < \varepsilon, \forall h \in \mathcal{H}\Big) = \mathbb{P}\Big(\max_{h \in \mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| < \varepsilon\Big)$ $= 1 - \mathbb{P}\Big(\max_{h \in \mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big)$ $> 1 - 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(\ell_{\max} - \ell_{\min})^2}} = 1 - \delta$

Generalization bound for finite hypothesis class: the proof

• We have shown that ULLN holds for finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(\ell_{\max}-\ell_{\min})^2}}$$

• Prob. $R_{\mathcal{T}^m}(h)$ is a good proxy of R(h) for all $h \in \mathcal{H}$ simultaneously: $\mathbb{P}\Big(|R_{\mathcal{T}^m}(h) - R(h)| < \varepsilon, \forall h \in \mathcal{H}\Big) = \mathbb{P}\Big(\max_{h \in \mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| < \varepsilon\Big)$ $= 1 - \mathbb{P}\Big(\max_{h \in \mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big)$ $\ge 1 - 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(\ell_{\max} - \ell_{\min})^2}} = 1 - \delta$

Solving the last equality for ε yields $\varepsilon = L\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$ so that:

$$\mathbb{P}\left(\left|R_{\mathcal{T}^m}(h) - R(h)\right| < L\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}, \, \forall h \in \mathcal{H}\right) \ge 1 - \delta$$

Summary

- Learning algorithm: the definition.
- Empirical Risk Minimization.
- Unrestricted hypothesis space: the ERM can overfit regardless the number of training examples.

- Finite hypothesis space: the chance of overfitting can be always eliminated.
- Uniform Law of Large Numbers.
- Generalization bound for finite hypothesis space.

