
Statistical Machine Learning (BE4M33SSU)
Lecture 9: EM algorithm; Bayesian learning

Czech Technical University in Prague

■ Unsupervised generative learning

■ Expectation Maximisation algorithm

■ Bayesian inference

■ Variational Bayesian inference

2/16
Unsupervised generative learning

■ The joint p.d. pθ(x,y), θ ∈ Θ is known up to the parameter θ ∈ Θ.

■ We are given training data T m =
{

xj ∈ X
∣∣ j = 1, . . . ,m

}
i.i.d. generated from pθ∗.

Can we estimate the parameter θ without ever seeing the hidden states y?

Example 1 (Mixture of Gaussians).
We observe data x ∈ R generated from a mixture of k
Gaussians

p(x) =

k∑
i=1

αi
1√
2πσi

e
(x−µi)

2

2σ2
i

Can we estimate the parameters αi, µi, σi from given
training data T m =

{
xj ∈ X

∣∣ j = 1, . . . ,m
}

?
2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

mixture of Gaussians

http://cmp.felk.cvut.cz

3/16
Unsupervised generative learning

Example 2 (Generating handwritten digits).
Our training set consists of images of handwritten digits
(MNIST). We want to design and train a model for
generating such images. We consider a model

p(x,z) = pθ(x |z)p(z),

where x ∈ Rh×w is an image and z ∈ Rn is a vector
of latent variables encoding shapes and writing styles.
We fix a simple prior distribution p(z) on the latent
space, e.g. N (0,I), and a parametric model pθ(x |z),
e.g. N

(
µ(z,θ),σ2I

)
, where µ(z,θ) is a parametrised

mapping z ∈ Rn 7→ x ∈ Rh×w.
Can we estimate the parameter θ without ever seeing
the latent states z?

http://cmp.felk.cvut.cz

4/16
Unsupervised generative learning

Given a parametric family of distributions pθ(x,y), θ ∈ Θ and a training set
T m =

{
xj ∈ X

∣∣ i = 1, . . . ,m
}

, we want to estimate the model parameter θ by the maximum
likelihood estimator

eML(T m) = argmax
θ∈Θ

1

m

∑
x∈T m

logpθ(x) = argmax
θ∈Θ

Ex∼T m

[
log

∑
y∈Y

pθ(x,y)
]

■ If θ is a single parameter or a vector of homogeneous parameters ⇒
maximise the log-likelihood directly by gradient ascent (provided it is differentiable in θ).

■ If θ is a collection of heterogeneous parameters ⇒
apply the Expectation Maximisation Algorithm (Schlesinger, 1968, Sundberg, 1974,
Dempster, Laird, and Rubin, 1977)

http://cmp.felk.cvut.cz

5/16
The Expectation Maximisation Algorithm

EM algorithm (intuitive idea): Iterate the following two steps until convergence.

■ Given the current parameter estimate θ(t), compute the hidden state probabilities
αx(y) := pθ(t)(y |x) for each x ∈ T m and y ∈ Y.

■ Use this information as “soft” labels and solve the MLE task

θ(t+1) ∈ argmax
θ

∑
x∈T m

∑
y∈Y

αx(y) logpθ(x,y)

Can this really work? Yes it can!

Consider the equation logpθ(x) = logpθ(x,y)− logpθ(y |x) for a single training example x
and average it with α(y) = pθ(t)(y |x)

logpθ(x)︸ ︷︷ ︸
f(θ)

=
∑
y∈Y

α(y) logpθ(x,y)︸ ︷︷ ︸
g(θ)

−
∑
y∈Y

α(y) logpθ(y |x)︸ ︷︷ ︸
h(θ)

We notice that the function h(θ) has its global maximum at θ(t).

http://cmp.felk.cvut.cz

6/16
The Expectation Maximisation Algorithm

By denoting ht = h(θ(t)) and rewriting the equality

f(θ) =
[
g(θ)−ht︸ ︷︷ ︸

g̃(θ)

]
−

[
h(θ)−ht︸ ︷︷ ︸

h̃(θ)

]
,

we see:
■ h̃(θ) has global maximum h̃(θ(t)) = 0.
■ g̃(θ) lower bounds f(θ)

■ f(θ(t)) = g̃(θ(t)) and their gradients in this point coincide.

Given the current estimate θ(t) we define
α(y) = pθ(t)(y |x) and

g(θ) =
∑
y∈Y

α(y) logpθ(x,y).

We maximise g(θ) instead of f(θ) = logpθ(x).
It is guaranteed that logpθ(t+1)(x)⩾ logpθ(t)(x)
holds for the maximiser θ(t+1) of g(θ).

http://cmp.felk.cvut.cz

7/16
The Expectation Maximisation Algorithm

Start with a suitably chosen θ(0) and iterate the following steps until convergence

E-step Fix the current θ(t) and compute

α(t)
x (y) = pθ(t)(y | x).

M-step Fix the current α(t), use them as “soft” labels and solve the MLE task.

θ(t+1) = argmax
θ∈Θ

ET m

[∑
y∈Y

α(t)
x (y) logpθ(x,y)

]
This is equivalent to solving the MLE for annotated training data.

Claims:
■ The sequence of likelihood values L(θ(t)) = 1

m

∑
x∈T m logpθ(t)(x), t = 1,2, . . . is

increasing.

■ The sequence of α
(t)
x , t = 1,2, . . . is convergent.

There is no guarantee that the EM algorithm converges to a global maximum of the
log-likelihood. This underlines the importance of a suitable initialisation.

http://cmp.felk.cvut.cz

8/16
The Expectation Maximisation Algorithm

Additional reading:

Schlesinger, Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition,
Chapter 6, Kluwer 2002 (also available in Czech)

Thomas P. Minka, Expectation-Maximization as lower bound maximization, 1998 (short
tutorial, available on the internet)

http://cmp.felk.cvut.cz

9/16
Bayesian Inference

Motivation:

■ Both, ERM and generative learning by MLE are consistent under the respective
regularity assumptions. Their estimation errors R(hm)−R(hH) and ∥θm −θ∗∥ are
small in the limit of large training data sizes m.

■ On the other hand, their estimates hm and θm can deviate substantially from the
respective optimal predictor/model in case of small training data sizes.

■ Models should be based on our knowledge about the problem. We do not want to
restrict the complexity of the model pθ(x,y), θ ∈ Θ just because we have only a small
amount of training data.

■ Deciding for a single model θm = eML(T m) might be sub-optimal in such situations.

Idea: Given training data T m = {(xj,yj) | j = 1,2, . . . ,m}, decide for a weighted mixture
of models

p(x,y) =

K∑
k=1

αk(T m)pθk
(x,y)

and use it as predictive distribution.

http://cmp.felk.cvut.cz

10/16
Bayesian inference

Bayesian inference:

Interpret the unknown parameter θ ∈ Θ as a random variable.

■ Data distribution: parametric family of models p(x,y |θ), θ ∈ Θ,

■ Prior distribution p(θ) on Θ.

The prior distribution p(θ) and i.i.d. training data T m =
{
(xj,yj)

∣∣ j = 1, . . . ,m
}

define a
posterior parameter distribution p(θ |T m), given by

p(θ |T m) =
p(θ)p(T m |θ)

p(T m)
with p(T m |θ) =

m∏
i=1

p(xi,yi |θ).

The probability p(T m) is obtained by integrating over θ, i.e. p(T m) =
∫

p(θ)p(T m |θ)dθ
and does not depend on θ.

Notice that the posterior distribution p(θ |T m) ∝ p(T m |θ)p(θ) interpolates between the
situation without any training data, i.e. m = 0 and the likelihood of training data for
m → ∞.

http://cmp.felk.cvut.cz

11/16
Bayesian inference: MAP decision

Let us use p(θ |T m), but decide for a single value of θ by using the MAP criterion,

θm = argmax
θ∈Θ

p(θ |T m) = argmax
θ∈Θ

p(T m |θ)p(θ) = argmax
θ∈Θ

∑
(x,y)∈T m

logp(x,y |θ)+ logp(θ)

This results in an ML estimate with an additional regulariser

θm = argmax
θ∈Θ

[1

m

∑
(x,y)∈T m

logp(x,y |θ)+ 1

m
logp(θ)

]

Example 3. We want to learn a DNN classifier with squashing activation functions
(e.g. tanh or sigmoid). Assuming a Gaussian prior for the network weights, i.e. w ∼ N (0,σ),
we get the learning objective

1

m

∑
(x,y)∈T m

logp(y |x; w)− 1

2mσ2
∥w∥2 → max

w

This enforces a considerable fraction of neurons to have small weights and thus also small
activations. They will therefore operate in a semi-linear regime.

http://cmp.felk.cvut.cz

12/16
Bayesian inference

The Bayesian approach uses the posterior distribution p(θ |T m) ∝ p(T m |θ)p(θ) to construct
model mixtures and predictors. Consider the posterior probability to observe a pair (x,y) by
marginalising over θ ∈ Θ:

p(x,y |T m) =
1

p(T m)

∫
Θ

p(T m |θ)p(θ)p(x,y |θ)dθ

This is a mixture of distributions with mixture weights αm(θ) ∝ p(T m |θ)p(θ).

The Bayes optimal predictor w.r.t. 0/1 loss for this model mixture is

h(x,T m) = argmax
y∈Y

∫
Θ

p(θ)p(T m |θ)︸ ︷︷ ︸
αm(θ)

p(x,y |θ)dθ = argmax
y∈Y

∫
Θ

αm(θ)p(x,y |θ)dθ

Notice:

■ the mixture weights αm(θ) interpolate between the situation without any training data,
i.e. m = 0 and the likelihood of training data for m → ∞.

■ similar approaches for ERM lead to Ensembling methods (see lectures 12,13).

http://cmp.felk.cvut.cz

13/16
Variational Bayesian inference

Variational Bayesian inference:

Computing the integral
∫
Θ

p(θ |T m)p(x,y |θ)dθ is in most cases not tractable.

We can approximate p(θ |T m) by some simple distribution qφ(θ), φ ∈ Φ and try find the
optimal parameter φ by minimising the Kullback-Leibler divergence

DKL(qφ(θ) ∥ p(θ |T m)) = DKL(qφ(θ) ∥ p(θ))−
∫
Θ

qφ(θ) logp(T m |θ)dθ+ c → min
φ

Then we use qφ(θ) for constructing the model mixture and predictor (e.g. for 0/1 loss)

h(x) = argmax
y

∫
Θ

qφ(θ)p(x,y |θ)dθ

The remaining integral over θ can be simplified by sampling θk ∼ qφ(θ), i.e.

∫
Θ

qφ(θ)p(x,y |θ)dθ ≈ 1

K

K∑
k=1

p(x,y |θk)

http://cmp.felk.cvut.cz

14/16
Variational Bayesian inference

Example 4 (Variational Bayesian inference for a single neuron).

Let us consider a single neuron modelling class probabilities for y = ±1

p(y |x; w) = σ
(
y⟨w,x⟩

)
,

where σ() denotes the sigmoid function. We assume the prior probability for the neuron
weights p(w) as w ∼ N (0,I).

Given a training set T m = {(xi,yi) | i = 1, . . . ,m}, the posterior weight distribution is

p(w |T m) ∝ p(w)
∏

(x,y)∈T m

p(y |x; w)

We will approximate it by a normal distribution qµ(w) as w ∼ N (µ,I). We must solve∫
Rn

qµ(w)
∑

(x,y)∈T m

logσ
(
y⟨w,x⟩

)
dw − DKL(qµ(w) ∥ p(w)) → max

µ

http://cmp.felk.cvut.cz

15/16
Variational Bayesian inference

The KL-divergence can be computed in closed form (see seminar).

Let us discuss computing the gradient of the first term∫
Rn

qµ(w)
∑

(x,y)∈T m

logσ
(
y⟨w,x⟩

)
dw

w=v−µ
=

∫
Rn

q0(v)
∑

(x,y)∈T m

logσ
(
y⟨v −µ,x⟩

)
dv

We can use a stochastic gradient estimator by
1. sample vi ∼ N (0,I)
2. draw a mini-batch B from training data and estimate the gradient by

g = ∇µ

∑
(x,y)∈B

logσ
(
y⟨vi −µ,x⟩

)

Let qµ∗(w), i.e. w ∼ N (µ∗,I) denote the optimal approximate of the posterior distribution.
The predictive distribution is then

p(x,y) ∝
∫
Rn

qµ∗(w)σ
(
y⟨w,x⟩

)
dw =

∫
Rn

e−(w−µ∗)2
2

1+e−y⟨w,x⟩ dw

http://cmp.felk.cvut.cz

16/16
Appendix: Alternative derivation of the EM Algorithm

■ Introduce auxiliary variables αx(y)⩾ 0, for each x ∈ T m, s.t.
∑

y∈Y
αx(y) = 1

■ Construct a lower bound of the log-likelihood L(θ,T m)⩾ LB(θ,α,T m)

■ Maximise this lower bound by block-wise coordinate ascent.

Construct the bound:

L(θ,T m) = ET m

[
log

∑
y∈Y

pθ(x,y)
]
= ET m

[
log

∑
y∈Y

αx(y)

αx(y)
pθ(x,y)

]
⩾

LB(θ,α,T m) = ET m

∑
y∈Y

[
αx(y) logpθ(x,y)−αx(y) logαx(y)

]

The following equivalent representation shows the difference between L(θ,T m) and
LB(θ,α,T m):

LB(θ,α,T m) = ET m

[
logpθ(x)

]
−ET m

[
DKL(αx(y) ∥ pθ(y |x))

]
We see that the lower bound is tight if αx(y) = pθ(y | x) holds ∀x and ∀y.

http://cmp.felk.cvut.cz

	First page
	cmporange Unsupervised generative learning
	cmporange Unsupervised generative learning
	cmporange Unsupervised generative learning
	cmporange The Expectation Maximisation Algorithm
	cmporange The Expectation Maximisation Algorithm
	cmporange The Expectation Maximisation Algorithm
	cmporange The Expectation Maximisation Algorithm
	cmporange Bayesian Inference
	cmporange Bayesian inference
	cmporange Bayesian inference: MAP decision
	cmporange Bayesian inference
	cmporange Variational Bayesian inference
	cmporange Variational Bayesian inference
	cmporange Variational Bayesian inference
	cmporange Appendix: Alternative derivation of the EM Algorithm
	Last page

