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6.  Let us denote by symbol d(x, y) the Levenshtein distance between words  x and y. There are three words u, v, w and 
it holds that  d(u, v)  = d1, d(v,  w) = d2. What are possible values of d(u, w) in relation to d1 and d2? The alphabet is the 
same for all words involved. 
 
The Levenshtein distance is a distance in the technical sense of the word (a metric), that is, triangle inequality holds 
for the distances between any three words u, v, w:  d(u, v)  + d(v,  w)    d(u,  w).  
 
Obviously if sequence of operations S1 turns u into v and sequence of operations S2 turns v into w then 
the concatenated sequence S1.S2 turns u into w. However, there also might be shorter sequences of operations which 
turn u into w. For example: 
u = abcdefgh 
v = defghabc 
w = bcdefgha 
it holds, d(u, v)  = 3, d(v,  w) = 2,   d(u,  w) = 1.   
  
7.  Construct a NFA which will detect in a text any element of the set of all continguous substrings of the pattern  
P = abcdefghijklmnopqrstuvwxzy. 
 
List all continguous substrings, there are 26+25+ ... 2 + 1 = 351 of them. For each substring construct an automaton 
which accepts exactly this substring and no other word. Create an automaton which accepts the union of all 351 
substrings. The union automaton will have an additional start state S and an epsilon transition from S to each start state 
of 351 automatons. Add the self-loop transition from S to S labeled by the whole alphabet  abcd...xzy.  
The number of states of this automaton is 126 + 225 + 324 + ... + 252 + 261 + 1 = 1639. 
The following method is more convenient (smaller number of states). Create  NFA which accepts each unempty prefix 
of P. Its structure is identical to the structure of NFA which accepts just P and nothing else (slide 10 in lecture 7), the 
only difference is that all states, except for the start state, are final. Now, for each transition (state ) --> (state ) 
labeled by  character  add a transition from start state  to state   labeled by character . Do not forget the self loop at 
the start state. This automaton has only 27 states and its diagram has 54 transition arrows. 
 
8.   Let us denote by the symbol HD(v, w) resp. LD(v, w) the Hamming resp. Levenshtein distance between the words 
v and w over the alphabet A. Decide which of the following may be true for some words v and w which length is at 
least 5. 
a)  HD(v, w) < LD(v, w),                    b) HD(v, w) = LD(v, w),                   c)  HD(v, w) > LD(v, w). 
 
The length of both words v and w  must be the same, otherwise their Hamming distance is undefined.  Whenever some 
sequence of rewrite operations transform v to w we can consider this sequence to be also a sequence of *edit* 
operations which are used in Levenshtein distance definition. Therefore, Hamming distance between v and w   will be 
always bigger or equal to Levenshtein distance between v and w. Examples: 
a) Not possible    
b) v = abcdefgh, w = bbcdefgh, HD(v, w) = LD(v, w) = 1    
c)  v =abcdefgh, w =bcdefgha,  HD(v, w) = 8, LD(v, w) = 2   (operations: v.delete(0), v.insert('a', 7))   
   
 
9. Write down all words over alphabet {a, b, c} which Levenshtein distance form the word aba  is exactly a) 1,  b)  2. 
 
a) After Delete (delete first, second, third character):   ba, aa, ab.    
After Rewrite (rewrite first, second, third character):   bba, cba,     aaa, aca,    abb, abc.  
After Insert (insert at first, second, third, fourth position):    
                    aaba, baba, caba,    aaba, abba, acba,    abaa, abba, abca,     abaa, abab, abac  
 
b) The total number of cases is quite big if processed by hand -- the single word aba produced 3+6+12 = 21 cases of 
operations at various positions when considering distance 1. To obtain all words in distance 2 we have to aply all 
operations at all positions to all words obtained in problem 9 a). This leads to probably more than hundred cases, so it 
is better to generate the result programmatically. Unfortunately, there is no quick obvious way to do it in few lines of 
code. The most straightforward approach would be, in my opinion, to generate recursively all possible words up to 
length 5, download a function which computes Levenshtein distance 
(https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance) 
and print those words which distance from aba is less or equal to 2. 
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The simplest way,  similarly to the solution of problem 9, is to generate all words over alphabet A which length is in 
range [|p|–k, |p|+k], check the distance of each generated word from the pattern p and print out those words which 
distance from p is at most k. The number of all words with length |p|+j is  
  |A| ^ (|p|+j ).  
The complexity of computing Levenshtein distance between p and a word of length  |p|+j  is  

  |p|  (|p|+j) = O((|p|+j)^2).  
The overall complexity is thus   

  O( sum( j = –k..k,  (|p|+j)^2      |A| ^ (|p|+j )    )   ).  
We can expect that the biggest term in the sum corresponds to  j = k, so let us substitute each term in the sum by  

  (|p|+k)^2    |A| ^ (|p|+k ) .  
Then, we arrive to (somewhat cruder)  complexity upper bound   

  O( k   (|p|+k)^2   |A| ^ (|p|+k )). 
 
 
 


