
Combinatorial algorithms
computing graph isomorphism,

computing tree isomorphism

Jiří Vyskočil, Radek Mařík

2013

Advanced algorithms
2 / 25

Computing Graph Isomorphism
 definition:
Two graphs G1=(V1,E1)	and G2=(V2,E2)	are isomorphic if there is a
bijection f :	V1 → V2 such that

∀ x,	y ∈ V1 :				{	f	(x),	f	(y)	} ∈ E2 ⇔ {	x,	y	} ∈ E1
The mapping f is said to be an isomorphism between G1 and G2.

 example:

ƒ	(a)	=	1	
f	(b)	=	6
f	(c)	=	8
f	(d)	=	3
f	(g)	=	5
f	(h)	=	2
f	(i)	=	4
f	(j)	=	7

G1 : G2 : f	:

Advanced algorithms
3 / 25

Computing Graph Isomorphism
 problem:

The graph	isomorphism	problem	is the computational
problem of determining whether two finite graphs are
isomorphic.

 The graph isomorphism problem is one of a very small number of
problems belonging to NP neither known to be solvable in polynomial
time nor NP-complete.

 However, there is a number of important special cases of the graph
isomorphism problem that have efficient, polynomial-time solutions:
trees, planar graphs, some bounded-parameter graphs, etc.

Advanced algorithms
4 / 25

Computing Graph Isomorphism
 definition of invariant:

Let be a family of graphs. An invariant on is a function Φ with
domain such that

∀ G1,	G2 ∈ :				Φ(G1)	=	Φ(G2)			⇐ G1 is isomorphic to G2

 example:
 |V| for graph G=(V,	E) is an invariant.
 The following degree sequence [deg(v1),	deg(v2),	deg(v3),	…	,	deg(vn)]

is not an invariant.
 However, if the degree sequence is sorted in non-decreasing order,

then it is an invariant.

Advanced algorithms
5 / 25

Computing Graph Isomorphism
 definition :

Let be a family of graphs on vertex set V and let D be a function
with domain (V). Then the partition	BG of	V	induced by D is

BG =	[BG[0],	BG[1],	…	,	BG[n – 1]]
where

BG[i]	=	{	vV :			D	(G,v)	=	i }
If the function

Φ (G)	=	[|BG[0]|,	|BG[1]|,	…	,	|BG[n – 1]|]

is an invariant, then we say that D is an invariant	inducing	function.

Advanced algorithms
6 / 25

Computing Graph Isomorphism - Example
Let

 D1(G,x)=degG(x)

 D2(G,x)=[dj(x) ∶ 	 	 	1, 2, … ,max degG(x): 	 	 ∈]	

where	dj(x)=|{y :	y is	adjacent	to	x and	degG(y)	=	j }|

Suppose	the	following	graphs	G1 and	G2:

Advanced algorithms
7 / 25

Computing Graph Isomorphism - Example

Advanced algorithms
8 / 25

Computing Graph Isomorphism - Example

Advanced algorithms
9 / 25

Computing Graph Isomorphism - Example

Advanced algorithms
10 / 25

Computing Graph Isomorphism - Example
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Advanced algorithms
11 / 25

Computing Graph Isomorphism

1) Function	FINDISOMORPHISM (set	of	invariant	inducing	function 	 ;	graph	 ,) :	 set	of
isomorphisms

2) try {
3) (partitions,	X,	Y)	=	GETPARTITIONS (I, ,)	;
4) }
5) catch (“ and	 are	not	isomorphic! “) { return ∅ ;		}
6) for i =	0			to partitions	– 1 do			{
7) for each x	 X	[i] do {
8) W	[x]	=	i ;
9) }
10) }
11) return		COLLECTISOMORPHISMS(, ,	0,	Y,	W,	f)	

Advanced algorithms
12 / 25

Computing Graph Isomorphism
1) Function GETPARTITIONS

set	of	invariant	inducing	functions	 ;
	graph	 ;
graph	

	:	
number	of	partitions	 ,
parititions	of	 	 ,
parititions	of	 	

2) N =	1;			X	[0]	=	vertices	of		 ;			Y	[0]	=	vertices	of		 ;
3) for each D	 I do {
4) P =	N ;
5) for i =	0			to P	– 1			do {
6) Partition	X	[i]	into	sets	X1 [i],	X2 [i],	X3 [i],	…	,	Xm [i]	where	x,yXj [i]	⇔ D

	
(,x)=D(,y)	;

7) Partition	Y	[i]	into	sets	Y1 [i],	Y2 [i],	Y3 [i],	…	,	Yn [i]	where	x,yYj [i]	⇔ D(,x)=D(,y)	;
8) if n	≠	m			then			throw	exception		“ and	 are	not	isomorphic!“ ;
9) Order	Y	[i]	into	sets	Y1 [i],	Y2 [i],	Y3 [i],	…	,	Yn [i]	so	that	
10) ∀x X	[i],	∀y Y	[i]	:	D

	
(,x)	= D(,y)	⇔ x Xj [i] and	y Yj [i]	;

11) if ordering	is	not	possible			then			throw	exception		“ and	 are	not	isomorphic! “ ;
12) N =	N +	m – 1;
13) }
14) Reorder	the	partitions	so	that:	|X	[i]|=|Y	[i]|		≤		|X	[i+1]|=|Y	[i+1]|			for	0	≤	i <	N – 1 ;
15) }
16) return (N,	X,	Y)

Advanced algorithms
13 / 25

Computing Graph Isomorphism
1 Function																							

COLLECTISOMORPHISMS	
graph	 , 	;

starting	vertex	of		 		v	;
parititions	of	 		 	;

partition	mapping	 	as
	 	 vertices	of	 	
	indices	of	partitions	of	

	; 	

current	isomorphism	 	as
	 vertices	of	 	
vertices	of	

		 :	 set	of
isomorphisms

2) if v	=	number	of	vertices	of		 then			return		{	f		}	;
3) R =	∅ ;
4) p =	W	[v]	;
5) for each y	 Y	[p]			do {
6) OK =	true ;
7) for u =	0			to v	– 1			do {
8) if		 {	u	,v	}	 ∈ edges	of		 				xor					{	f	[u],	y		} ∈ edges	of		 then				{		OK =	false ;	break ;		}
9) }
10) if OK then		{		
11) f	[v]	=	y	;			
12) R =	R ∪ COLLECTISOMORPHISMS(, ,	v+1,	Y,	W,	f)	;	
13) }	
14) }
15) return		R

Advanced algorithms
14 / 25

Certificate
 A certificate 	for family 	 of graphs is a function such

that

∀ G1,	G2 ∈ :				 1 =	 2 ⇔ G1 is isomorphic to G2

 Currently, the fastest general graph isomorphism algorithms
use methods based on computing of certificates.

 Computing of certificates works not only for general graphs
but it can be also applied on some classes of graphs like
trees.

Advanced algorithms
15 / 25

Computing Tree Certificate
1) Label all the vertices of with the string 01.

2) While there are more than two vertices of do:
For each non-leaf of :
a) Let be the multi-set of labels of the leaves adjacent to and

the label of , with the initial 0 and trailing 1 deleted from ;
b) Replace the label of 	with concatenation of the labels in

	sorted in increasing lexicographic order, with 0	prepended
and a 1	appended;

c) Remove all leaves adjacent to .

3) If there is only one vertex left, report the label of 	as certificate.

4) If there are two vertices 	and 	left, then report the labels of
	and , concatenated in increasing lexicographic order, as the

certificate.

Advanced algorithms
16 / 25

Computing Tree Certificate - Example

number	of	vertices:	12

non leaves	vertices:

0 ∶ 	
1 ∶ 	 01
2 ∶ 	 01,01
5 ∶ 	 01
7 ∶ 	 01
8 ∶ 	 01

6 ∶ 	01

1 ∶ 	01

2 ∶ 	01
3 ∶ 	01

4 ∶ 	01

5 ∶ 	01

7 ∶ 	01

8 ∶ 	01

9 ∶ 	01

0 ∶ 	01

10 ∶ 	01

11 ∶ 	01

Advanced algorithms
17 / 25

0 ∶ 01

2 ∶ 	001011

Computing Tree Certificate - Example

number	of	vertices:	6

non leaves	vertices:

0 ∶ 	
001011,
0011,
0011

5 ∶ 	 0011,
01

1 ∶ 0011

5 ∶ 0011

7 ∶ 	0011

8 ∶ 	0011

Advanced algorithms
18 / 25

Computing Tree Certificate - Example

number	of	vertices:	2

5 ∶ 00011011

Certificate 000101100110011100011011

0 ∶ 0001011001100111

Advanced algorithms
19 / 25

Computing Tree Certificate
 properties of certificate:

 the length is
 the number of 1s and 0s is the same
 furthermore, the number of 1s and 0s is the

same for every partial subsequence that arise
from any label of vertex (during the whole run
of the algorithm)

Advanced algorithms
20 / 25

Reconstruction of Tree from Certificate - Example

Advanced algorithms
21 / 25

Reconstruction of Tree from Certificate - Example

Advanced algorithms
22 / 25

Reconstruction of Tree from Certificate - Example

Advanced algorithms
23 / 25

Reconstruction of Tree from Certificate - Example

Advanced algorithms
24 / 25

Reconstruction of Tree from Certificate

1) Function		CERT IF ICATETOTREE 	 certificate	as	string	 	 ∶ 	tree	as	 ,

2 ; 		 0; 		 , empty	graph	of	order	 ; 			 0, … , 1 ;
3 FINDSUBMOUNTA IN S 1, ;	
4) if k	=	1			then			{ 0 ; 		 1;			}
5) else	 {		 0 ; 		 1; 1 ; 		 1; 		 ∪ 0,1 ; }	
6) for 	 	0 to 1 do {
7) if 2 then		{		
8 													 FINDSUBMOUNTA IN S 2, ; 		 "01";	
9) for 	 	0 to 1 do {		 ; 		 ∪ , ; 		 1;		}
10) }	
11) return		 , ;

1) Function		FINDSUBMOUNTA IN S integer	 ,	certificate	as	string	 ∶ number	of	submountines	in	
2 0; 		 0 the	empty	string; 		 0;
3) for 	 1 to do {
4) if 0 then		{		 1;	 }		else	{		 1; }
5) 	 ∙ ;
6) if 0 then		{		 1; 			 the	empty	string; 			 0; }
7) }	
8) return		 ;

Advanced algorithms
25 / 25

Reconstruction of Tree from Certificate
1) Function		FASTCERT IF ICATETOTREE 	 certificate	as	string	 	 ∶ 	tree	as	 ,

2 , empty	digraph	of	order	 ; 			 0, … , ;

3 0;
4 ;
5) for 	 1 to 2 do {
6) if 0 then		{	
7) 1;
8) ∪ , ;
9) 																		 ;
10) }			else			{	
11) † ;
12) }
13) }	
14) return		 , _ ;

† returns	the	parent	of	a	node	x. It	returns	x in	the	case	where	x		has	no	parent.

Advanced algorithms
26 / 25

References

 D.L. Kreher and D.R. Stinson , Combinatorial Algorithms:
Generation, Enumeration and Search , CRC press LTC , Boca
Raton, Florida, 1998.

