* 1. There are two languages L, and L, over the alphabet {0, 1}. Words of L, are described by the regular expression
0*1*0*1*0*, words of L, are described by the regular expression (01+10)*. Construct a finite automaton which
a) accepts language L, U L,, b) accepts language L; N L,.

@g

\o

=0

ROACECA

o

* 2. The automaton A, resp. A, accepts the language L, resp. L, over alphabet A, |A| = k. Each of A;and A, hasn
internal states. We have to determine whether L; N L, is finite. What is the asymptotic complexity of the task?

Construct an automaton A3 accepting L; N L,. This automaton has n"2 states and, as it is an NFA, it can have up to
(n"2)"2 = n™4 transitions. The language accepted by the automaton is finite iff there is no loop on any path from the
start state of A3 to any of the final states of A3.

(*) In other words, when we have to reduce the transition diagram of A3 to the states which are accessible from the
start state of A3 and simultaneously from which some final state of A3 is reachable. These states can be found in two
BEFS searches -- all states accessible form the strat state can be found in one BFS and the all states from which some
end state is accessible can be also found in one BFS which runs from all final states in the reverse direction of the
transitions.

The resulting transition diagram has to be a directed graph without any loops -- Directed acyclic graph (DAG).

How to check if a directed graph is a DAG?

A) Run DFS and assign each node its open time. If the search investigates an edge (X, y) where both x and y are open
and openTime(x) < openTiume(y), then the graph contains a cycle. If no such situation happens, the graph is acyclic.
B) Tarjan algorithm of detecting strongly connected components uses the idea of A). If the number od strongly
connected components is equal to the number of nodes in the graph then the graph is acyclic. Otherwise it contains a
strongly connected component of nontrivial (> 1) size and therefore it contains a cycle.

Both A) and B) can be verified in time O(|V| + |E|).

Reduction of the automaton in paragraph (*) and also the acyclicity check can be done in time can be done in time
O(|V| + |E|), whwrw |E| is the number of edges in automaton A3. As A3 has n"2 nodes, the number of edges in A3 is
O((n"2)"2). Thus, the whole verification if A3 accepts a finite language can be acomplished in time O(n"4).

The analysis holds for a general NFA. If, on the other hand, both A1 and A2, and therefore also A3, are DFA, than
there can be at most |A| =k outgoing edges from each state of A3. The complexity of reach of BFS, DFS, Tarjan
algorithm run on A3 would be then

O(M"2 + kxn"2)= O(k x n"2)

which would be also the complexity of the whole verification process.

* 3. The alphabet is {a, b, c, d}. A critical string over this alphabet issuch a string which begins and ends with the
symbol b and moreover its Hamming distance from the pattern abbbcdabbcdab is greater than 2. Construct a finite
automaton which will detect in a text the occurences of all critical strings.

The highlighted areas are unecessary, may be removed from the automaton.

* 4, There is a finite automaton A which can detect in a text all its substrings which Levenshtein distance from a
given pattern p is less than a given value K. Automaton A contains some epsilon-transitions. Construct an example of
this automaton for |p| = 6 and k = 3. Remove all epsilon-transitions and write down the resulting automaton.

The shape of the automaton will be analogous to the shape on slide 21 of the lecture slides. There will be two more
vertical columns of states and only three rows of states, corresponding to maximum distance 0, 1, 2. The removal of
epsilon transitions is in the picture, each pair of consecutive epsilon-transitions (highlighted) is removed and
substituted by five new transitions (also highlighted).

* 5. We define reduced Levenshtein distance of the words v, W (over alphabet A) to be the minimum number of edit
operations which will transform word v into word w. In this case, we consider as edit operations only the operations
Insert and Delete. Construct a NFA without epsilon-transitions which will be able to detect in a text any string which
reduced Levenshtein distance form the pattern abaabacc is exactly 2.

Hint only:
We have to be careful because the string distance from the pattern has to be *exactly™* 2.
There are some cases. To avoid confusion, construct the final automaton as a union of five automata.

Delete followed by insert at the same place can be counted as a single rewrite operation (composed of 2 operations).
The same applies to insert operation followed by delete immediately before or after the

inserted character. So, it is easier to consider rewrite operations separately.

The first automaton will accept only the pattern modigfied by one rewrite operation.

The second and the third automaton will correspond to application of two consecutive operations of the same type --
two times insert (second automaton) and two times delete (third automaton).

The fourth automaton will correspond a delete operation followed by the insert operation. In this automaton,

some delete operations in substring aa and cc *cannot* be followed by the insert operation. We want to avoid the
situation when e.g. first a in aa is deleted and then another a is inserted past the remaining a. This sequence of
operations would lead to the string identical with the original pattern, while we need its distance to be 2

The fifth automaton would be analogous to the fourth one only the order of operations would be reversed, first insert
and then delete.

6. Let us denote by symbol d(X, ¥) the Levenshtein distance between words X and y. There are three words u, v, w and
it holds that d(u, v) =d;, d(v, w)=d,. What are possible values of d(u, w) in relation to d, and d,? The alphabet is the
same for all words involved.

The Levenshtein distance is a distance in the technical sense of the word (a metric), that is, triangle inequality holds
for the distances between any three words u, v, w: d(u, v) +d(v, w) < d(u, w).

Obviously if sequence of operations S1 turns u into v and sequence of operations S2 turns v into w then
the concatenated sequence S1.S2 turns u into w. However, there also might be shorter sequences of operations which
turn u into w. For example:

u = abcdefgh
v = defghabc
w = becdefgha

it holds, d(u, v) =3, d(v, w)=2, d(u, w)=1.

7. Construct a NFA which will detect in a text any element of the set of all continguous substrings of the pattern
P = abcdefghijklmnopgrstuvwxzy.

List all continguous substrings, there are 26+25+ ... 2 + 1 =351 of them. For each substring construct an automaton
which accepts exactly this substring and no other word. Create an automaton which accepts the union of all 351
substrings. The union automaton will have an additional start state S and an epsilon transition from S to each start state
of 351 automatons. Add the self-loop transition from S to S labeled by the whole alphabet abcd...xzy.

The number of states of this automaton is 1x26 + 2x25 +3x24 + ... + 25x2 + 26x1 + 1 = 16309.

The following method is more convenient (smaller number of states). Create NFA which accepts each unempty prefix
of P. Its structure is identical to the structure of NFA which accepts just P and nothing else (slide 10 in lecture 7), the
only difference is that all states, except for the start state, are final. Now, for each transition (state o) --> (state [3)
labeled by character y add a transition from start state to state [labeled by character y. Do not forget the self loop at
the start state. This automaton has only 27 states and its diagram has 54 transition arrows.

8. Let us denote by the symbol HD(v, w) resp. LD(v, w) the Hamming resp. Levenshtein distance between the words
v and w over the alphabet A. Decide which of the following may be true for some words v and w which length is at
least 5.

a) HD(v, w) <LD(v, w), b) HD(v, w) = LD(v, w), c) HD(v, w) > LD(v, w).

The length of both words v and W must be the same, otherwise their Hamming distance is undefined. Whenever some
sequence of rewrite operations transform vV to W we can consider this sequence to be also a sequence of *edit*
operations which are used in Levenshtein distance definition. Therefore, Hamming distance between v and w will be
always bigger or equal to Levenshtein distance between v and w. Examples:

a) Not possible

b) v = abcdefgh, w = bbedefgh, HD(v, w) = LD(v, w) = 1

¢) v =abcdefgh, w=bcdefgha, HD(v, w) =8, LD(v, w) =2 (operations: v.delete(0), v.insert('a’, 7))

9. Write down all words over alphabet {a, b, ¢} which Levenshtein distance form the word aba is exactly a) 1, b) 2.

a) After Delete (delete first, second, third character): ba, aa, ab.
After Rewrite (rewrite first, second, third character): bba, cba, aaa, aca, abb, abc.
After Insert (insert at first, second, third, fourth position):

aaba, baba, caba, aaba; abba, acba, abaa, abba, abca, abaa, abab, abac

b) The total number of cases is quite big if processed by hand -- the single word aba produced 3+6+12 = 21 cases of
operations at various positions when considering distance 1. To obtain all words in distance 2 we have to aply all
operations at all positions to all words obtained in problem 9 a). This leads to probably more than hundred cases, so it
is better to generate the result programmatically. Unfortunately, there is no quick obvious way to do it in few lines of
code. The most straightforward approach would be, in my opinion, to generate recursively all possible words up to
length 5, download a function which computes Levenshtein distance

(https://en.wikibooks.org/wiki/Algorithm Implementation/Strings/Levenshtein_distance)

and print those words which distance from aba is less or equal to 2.

/** Source:

https://en.wikibooks.org/wiki/ZAlgorithm_Implementation/Strings/Levenshtein_distance#C++
*/
unsigned int edit _distance(const std::string& sl1, const std::string& s2) {

const std::size_t lenl = sl.size(), len2 = s2_size();

std: :vector<std::vector<unsigned int>> d(lenl + 1, std::vector<unsigned int>(len2
+ 1));

d[ojrol =

for(unsigned int

1; 1 <= lenl; ++i) d[i][0]
for(unsigned int i 1; <= len2; ++i) d[O][i]
for(unsigned int i 1; 1 <= lenl; ++i)
for(unsigned int j = 1; j <= len2; ++j)
// note that std::min({argl, arg2, arg3}) works only in C++11,
// Tor C++98 use std::min(std::min(argl, arg2), arg3)
di[il[i] = std::min({ d[i - 1101 + 1, d[il - 1] + 1,
dlii - 11 - 1] + (s1[i - 1] == s2[J - 11 20 - 1D B;

return d[lenl][len2];
}

/**

Simple recursive function generating all words within the given edit distance

from the original word.

*/

void gener(string alphabet, string origWord, string generatedWord, int distance){
if(generatedWord.size() > origWord.size() + distance) return;

generatedWord.push_back(® "); // make space for another char
// try all characters at the current end of the generated word and recurse
for(int i = 0; i < alphabet.size(); i++){
generatedWord[generatedWord.size()-1] = alphabet[i];
if(edit_distance(origWord, generatedWord) <= distance)
cout << generatedWord << "', ";
gener(alphabet, origWord, generatedWord, distance);
}

}

The words are generated by the call:
gener("abc', "aba"™, ", 2);

There list generated by the call contains 128 words sorted in ascending lexicographical order:

(a, aa, aaa, aaaa, aaab, aaaba, aaac, aab, aaba, aabaa, aabab, aabac, aabb, aabba, aabc, aabca, aac, aaca, aacba, ab, aba,
abaa, abaaa, abaab, abaac, abab, ababa, ababb, ababc, abac, abaca, abacb, abacc, abb, abba, abbaa, abbab, abbac, abbb,
abbba, abbc, abbca, abc, abca, abcaa, abcab, abcac, abcb, abcba, abcc, abcecea, ac, aca, acaa, acab, acaba, acac, acb,
acba, acbaa, acbab, acbac, acbb, acbba, acbc, acbca, acc, acca, accba, b, ba, baa, baaa, baaba, bab, baba, babaa, babab,
babac, babb, babba, babc, babca, bac, baca, bacba, bb, bba, bbaa, bbab, bbaba, bbac, bbb, bbba, bbc, bbca, bc, bca,
bcaba, bcba, ca, caa, caaa, caaba, cab, caba, cabaa, cabab, cabac, cabb, cabba, cabc, cabca, caca, cacba, cb, cba, cbaa,
cbab, cbaba, cbac, cbb, cbba, cbc, cbca, cca, ccaba, ccba).

10. There is a pattern p and a string g. The string g was obtained from ¢ by applying exactly one of the two operations:
SWAP (= swapping of two immediately neigbouring symbols)

REWRITE (= substitution of a single symbol by another symbol of the alphabet)

Construct a NFA which will detect in a text any occurence of when p = abbaac and alphabetis {a, b, c}.

The upper diagonal transitions correspond to SWAP operations, the lower diagonal transitions correspond to
REWRITE operations. There should be also a self-loop labeled by a,b,c at the leftmost (start) state.

11. Alphabet A = {0, 1}. The language L, contains all words over A which contain the continuous substring 00
exactly once. The language L, contains all words over A which contain the continuous substring 11 at least once.
Construct a finite automaton which will detect in a text over A all occurences of all words of the language
a)LinL, b)L,ulL,.

a) The solution is the automaton inside the rectangle in the
picture, automata Al and A2 recognize languages L1, L2,
respectively.

b) Take A1l and A2 in the picture, add a new start state with the
self-loop labeled by 0,1 and add epsilon transitions from the new
start state to the start states of Al and A2.

1
. 0 0 : 1 1
S SR Oan, 0% (®

12. There are two finite sets M; and M, of words over alphabet A. Language L consists of all words w over A for
which holds that at least one prefix of w is in set M; and at least one suffix of w is in M,. The whole word is
considered to be its own prefix and also its own suffix. Describe an algorithm which will construct an automaton
accepting L. Describe a concrete example for [M;| = [M,| = 2.

Construct an automaton A1 which accepts any word whose prefix is in M1. Automaton A1 is a union of automata.
Each automaton in the union corrssponds to one word in M1. It accepts a string whose prefix is this particular word.
Similarly, construct an automaton A2 as a union of automata each of which accepts a word whose suffix is one of
words in M2. Remove epsilon-transitions from Al and A2. Construct Automaton A3 as an automaton which accepts
the intersection of languages accepted by Al and A2.

Let M1 = { ab, cde }, M2 = {xyz, pqr}

13. An alphabet A, a pattern p over A and a fixed positive integer k are given. Describe an algorithm which will print
out all words over A which Hamming distance from p is exactly k. What is the asymptotic complexity of this
algorithm?

First, let us generate the sets of all positions on which the chages will take place. There are Comb(|p|, k) such sets and
each can be generated in ©(K) time. A character at a particular position can be changed (=rewritten) in |[A|-1 ways.
Let us fix a particular subset of K positions where the changes will occur. There are (JA|-1)"k ways to change the
characters at each of those k positions.

As there are Comb(|p|, k) subsets, the total number of changes is Comb(|p|, K) x (JA]-1)"k . Take in account the O(k)
time of generating the particular subset of k positions. The total time would be then

O(k x Comb(|p|, k) x (JA-1)"k).

14. An alphabet A, a pattern p over A and a fixed positive integer k are given. Describe an algorithm which will print
out all words over A which Levenshtein distance form p is at most k. What is the asymptotic complexity of this
algorithm?

The simplest way, similarly to the solution of problem 9, is to generate all words over alphabet A which length is in
range [|p|-k, |p|+k], check the distance of each generated word from the pattern p and print out those words which
distance from p is at most k. The number of all words with length |p|+]j is
|AI™ (IpHT).
The complexity of computing Levenshtein distance between p and a word of length |p|+j is
Pl x (Ipl+) = O((|p|+i)"2).
The overall complexity is thus
O(sum(j=-k.k, (Ip[+))*2 x |Al*(pH]))).
We can expect that the biggest term in the sum corresponds to j =K, so let us substitute each term in the sum by
(IP[+K)2 > |A[~ (pl+k) -
Then, we arrive to (somewhat cruder) complexity upper bound
O(k x (Ipl+k)"2 > |A[" (Jpl+k).

