
* 1.
0*1*
a) ac

* 2.
inter

Con
(n^2
start
(*) I
start
BFS
end
trans
The
How
A) R
and
B) T
conn
stron
Both
Redu
O(|V
O((n

The
there
algo
O(n^
whic

* 3.
sym
auto

. There are t
*0*1*0*, wo
ccepts langua

. The autom
rnal states. W

struct an aut
2)^2 = n^4 tra
t state of A3
In other word
t state of A3
S searches --
state is acces
sitions.
resulting tra

w to check if
Run DFS and
openTime(x

Tarjan algorit
nected compo
ngly connect
h A) and B) c
uction of the

V| + |E|), whw
n^2)^2). Thu

analysis hol
e can be at m

orithm run on
^2 + kn^2)
ch would be

. The alphab
bol b and mo

omaton which

two language
ords of L2 ar
age L1  L2,

maton A1 resp
We have to de

tomaton A3
ansitions. Th
to any of the

ds, when we
and simultan
all states acc
ssible can be

ansition diagr
a directed gr

d assign each
x) < openTium
thm of detec
onents is equ
ted compone
can be verifi
e automaton i
wrw |E| is the
us, the whole

ds for a gene
most |A| = k o
n A3 would b
) = O(k  n^2
also the com

bet is {a, b, c
oreover its H
h will detect

es L1 and L2 o
e described b
,

p. A2 accepts
etermine wh

accepting L
he language
e final states
have to redu

neously from
cessible form
e also found i

ram has to be
raph is a DA

h node its ope
me(y), then t
ting strongly
ual to the num
ent of nontriv
ed in time O
in paragraph
e number of
verification

eral NFA. If,
outgoing edg
be then
2)

mplexity of th

c, d}. A critic
Hamming dis

in a text the

over the alph
by the regula

the language
ether L1 ∩

L1 ∩ L2. Thi
accepted by
of A3.

uce the transi
m which some
m the strat sta

in one BFS w

e a directed g
AG?

en time. If th
the graph con
y connected c
mber of node
vial (> 1) siz

O(|V| + |E|).
h (*) and also
edges in auto
if A3 accept

, on the other
ges from eac

he whole ver

cal string ove
tance from th
occurences

habet {0, 1}.
ar expression
 b) a

e L1 resp. L2

L2 is finite. W

is automaton
y the automat

ition diagram
e final state o

ate can be fou
which runs fr

graph withou

he search inv
ntains a cycl
components
es in the grap
ze and theref

o the acyclic
omaton A3.
ts a finite lan

r hand, both
ch state of A3

rification pro

er this alphab
he pattern ab
of all critica

 Words of L
n (01+10)*. C
accepts langu

over alphabe
What is the a

has n^2 sta
ton is finite i

m of A3 to th
of A3 is reac
und in one B

from all final

ut any loops

vestigates an
le. If no such
uses the idea
ph then the g
fore it contai

city check can
As A3 has n

nguage can b

A1 and A2,
3. The compl

ocess.

bet issuch a s
bbbcdabbcda
l strings.

L1 are describ
Construct a f
uage L1 ∩ L

et A, |A| = k.
asymptotic c

tes and, as it
ff there is no

he states whic
chable. These
BFS and the a

states in the

-- Directed a

edge (x, y) w
h situation ha
a of A). If the
graph is acyc
ins a cycle.

n be done in
n^2 nodes, the
be acomplish

and therefor
lexity of reac

string which
ab is greater

bed by the re
finite automa
L2.

. Each of A1

complexity o

t is an NFA,
o loop on any

ch are access
e states can b
all states from
e reverse dire

acyclic graph

where both x
appens, the g
e number od

clic. Otherwi

n time can be
he number of
hed in time O

re also A3, ar
ch of BFS, D

h begins and
r than 2. Con

gular expres
aton which

1 and A2 has
f the task?

it can have u
y path from t

sible from th
be found in t
m which som
ection of the

h (DAG).

x and y are op
raph is acycl

d strongly
se it contains

done in time
f edges in A3
O(n^4).

re DFA, than
DFS, Tarjan

ends with th
nstruct a finit

ssion

n

up to
the

he
two
me

pen
lic.

s a

e
 is

n

he
te

The

* 4.
give
this

The
verti
epsil
subs

* 5.
oper
Inse
redu

Hint
We h
Ther

Dele
The
inser
The
The
two
The
som
situa
oper
The
and

highlighted

. There is a f
en pattern p i
automaton fo

shape of the
ical columns
lon transition
stituted by fiv

. We define
rations which
rt and Delete

uced Levensh

t only:
have to be ca
re are some c

ete followed
same applie
rted characte
first automa
second and t
times insert
fourth autom
e delete oper
ation when e
rations would
fifth automa
then delete.

areas are une

finite automa
s less than a

for |p| = 6 and

e automaton w
s of states and
ns is in the p
ve new trans

reduced Lev
h will transfo
e. Construct
htein distance

areful becaus
cases. To avo

by insert at t
s to insert op

er. So, it is ea
aton will acce
the third auto
(second auto

maton will co
rations in sub
.g. first a in
d lead to the
aton would b

ecessary, ma

aton A which
given value

d k = 3. Rem

will be analo
d only three

picture, each
sitions (also h

venshtein dis
orm word v i
a NFA witho
e form the pa

se the string
oid confusion

the same pla
peration follo
asier to cons
ept only the p
omaton will
omaton) and
orrespond a d
bstring aa an
aa is deleted
string identi

be analogous

ay be remove

h can detect
k. Automato

move all epsil

ogous to the s
rows of state
pair of conse
highlighted).

tance of the
nto word w.
out epsilon-t
attern abaab

distance from
n, construct t

ace can be co
owed by dele
ider rewrite o
pattern modi
correspond t
two times de

delete operat
nd cc *canno
d and then an
ical with the
to the fourth

ed from the a

in a text all i
on A contain
lon-transition

shape on slid
es, correspon
ecutive epsil
.

words v, w (
In this case,

transitions w
bacc is exact

m the pattern
the final auto

ounted as a si
ete immediat
operations se
igfied by one
to applicatio
elete (third a
tion followed
ot* be follow
nother a is in
original patt

h one only th

automaton.

its substrings
ns some epsil
ns and write

de 21 of the l
nding to max
on-transition

(over alphabe
we consider

hich will be
tly 2.

n has to be *
omaton as a

ingle rewrite
tely before or
eparately.
e rewrite ope
n of two con

automaton).
d by the inser

wed by the ins
nserted past t
tern, while w
he order of op

s which Leve
lon-transition
down the res

lecture slides
ximum distan
ns (highlighte

et A) to be th
r as edit oper
able to detec

exactly* 2.
union of five

operation (c
r after the

eration.
nsecutive ope

rt operation.
sert operation
the remainin

we need its di
perations wo

enshtein dist
ns. Construc
sulting autom

s. There wil
nce 0, 1, 2. T
ed) is remov

he minimum
rations only t
ct in a text an

e automata.

composed of

erations of th

 In this autom
n. We want t

ng a. This seq
istance to be
ould be rever

ance from a
ct an example
maton.

l be two mor
The removal o

ed and

number of e
the operation
ny string wh

f 2 operations

he same type

maton,
to avoid the
quence of
2.
sed, first inse

e of

re
of

edit
ns
hich

s).

--

ert

6. Let us denote by symbol d(x, y) the Levenshtein distance between words x and y. There are three words u, v, w and
it holds that d(u, v) = d1, d(v, w) = d2. What are possible values of d(u, w) in relation to d1 and d2? The alphabet is the
same for all words involved.

The Levenshtein distance is a distance in the technical sense of the word (a metric), that is, triangle inequality holds
for the distances between any three words u, v, w: d(u, v) + d(v, w)  d(u, w).

Obviously if sequence of operations S1 turns u into v and sequence of operations S2 turns v into w then
the concatenated sequence S1.S2 turns u into w. However, there also might be shorter sequences of operations which
turn u into w. For example:
u = abcdefgh
v = defghabc
w = bcdefgha
it holds, d(u, v) = 3, d(v, w) = 2, d(u, w) = 1.

7. Construct a NFA which will detect in a text any element of the set of all continguous substrings of the pattern
P = abcdefghijklmnopqrstuvwxzy.

List all continguous substrings, there are 26+25+ ... 2 + 1 = 351 of them. For each substring construct an automaton
which accepts exactly this substring and no other word. Create an automaton which accepts the union of all 351
substrings. The union automaton will have an additional start state S and an epsilon transition from S to each start state
of 351 automatons. Add the self-loop transition from S to S labeled by the whole alphabet abcd...xzy.
The number of states of this automaton is 126 + 225 + 324 + ... + 252 + 261 + 1 = 1639.
The following method is more convenient (smaller number of states). Create NFA which accepts each unempty prefix
of P. Its structure is identical to the structure of NFA which accepts just P and nothing else (slide 10 in lecture 7), the
only difference is that all states, except for the start state, are final. Now, for each transition (state ) --> (state )
labeled by character  add a transition from start state to state  labeled by character . Do not forget the self loop at
the start state. This automaton has only 27 states and its diagram has 54 transition arrows.

8. Let us denote by the symbol HD(v, w) resp. LD(v, w) the Hamming resp. Levenshtein distance between the words
v and w over the alphabet A. Decide which of the following may be true for some words v and w which length is at
least 5.
a) HD(v, w) < LD(v, w), b) HD(v, w) = LD(v, w), c) HD(v, w) > LD(v, w).

The length of both words v and w must be the same, otherwise their Hamming distance is undefined. Whenever some
sequence of rewrite operations transform v to w we can consider this sequence to be also a sequence of *edit*
operations which are used in Levenshtein distance definition. Therefore, Hamming distance between v and w will be
always bigger or equal to Levenshtein distance between v and w. Examples:
a) Not possible
b) v = abcdefgh, w = bbcdefgh, HD(v, w) = LD(v, w) = 1
c) v =abcdefgh, w =bcdefgha, HD(v, w) = 8, LD(v, w) = 2 (operations: v.delete(0), v.insert('a', 7))

9. Write down all words over alphabet {a, b, c} which Levenshtein distance form the word aba is exactly a) 1, b) 2.

a) After Delete (delete first, second, third character): ba, aa, ab.
After Rewrite (rewrite first, second, third character): bba, cba, aaa, aca, abb, abc.
After Insert (insert at first, second, third, fourth position):
 aaba, baba, caba, aaba, abba, acba, abaa, abba, abca, abaa, abab, abac

b) The total number of cases is quite big if processed by hand -- the single word aba produced 3+6+12 = 21 cases of
operations at various positions when considering distance 1. To obtain all words in distance 2 we have to aply all
operations at all positions to all words obtained in problem 9 a). This leads to probably more than hundred cases, so it
is better to generate the result programmatically. Unfortunately, there is no quick obvious way to do it in few lines of
code. The most straightforward approach would be, in my opinion, to generate recursively all possible words up to
length 5, download a function which computes Levenshtein distance
(https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance)
and print those words which distance from aba is less or equal to 2.

/** Source:

http
*/
unsi

+ 1)

}

/**
Simp
from
*/
void
 if

 ge
 //
 fo

 }
}
The
 ge

Ther
(a, a
abaa
abbb
acba
baba
bcab
cbab

10. T
SWA
REW
Con

ps://en.wi

igned int
const s
std::ve

));
d[0][0]
for(uns
for(uns
for(uns
 f

return

ple recurs
m the orig

d gener(s
f(generat

eneratedWo
/ try all
or(int i
generated
if(edit_
 cout <
gener(al

words are ge
ener("abc

re list genera
aa, aaa, aaaa,
a, abaaa, abaa
ba, abbc, abb
a, acbaa, acba
ac, babb, bab
ba, bcba, ca,
b, cbaba, cba

There is a pa
AP (= swapp
WRITE (= su
struct a NFA

ikibooks.

 edit_dis
std::size_
ector<std:

] = 0;
signed int
signed int
signed int
for(unsign

d[len1][l

sive func
ginal wor

string al
tedWord.s

ord.push_
 characte
 = 0; i <
dWord[gen
_distance
<< genera
lphabet,

enerated by t
c", "aba"

ated by the ca
aaab, aaaba,

ab, abaac, ab
bca, abc, abca
ab, acbac, ac

bba, babc, ba
caa, caaa, ca

ac, cbb, cbba

attern p and a
ping of two im
ubstitution of
A which will

org/wiki/

tance(con
_t len1 =
::vector<u

t i = 1; i
t i = 1; i
t i = 1; i
ned int j
 // note
 // for C
 d[i][j]

len2];

tion gene
d.

phabet, s
ize() > o

_back(' ')
rs at the
 alphabet
eratedWor
(origWord
tedWord <
origWord,

the call:
, "", 2)

all contains 1
, aaac, aab, a
bab, ababa, a
a, abcaa, abc
cbb, acbba, a
abca, bac, bac
aaba, cab, cab
, cbc, cbca, c

a string q. Th
mmediately
f a single sym
detect in a te

Algorithm

st std::s
s1.size()
unsigned i

i <= len1;
i <= len2;
i <= len1;
= 1; j <=
that std:
++98 use
= std::mi
 d[i - 1

rating al

tring ori
rigWord.s

; // make
 current
.size();
d.size()-
d, generat
< ", ";
 generate

;

128 words so
aaba, aabaa, a
ababb, ababc,
cab, abcac, ab
acbc, acbca, a
ca, bacba, bb
ba, cabaa, ca
cca, ccaba, cc

he string q wa
neigbouring

mbol by anot
ext any occu

m_Implemen

tring& s1
), len2 =
int>> d(l

; ++i) d[
; ++i) d[
; ++i)
= len2; ++
:min({arg
std::min(
in({ d[i -
][j - 1]

ll words w

igWord, st
ize() + d

e space fo
end of th
i++){
-1] = alph
tedWord) <

edWord, di

orted in asce
aabab, aabac
, abac, abaca
bcb, abcba, a
acc, acca, acc
b, bba, bbaa,
abab, cabac,
cba).

as obtained f
symbols)

ther symbol
urence of q w

ntation/St

, const s
 s2.size(
en1 + 1,

i][0] = i
0][i] = i

+j)
g1, arg2,
std::min(
- 1][j] +
+ (s1[i -

within the

tring gene
distance)

or another
he generat

habet[i];
<= distanc

istance);

nding lexico
c, aabb, aabb
a, abacb, aba
abcc, abcca,
cba, b, ba, ba
bbab, bbaba
cabb, cabba,

from q by ap

of the alphab
when p = abb

trings/Lev

td::strin
);
std::vect

;
;

arg3}) wo
arg1, arg
1, d[i][j
 1] == s2

e given ed

eratedWord
 return;

r char
ted word a

ce)

graphical ord
a, aabc, aabc
cc, abb, abba
ac, aca, acaa
aa, baaa, baa
a, bbac, bbb,
 cabc, cabca

pplying exact

bet)
aac and alph

venshtein_

ng& s2) {

tor<unsign

orks only
g2), arg3)
 - 1] + 1
2[j - 1] ?

dit distan

d, int dis

and recurs

rder:
ca, aac, aaca
a, abbaa, abb
a, acab, acaba
aba, bab, bab
bbba, bbc, b

a, caca, cacba

tly one of the

habet is {a,

_distance#

ned int>(l

in C++11,

1,
? 0 : 1) }

nce

stance){

se

, aacba, ab, a
bab, abbac, a
a, acac, acb,

ba, babaa, bab
bbca, bc, bca
a, cb, cba, cb

e two operati

b, c}.

#C++

len2

});

aba,
abbb,

bab,
,

baa,

ions:

The
REW

11.
exac
Con

a) L1

a) T
pictu
resp

b) T
self-
start

12.
whic
cons
acce

Con
Each
Simi
word
the i
Let M

13.
out a
algo

First
each
Let u
char

As th
time

O(k

14.
out a
algo

upper diago
WRITE opera

Alphabet A
ctly once. Th
struct a finite

1  L2, b) L

The solution
ure, automata
ectively.

Take A1 and A
-loop labeled
t state to the

There are tw
ch holds that
sidered to be
epting L. Des

struct an aut
h automaton
ilarly, constr
ds in M2. Re
intersection o
M1 = { ab, c

An alphabet
all words ove

orithm?

t, let us gene
h can be gene
us fix a parti
racters at eac

here are Com
e of generatin

k  Comb(|p|,

An alphabet
all words ove

orithm?

nal transition
ations. There

= {0, 1}. Th
he language L
e automaton

L1  L2.

is the autom
a A1 and A2

A2 in the pic
d by 0,1 and a
start states o

wo finite sets
t at least one
 its own pref
scribe a conc

tomaton A1 w
in the union

ruct an autom
emove epsilo
of languages
cde }, M2 = {

t A, a pattern
er A which H

erate the sets
erated in ϴ(k
icular subset
ch of those k

mb(|p|, k) sub
ng the particu

, k)  (|A|–1

t A, a pattern
er A which L

ns correspon
e should be a

he language L
L2 contains a
which will d

maton inside t
2 recognize la

cture, add a n
add epsilon t

of A1 and A2

M1 and M2 o
prefix of w

fix and also i
crete example

which accept
n corrssponds
maton A2 as
on-transitions
 accepted by
{xyz, pqr}

n p over A an
Hamming dis

of all positio
k) time. A ch
of k position
positions.

bsets, the tota
ular subset o

1)^k) .

n p over A an
Levenshtein

nd to SWAP o
also a self-loo

L1 contains a
all words ove
detect in a te

he rectangle
anguages L1

new start stat
transitions fr
2.

of words ove
is in set M1

its own suffix
e for |M1| = |

ts any word w
s to one word
a union of au
s from A1 an
y A1 and A2.

nd a fixed po
stance from p

ons on which
haracter at a
ns where the

al number of
of k positions

nd a fixed po
distance form

operations, t
op labeled by

all words ove
er A which co
ext over A all

in the
1, L2,

te with the
rom the new

er alphabet A
and at least
x. Describe a
M2| = 2.

whose prefix
d in M1. It ac
utomata each
nd A2. Const
.

ositive intege
p is exactly k

h the chages
particular po
changes wil

f changes is C
s. The total ti

ositive intege
m p is at mos

the lower dia
y a,b,c at the

er A which co
ontain the co
l occurences

A. Language
one suffix of
an algorithm

x is in M1. A
ccepts a strin
h of which ac
truct Automa

r k are given
k. What is th

will take pla
osition can be
ll occur. Ther

Comb(|p|, k)
ime would be

r k are given
st k. What is

agonal transit
e leftmost (st

ontain the co
ontinuous sub

of all words

L consists o
f w is in M2.

m which will c

Automaton A
ng whose pre
ccepts a wor
aton A3 as an

n. Describe a
e asymptotic

ace. There are
e changed (=
re are (|A|–1

 (|A|–1)^k
e then

n. Describe a
the asympto

tions corresp
tart) state.

ontinuous sub
bstring 11 at

ds of the lang

of all words w
The whole w

construct an

A1 is a union
efix is this pa
rd whose suf
n automaton

an algorithm
c complexity

re Comb(|p|, k
=rewritten) in
)^k ways to

. Take in acc

an algorithm
otic complexi

pond to

bstring 00
least once.
uage

w over A for
word is
automaton

of automata.
articular wor
ffix is one of

n which accep

which will p
y of this

k) such sets a
n |A|–1 ways
change the

count the ϴ(k

which will p
ity of this

.
rd.
f
pts

print

and
s.

k)

print

The simplest way, similarly to the solution of problem 9, is to generate all words over alphabet A which length is in
range [|p|–k, |p|+k], check the distance of each generated word from the pattern p and print out those words which
distance from p is at most k. The number of all words with length |p|+j is
 |A| ^ (|p|+j).
The complexity of computing Levenshtein distance between p and a word of length |p|+j is

 |p|  (|p|+j) = O((|p|+j)^2).
The overall complexity is thus

 O(sum(j = –k..k, (|p|+j)^2  |A| ^ (|p|+j))).
We can expect that the biggest term in the sum corresponds to j = k, so let us substitute each term in the sum by

 (|p|+k)^2  |A| ^ (|p|+k) .
Then, we arrive to (somewhat cruder) complexity upper bound

 O(k  (|p|+k)^2  |A| ^ (|p|+k)).

