
Statistical Machine Learning (BE4M33SSU)
Lecture 9: EM algorithm; Bayesian learning

Czech Technical University in Prague

■ Unsupervised generative learning

■ Expectation Maximisation algorithm

■ Bayesian inference

■ Variational Bayesian inference
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Unsupervised generative learning

■ The joint p.d. pθ(x,y), θ ∈ Θ is known up to the parameter θ ∈ Θ.

■ We are given training data T m =
{

xj ∈ X
∣∣ j = 1, . . . ,m

}
i.i.d. generated from pθ∗.

Can we estimate the parameter θ without ever seeing the hidden states y?

Example 1 (Mixture of Gaussians).
We observe data x ∈ R generated from a mixture of k
Gaussians

p(x) =

k∑
i=1

αi
1√
2πσi

e
(x−µi)

2

2σ2
i

Can we estimate the parameters αi, µi, σi from given
training data T m =

{
xj ∈ X

∣∣ j = 1, . . . ,m
}

?
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Unsupervised generative learning

Example 2 (Generating handwritten digits).
Our training set consists of images of handwritten digits
(MNIST). We want to design and train a model for
generating such images. We consider a model

p(x,z) = pθ(x |z)p(z),

where x ∈ Rh×w is an image and z ∈ Rn is a vector
of latent variables encoding shapes and writing styles.
We fix a simple prior distribution p(z) on the latent
space, e.g. N (0,I), and a parametric model pθ(x |z),
e.g. N

(
µ(z,θ),σ2I

)
, where µ(z,θ) is a parametrised

mapping z ∈ Rn 7→ x ∈ Rh×w.
Can we estimate the parameter θ without ever seeing
the latent states z?
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Unsupervised generative learning

Given a parametric family of distributions pθ(x,y), θ ∈ Θ and a training set
T m =

{
xj ∈ X

∣∣ i = 1, . . . ,m
}

, we want to estimate the model parameter θ by the maximum
likelihood estimator

eML(T m) = argmax
θ∈Θ

1

m

∑
x∈T m

logpθ(x) = argmax
θ∈Θ

Ex∼T m

[
log

∑
y∈Y

pθ(x,y)
]

■ If θ is a single parameter or a vector of homogeneous parameters ⇒
maximise the log-likelihood directly by gradient ascent (provided it is differentiable in θ).

■ If θ is a collection of heterogeneous parameters ⇒
apply the Expectation Maximisation Algorithm (Schlesinger, 1968, Sundberg, 1974,
Dempster, Laird, and Rubin, 1977)

http://cmp.felk.cvut.cz


5/16
The Expectation Maximisation Algorithm

EM algorithm (intuitive idea): Iterate the following two steps until convergence.

■ Given the current parameter estimate θ(t), compute the hidden state probabilities
αx(y) := pθ(t)(y |x) for each x ∈ T m and y ∈ Y.

■ Use this information as “soft” labels and solve the MLE task

θ(t+1) ∈ argmax
θ

∑
x∈T m

∑
y∈Y

αx(y) logpθ(x,y)

Can this really work? Yes it can!

Consider the equation logpθ(x) = logpθ(x,y)− logpθ(y |x) for a single training example x
and average it with α(y) = pθ(t)(y |x)

logpθ(x)︸ ︷︷ ︸
f(θ)

=
∑
y∈Y

α(y) logpθ(x,y)︸ ︷︷ ︸
g(θ)

−
∑
y∈Y

α(y) logpθ(y |x)︸ ︷︷ ︸
h(θ)

We notice that the function h(θ) has its global maximum at θ(t).
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The Expectation Maximisation Algorithm

By denoting ht = h(θ(t)) and rewriting the equality

f(θ) =
[
g(θ)−ht︸ ︷︷ ︸

g̃(θ)

]
−

[
h(θ)−ht︸ ︷︷ ︸

h̃(θ)

]
,

we see:
■ h̃(θ) has global maximum h̃(θ(t)) = 0.
■ g̃(θ) lower bounds f(θ)

■ f(θ(t)) = g̃(θ(t)) and their gradients in this point coincide.

Given the current estimate θ(t) we define
α(y) = pθ(t)(y |x) and

g(θ) =
∑
y∈Y

α(y) logpθ(x,y).

We maximise g(θ) instead of f(θ) = logpθ(x).
It is guaranteed that logpθ(t+1)(x)⩾ logpθ(t)(x)
holds for the maximiser θ(t+1) of g(θ).

http://cmp.felk.cvut.cz
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The Expectation Maximisation Algorithm

Start with a suitably chosen θ(0) and iterate the following steps until convergence

E-step Fix the current θ(t) and compute

α(t)
x (y) = pθ(t)(y | x).

M-step Fix the current α(t), use them as “soft” labels and solve the MLE task.

θ(t+1) = argmax
θ∈Θ

ET m

[∑
y∈Y

α(t)
x (y) logpθ(x,y)

]
This is equivalent to solving the MLE for annotated training data.

Claims:
■ The sequence of likelihood values L(θ(t)) = 1

m

∑
x∈T m logpθ(t)(x), t = 1,2, . . . is

increasing.

■ The sequence of α
(t)
x , t = 1,2, . . . is convergent.

There is no guarantee that the EM algorithm converges to a global maximum of the
log-likelihood. This underlines the importance of a suitable initialisation.
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The Expectation Maximisation Algorithm

Additional reading:

Schlesinger, Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition,
Chapter 6, Kluwer 2002 (also available in Czech)

Thomas P. Minka, Expectation-Maximization as lower bound maximization, 1998 (short
tutorial, available on the internet)
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Bayesian Inference

Motivation:

■ Both, ERM and generative learning by MLE are consistent under the respective
regularity assumptions. Their estimation errors R(hm)−R(hH) and ∥θm −θ∗∥ are
small in the limit of large training data sizes m.

■ On the other hand, their estimates hm and θm can deviate substantially from the
respective optimal predictor/model in case of small training data sizes.

■ Models should be based on our knowledge about the problem. We do not want to
restrict the complexity of the model pθ(x,y), θ ∈ Θ just because we have only a small
amount of training data.

■ Deciding for a single model θm = eML(T m) might be sub-optimal in such situations.

Idea: Given training data T m = {(xj,yj) | j = 1,2, . . . ,m}, decide for a weighted mixture
of models

p(x,y) =

K∑
k=1

αk(T m)pθk
(x,y)

and use it as predictive distribution.

http://cmp.felk.cvut.cz


10/16
Bayesian inference

Bayesian inference:

Interpret the unknown parameter θ ∈ Θ as a random variable.

■ Data distribution: parametric family of models p(x,y |θ), θ ∈ Θ,

■ Prior distribution p(θ) on Θ.

The prior distribution p(θ) and i.i.d. training data T m =
{
(xj,yj)

∣∣ j = 1, . . . ,m
}

define a
posterior parameter distribution p(θ |T m), given by

p(θ |T m) =
p(θ)p(T m |θ)

p(T m)
with p(T m |θ) =

m∏
i=1

p(xi,yi |θ).

The probability p(T m) is obtained by integrating over θ, i.e. p(T m) =
∫

p(θ)p(T m |θ)dθ
and does not depend on θ.

Notice that the posterior distribution p(θ |T m) ∝ p(T m |θ)p(θ) interpolates between the
situation without any training data, i.e. m = 0 and the likelihood of training data for
m → ∞.
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Bayesian inference: MAP decision

Let us use p(θ |T m), but decide for a single value of θ by using the MAP criterion,

θm = argmax
θ∈Θ

p(θ |T m) = argmax
θ∈Θ

p(T m |θ)p(θ) = argmax
θ∈Θ

∑
(x,y)∈T m

logp(x,y |θ)+ logp(θ)

This results in an ML estimate with an additional regulariser

θm = argmax
θ∈Θ

[ 1

m

∑
(x,y)∈T m

logp(x,y |θ)+ 1

m
logp(θ)

]

Example 3. We want to learn a DNN classifier with squashing activation functions
(e.g. tanh or sigmoid). Assuming a Gaussian prior for the network weights, i.e. w ∼ N (0,σ),
we get the learning objective

1

m

∑
(x,y)∈T m

logp(y |x; w)− 1

2mσ2
∥w∥2 → max

w

This enforces a considerable fraction of neurons to have small weights and thus also small
activations. They will therefore operate in a semi-linear regime.

http://cmp.felk.cvut.cz
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Bayesian inference

The Bayesian approach uses the posterior distribution p(θ |T m) ∝ p(T m |θ)p(θ) to construct
model mixtures and predictors. Consider the posterior probability to observe a pair (x,y) by
marginalising over θ ∈ Θ:

p(x,y |T m) =
1

p(T m)

∫
Θ

p(T m |θ)p(θ)p(x,y |θ)dθ

This is a mixture of distributions with mixture weights αm(θ) ∝ p(T m |θ)p(θ).

The Bayes optimal predictor w.r.t. 0/1 loss for this model mixture is

h(x,T m) = argmax
y∈Y

∫
Θ

p(θ)p(T m |θ)︸ ︷︷ ︸
αm(θ)

p(x,y |θ)dθ = argmax
y∈Y

∫
Θ

αm(θ)p(x,y |θ)dθ

Notice:

■ the mixture weights αm(θ) interpolate between the situation without any training data,
i.e. m = 0 and the likelihood of training data for m → ∞.

■ similar approaches for ERM lead to Ensembling methods (see lectures 12,13).
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Variational Bayesian inference

Variational Bayesian inference:

Computing the integral
∫
Θ

p(θ |T m)p(x,y |θ)dθ is in most cases not tractable.

We can approximate p(θ |T m) by some simple distribution qφ(θ), φ ∈ Φ and try find the
optimal parameter φ by minimising the Kullback-Leibler divergence

DKL(qφ(θ) ∥ p(θ |T m)) = DKL(qφ(θ) ∥ p(θ))−
∫
Θ

qφ(θ) logp(T m |θ)dθ+ c → min
φ

Then we use qφ(θ) for constructing the model mixture and predictor (e.g. for 0/1 loss)

h(x) = argmax
y

∫
Θ

qφ(θ)p(x,y |θ)dθ

The remaining integral over θ can be simplified by sampling θk ∼ qφ(θ), i.e.

∫
Θ

qφ(θ)p(x,y |θ)dθ ≈ 1

K

K∑
k=1

p(x,y |θk)

http://cmp.felk.cvut.cz
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Variational Bayesian inference

Example 4 (Variational Bayesian inference for a single neuron).

Let us consider a single neuron modelling class probabilities for y = ±1

p(y |x; w) = σ
(
y⟨w,x⟩

)
,

where σ() denotes the sigmoid function. We assume the prior probability for the neuron
weights p(w) as w ∼ N (0,I).

Given a training set T m = {(xi,yi) | i = 1, . . . ,m}, the posterior weight distribution is

p(w |T m) ∝ p(w)
∏

(x,y)∈T m

p(y |x; w)

We will approximate it by a normal distribution qµ(w) as w ∼ N (µ,I). We must solve∫
Rn

qµ(w)
∑

(x,y)∈T m

logσ
(
y⟨w,x⟩

)
dw − DKL(qµ(w) ∥ p(w)) → max

µ

http://cmp.felk.cvut.cz
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Variational Bayesian inference

The KL-divergence can be computed in closed form (see seminar).

Let us discuss computing the gradient of the first term∫
Rn

qµ(w)
∑

(x,y)∈T m

logσ
(
y⟨w,x⟩

)
dw

w=v−µ
=

∫
Rn

q0(v)
∑

(x,y)∈T m

logσ
(
y⟨v −µ,x⟩

)
dv

We can use a stochastic gradient estimator by
1. sample vi ∼ N (0,I)
2. draw a mini-batch B from training data and estimate the gradient by

g = ∇µ

∑
(x,y)∈B

logσ
(
y⟨vi −µ,x⟩

)

Let qµ∗(w), i.e. w ∼ N (µ∗,I) denote the optimal approximate of the posterior distribution.
The predictive distribution is then

p(x,y) ∝
∫
Rn

qµ∗(w)σ
(
y⟨w,x⟩

)
dw =

∫
Rn

e−(w−µ∗)2
2

1+e−y⟨w,x⟩ dw

http://cmp.felk.cvut.cz
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Appendix: Alternative derivation of the EM Algorithm

■ Introduce auxiliary variables αx(y)⩾ 0, for each x ∈ T m, s.t.
∑

y∈Y
αx(y) = 1

■ Construct a lower bound of the log-likelihood L(θ,T m)⩾ LB(θ,α,T m)

■ Maximise this lower bound by block-wise coordinate ascent.

Construct the bound:

L(θ,T m) = ET m

[
log

∑
y∈Y

pθ(x,y)
]
= ET m

[
log

∑
y∈Y

αx(y)

αx(y)
pθ(x,y)

]
⩾

LB(θ,α,T m) = ET m

∑
y∈Y

[
αx(y) logpθ(x,y)−αx(y) logαx(y)

]

The following equivalent representation shows the difference between L(θ,T m) and
LB(θ,α,T m):

LB(θ,α,T m) = ET m

[
logpθ(x)

]
−ET m

[
DKL(αx(y) ∥ pθ(y |x))

]
We see that the lower bound is tight if αx(y) = pθ(y | x) holds ∀x and ∀y.

http://cmp.felk.cvut.cz
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