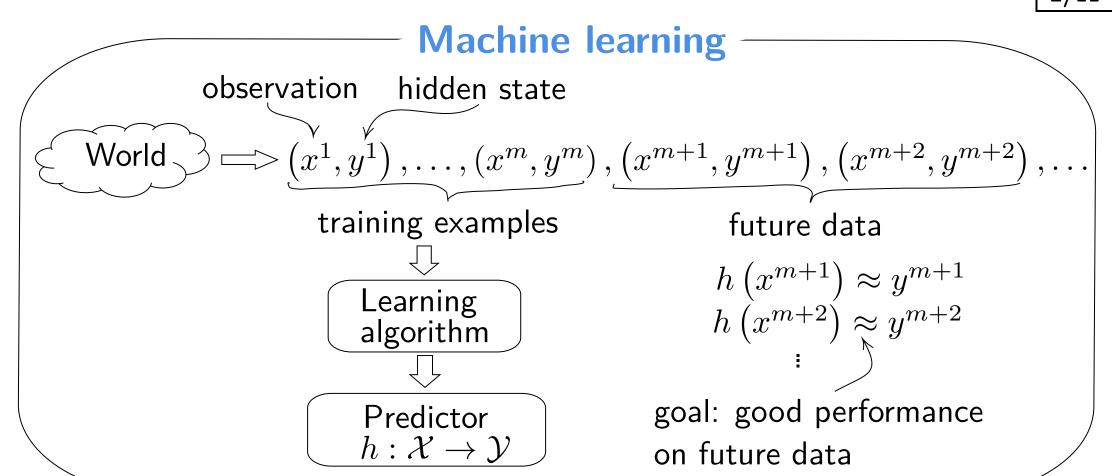
Statistical Machine Learning (BE4M33SSU) Lecture 2: Predictor evaluation

Czech Technical University in Prague V. Franc

Content of the next three lectures: elements of machine learning theory

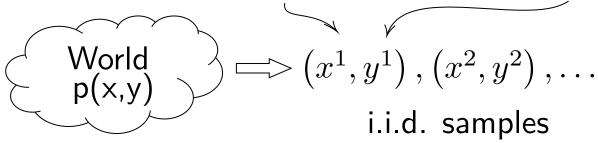


Machine learning theory: statistical framework which helps to clarify why and when the machine learning algorithms work.

Prediction problem and its optimal solution

3/11

- ◆ The main assumption: $(x,y) \in \mathcal{X} \times \mathcal{Y}$ are samples i.i.d. drawn from a random process with a distributon p(x,y).
 - observation $x \in X$ hidden state $y \in Y$



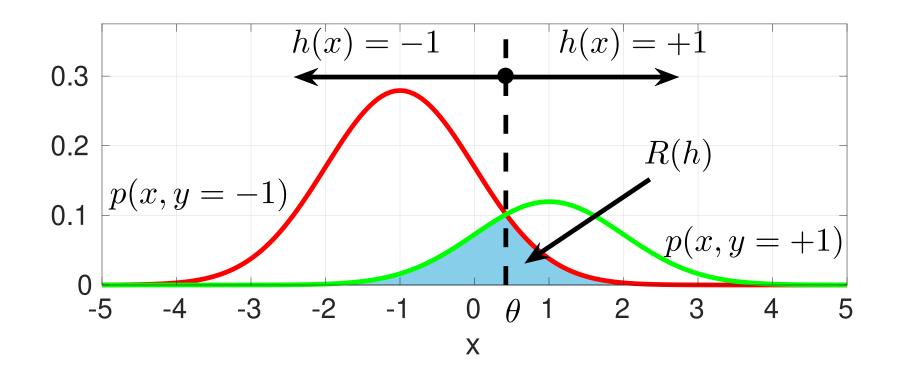
- lacktriangle We want to find a predictor (strategy, hypothesis, classifier) $h\colon \mathcal{X} \to \mathcal{Y}$
- lacktriangle Single prediction evaluated by loss function $\ell \colon \mathcal{Y} imes \mathcal{Y} o \mathbb{R}$
- lacktriangle The performance of h is evaluated by generalization error (expected risk)

$$R(h) = \int \sum_{y \in \mathcal{Y}} \ell(y, h(x)) \ p(x, y) \ dx = \mathbb{E}_{(x,y) \sim p} \Big[\ell(y, h(x)) \Big]$$

♦ The optimal (Bayes) predictor: $h^* \in \min_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$

Example of a prediction problem

- The statistical model is known:
 - $\bullet \ \mathcal{X} = \mathbb{R}, \quad \mathcal{Y} = \{+1, -1\}, \quad \ell(y, y') = \left\{ \begin{array}{ll} 0 & \text{if} \quad y = y' \\ 1 & \text{if} \quad y \neq y' \end{array} \right.$
 - $p(x,y) = p(y) \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu_y)^2}$, $y \in \mathcal{Y}$.

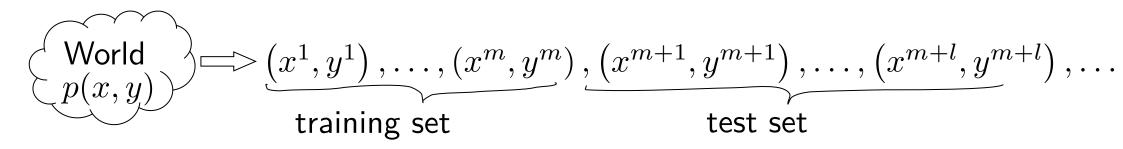


m p

Machine learning: Learning and evaluation based on data

5/11

ullet **Setup:** we have only samples i.i.d drawn from an unknown p(x,y).



◆ **Learning**: find $h: \mathcal{X} \to \mathcal{Y}$ with small generalization error R(h) using training (sequence) set

$$\mathcal{T}^m = ((x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m)$$
 drawn i.i.d. from $p(x, y)$

Evaluation: estimate generalization error R(h) of a given predictor $h \colon \mathcal{X} \to \mathcal{Y}$ using test (sequence) set

$$\mathcal{S}^l = ((x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, l)$$
 drawn i.i.d. from $p(x, y)$

Evaluation: estimation of the generalization error

6/11

• Given a predictor $h \colon \mathcal{X} \to \mathcal{Y}$ and a test set $\mathcal{S}^l \sim p^l$, estimate the generalization error $R(h) = \mathbb{E}[\ell(y, h(x)]]$ by the test error

$$R_{\mathcal{S}^l}(h) = \frac{1}{l} \left(\ell(y^1, h(x^1)) + \dots + \ell(y^l, h(x^l)) \right) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(x^i))$$

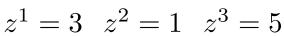
- Is the test error $R_{\mathcal{S}^l}(h)$ a good estimate of R(h)?
 - $R_{S^l}(h)$ is a random number with an unknown distribution.
 - $R_{\mathcal{S}^l}(h)$ is an unbiased estimate of R(h).
- **Problem:** With only knowledge of S^l , can we confidently assess the difference between $R_{S^l}(h)$ and R(h)?

Law of large numbers

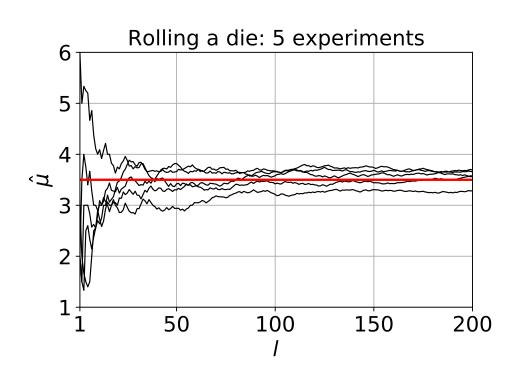
- Sample mean (arithmetic average) of the results of random trials gets closer to the expected value as more trials are performed.
- Example: The expected value of a single roll of a fair die is

$$\mu = \mathbb{E}_{z \sim p}(z) = \sum_{z=1}^{6} z \, p(z) = \frac{1+2+3+4+5+6}{6} = 3.5$$

$$\hat{\mu}_l = \frac{1}{l} \sum_{i=1}^l z^i$$

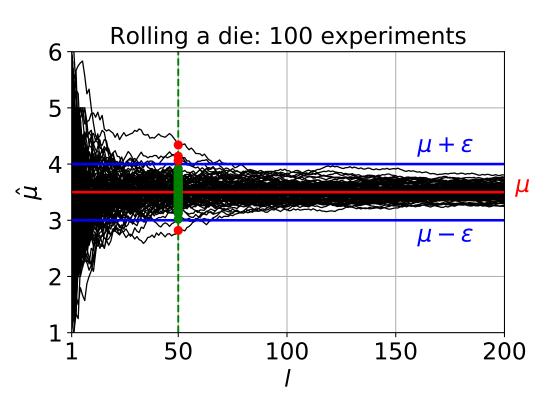


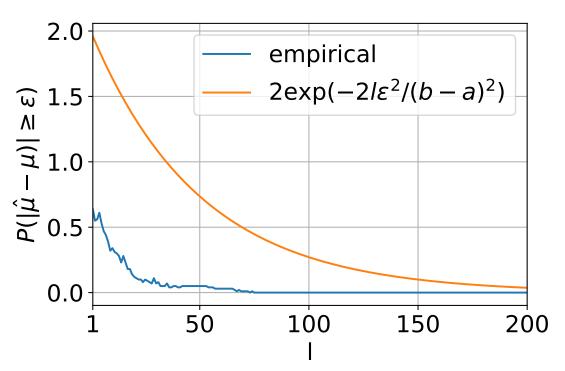
$$z^l = 2$$



Given a finite sample size l, how effectively does the sample mean $\hat{\mu}_l$ estime the expected value μ ?

8/11





sample size l=50, deviation $\varepsilon=0.5$

Hoeffding inequality

$$\frac{\#(|\hat{\mu}_l - \mu| \ge \varepsilon)}{\text{#experiments}} = \frac{5}{100} = 0.05 \quad \to \quad \mathbb{P}(|\hat{\mu}_l - \mu| \ge \varepsilon) \le 2e^{-\frac{2l\varepsilon^2}{(b-a)^2}}$$

$$a = 1$$
, $b = 6$

Hoeffding inequality

Theorem: Let (z^1,\ldots,z^l) be a sample from independent r.v. from [a,b] with expected value μ . Let $\hat{\mu}_l = \frac{1}{l} \sum_{i=1}^l z^i$. Then for any $\varepsilon > 0$ it holds that

$$\mathbb{P}\Big(|\hat{\mu}_l - \mu| \ge \varepsilon\Big) \le 2e^{-\frac{2l\,\varepsilon^2}{(b-a)^2}}$$

Properties:

- (-) Conservative: the bound may not be tight.
- \bullet (+) General: the bound holds for any distribution.
- \bullet (+) Cheap: The bound is simple and easy to compute.

m

Confidence interval for the generalization error

10/11

- Given $h: \mathcal{X} \to \mathcal{Y}$ and test set $\mathcal{S}^l \sim p^l$, estimate the generalization error $R(h) = \mathbb{E}_{(x,y)\sim p}[\ell(y,h(x))]$ by test error $R_{\mathcal{S}^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i,h(x^i))$.
- We set $z^i = \ell(y^i, h(x^i))$ and apply the Hoeffding inequality:

$$\mathbb{P}\Big(|R_{\mathcal{S}^l}(h) - R(h)| \ge \varepsilon\Big) \le 2e^{-\frac{2l\,\varepsilon^2}{(\ell_{\max} - \ell_{\min})^2}} \qquad \forall \varepsilon > 0$$

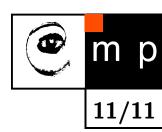
• We use Hoeffding inequality to construct the confidence interval:

$$R(h) \in (R_{\mathcal{S}^l}(h) - \varepsilon, R_{\mathcal{S}^l}(h) + \varepsilon)$$
 holds with prob. $1 - \delta$ at least.

- lacktriangle For fixed l and $\delta \in [0,1]$, compute $\varepsilon = (\ell_{\max} \ell_{\min}) \sqrt{\frac{\log(2) \log(\delta)}{2\,l}}$
- For fixed ε and $\delta \in [0,1]$, compute $l = \frac{\log(2) \log(\delta)}{2\,\varepsilon^2}\,(\ell_{\max} \ell_{\min})^2$

Summary: We have derived a procedure to confidently assess the difference between $R_{S^l}(h)$ and R(h) knowing only the test examples S^l .

Summary



- Formulation of the prediction problem.
- Evaluation vs learning.
- Law of Large numbers.
- Hoeffding inequality.
- Confidence intervals to estimate the generalization error.