Combinatorial algorithms

computing graph isomorphism, computing tree isomorphism

Jiří Vyskočil, Radek Mařík
2013

Computing Graph Isomorphism

definition:

Two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is a bijection $f: V_{1} \rightarrow V_{2}$ such that

$$
\forall x, y \in V_{1} \quad: \quad\{f(x), f(y)\} \in E_{2} \quad \Leftrightarrow \quad\{x, y\} \in E_{1}
$$

The mapping f is said to be an isomorphism between G_{1} and G_{2}.

- example:

Advanced algorithms

Computing Graph Isomorphism

- problem:

The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic.
\square The graph isomorphism problem is one of a very small number of problems belonging to NP neither known to be solvable in polynomial time nor NP-complete.
\square However, there is a number of important special cases of the graph isomorphism problem that have efficient, polynomial-time solutions: trees, planar graphs, some bounded-parameter graphs, etc.

Computing Graph Isomorphism

- definition of invariant:

Let \mathcal{F} be a family of graphs. An invariant on \mathcal{F} is a function Φ with domain \mathcal{F} such that

$$
\forall G_{1}, G_{2} \in \mathcal{F}: \quad \Phi\left(G_{1}\right)=\Phi\left(G_{2}\right) \Leftarrow G_{1} \text { is isomorphic to } G_{2}
$$

- example:

$\square|V|$ for graph $G=(V, E)$ is an invariant.
\square The following degree sequence $\left[\operatorname{deg}\left(v_{1}\right), \operatorname{deg}\left(v_{2}\right), \operatorname{deg}\left(v_{3}\right), \ldots, \operatorname{deg}\left(v_{n}\right)\right]$ is not an invariant.
\square However, if the degree sequence is sorted in non-decreasing order, then it is an invariant.

Computing Graph Isomorphism

- definition :

Let \mathcal{F} be a family of graphs on vertex set V and let D be a function with domain $(\mathcal{F} \times V)$. Then the partition B_{G} of V induced by D is

$$
B_{G}=\left[B_{G}[0], B_{G}[1], \ldots, B_{G}[n-1]\right]
$$

where

$$
B_{G}[i]=\{v \in V: D(G, v)=i\}
$$

If the function

$$
\Phi_{D}(G)=\left[\left|B_{G}[0]\right|,\left|B_{G}[1]\right|, \ldots,\left|B_{G}[n-1]\right|\right]
$$

is an invariant, then we say that D is an invariant inducing function.

Computing Graph Isomorphism - Example

Let

- $\mathrm{D}_{1}(G, x)=\operatorname{deg}_{G}(x)$
- $\mathrm{D}_{2}(G, x)=\left[d_{j}(x): j=1,2, \ldots, \max \left\{\operatorname{deg}_{G}(x): x \in V(G)\right\}\right]$

$$
\text { where } d_{j}(x)=\mid\left\{y: y \text { is adjacent to } x \text { and } \operatorname{deg}_{G}(y)=j\right\} \mid
$$

Suppose the following graphs G_{1} and G_{2} :

Computing Graph Isomorphism- Example

$$
\begin{aligned}
& X_{0}\left(\mathcal{G}_{1}\right)=\{0,1,2,3,4,5,6,7,8,9\} . \\
& X_{0}\left(\mathcal{G}_{2}\right)=\{a, b, c, d, e, f, g, h, i, j\} . \\
& \begin{array}{l|l}
x & 0123456789 \\
\hline \bar{D}_{1}\left(\mathcal{G}_{1}, x\right) & 1336363331 \\
\Downarrow
\end{array} \\
& X_{1}\left(\mathcal{G}_{1}\right)=\{0,9\},\{1,2,4,6,7,8\},\{3,5\} \\
& \begin{array}{l|l}
\bar{x} & a b c d e f g h i j \\
\hline D_{1}\left(\mathcal{G}_{2}, \bar{x}\right) & 3333663311 \\
\Downarrow
\end{array} \\
& X_{1}\left(\mathcal{G}_{2}\right)=\{i, j\},\{a, b, c, d, g, h\},\{e, f\} .
\end{aligned}
$$

Computing Graph Isomorphism - Example

$$
D_{2}\left(\mathcal{G}_{1}, 0\right)=(0,0,1,0,0,0,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{1}, 1\right)=(0,0,2,0,0,1,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{1}, 2\right)=(0,0,1,0,0,2,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{1}, 3\right)=(0,0,5,0,0,1,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{1}, 4\right)=(0,0,1,0,0,2,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{1}, 5\right)=(0,0,5,0,0,1,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{1}, 6\right)=(0,0,1,0,0,2,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{1}, 7\right)=(0,0,1,0,0,2,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{1}, 8\right)=(2,0,0,0,0,1,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{1}, 9\right)=(0,0,1,0,0,0,0,0,0)
$$

$$
\underbrace{}_{\Downarrow}
$$

$$
X_{2}\left(\mathcal{G}_{1}\right)=\{0,9\},\{8\},\{2,4,6,7\},\{1\},\{3,5\} .
$$

$$
D_{2}\left(\mathcal{G}_{2}, a\right)=(0,0,2,0,0,1,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{2}, b\right)=(0,0,1,0,0,2,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{2}, c\right)=(0,0,1,0,0,2,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{2}, d\right)=(0,0,1,0,0,2,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{2}, e\right)=(0,0,5,0,0,1,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{2}, f\right)=(0,0,5,0,0,1,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{2}, g\right)=(0,0,1,0,0,2,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{2}, h\right)=(2,0,0,0,0,1,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{2}, i\right)=(0,0,1,0,0,0,0,0,0)
$$

$$
D_{2}\left(\mathcal{G}_{2}, j\right)=(0,0,1,0,0,0,0,0,0)
$$

$$
X_{2}\left(\mathcal{G}_{2}\right)=\{i, j\},\{h\},\{b, c, d, g\},\{a\},\{e, f\} .
$$

Computing Graph Isomorphism- Example

This restricts a possible isomorphism to bijections between the following sets:

There are $96=(2!)(1!)(4!)(1!)(2!)$ bijections giving the possible isomorphisms. Examination of each of these possible isomorphisms shows that only the following eight bijections are isomorphisms.

Computing Graph Isomorphism- Example

$\left(\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ i & a & d & e & g & f & b & c & h & j\end{array}\right)$
$\left(\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ j & a & d & e & g & f & b & c & h & i\end{array}\right)$
$\left(\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ i & a & d & e & g & f & c & b & h & j\end{array}\right)$
$\left(\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ j & a & d & e & g & f & c & b & h & i\end{array}\right)$
$\left(\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ i & a & g & e & d & f & b & c & h & j\end{array}\right)$
$\left(\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ j & a & g & e & d & f & b & c & h & i\end{array}\right)$
$\left(\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ i & a & g & e & d & f & c & b & h & j\end{array}\right)$
$\left(\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ j & a & g & e & d & f & c & b & h & i\end{array}\right)$

Computing Graph Isomorphism

1) Function FindISOMORPHISM (set of invariant inducing functions I; graph G_{1}, G_{2}): $\begin{gathered}\text { set of } \\ \text { isomorphisms }\end{gathered}$
```
try {
    (partitions, X,Y)= GetPartitions (I, G1,G );
}
```



```
for i=0 to partitions-1 do {
    for each }x\inX[i] do 
        W[x]=i;
    }
}
return COLLECTISOMORPHISMS( }\mp@subsup{G}{1}{},\mp@subsup{G}{2}{},0,Y,W,f
```


Computing Graph Isomorphism

```
Function GetPartitions ( set of invariant inducing functions I;
N=1; X[0] = vertices of G}\mp@subsup{G}{1}{\prime};Y[0]=\mathrm{ vertices of G}\mp@subsup{G}{2}{}
for each }D\inI do {
    P=N;
    for i=0 to P-1 do {
        Partition X[i] into sets }\mp@subsup{X}{1}{}[i],\mp@subsup{X}{2}{}[i],\mp@subsup{X}{3}{}[i],\ldots,\mp@subsup{X}{m}{}[i] where x,y\in\mp@subsup{X}{j}{}[i]\LeftrightarrowD(G\mp@subsup{G}{1}{},x)=D(G, (G1,y)
        Partition Y[i] into sets Y [i], Y [i], Y [ [i], ... , Yn [i] where x,y\inY [ [i]\LeftrightarrowD(G (G,x)=D(G (G,y);
        if n\not=m then throw exception "G}\mp@subsup{G}{1}{}\mathrm{ and }\mp@subsup{G}{2}{}\mathrm{ are not isomorphic!";
        Order Y[i] into sets }\mp@subsup{Y}{1}{}[i],\mp@subsup{Y}{2}{[i], Y [i], ..., Yn [i] so that
                \forallx\inX[i],\forally\inY[i]:D (G1,x)=D(G2,y)\Leftrightarrowx\in\mp@subsup{X}{j}{}[i] and y\in\mp@subsup{Y}{j}{}[i];
        if ordering is not possible then throw exception " }\mp@subsup{G}{1}{}\mathrm{ and }\mp@subsup{G}{2}{}\mathrm{ are not isomorphic!";
        N=N+m-1;
    }
    Reorder the partitions so that: }|X[i]|=|Y[i]|\leq|X[i+1]|=|Y[i+1]| for 0\leqi<N-1
}
return ( N, X,Y)
```


Computing Graph Isomorphism

```
Function
COLLECTISOM ORPHISMS \(\left(\begin{array}{ccc}\text { starting vertex of } G_{1} v ; \text { array [vertices of } G_{1} \text { ] of } ; \text { array [vertices of } G_{1} \text { ] of } \\ \text { parititions of } G_{2} Y ; & \text { indices of partitions of } G_{1} & \text { vertices of } G_{2}\end{array}\right)\) : \(\begin{gathered}\text { set of } \\ \text { isomorphisms }\end{gathered}\)
                graph \(G_{1}, G_{2} ; \quad\) partition mapping \(W\) as current isomorphism \(f\) as
if \(v=\) number of vertices of \(G_{1}\) then return \(\{f\}\);
\(R=\emptyset ;\)
\(p=W[v]\);
for each \(y \in Y[p]\) do \(\{\)
    \(O K=\) true ;
    for \(u=0\) to \(v-1\) do \{
            if \(\{u, v\} \in\) edges of \(G_{1}\) xor \(\{f[u], y\} \in\) edges of \(G_{2}\) then \(\quad\{O K=\) false ; break; \}
    \}
    if \(O K\) then \{
        \(f[v]=y\);
        \(R=R \cup \operatorname{COLLECTISOMORPHISMS}\left(G_{1}, G_{2}, v+1, Y, W, f\right) ;\)
    \}
\}
return \(R\)
```


Certificate

- A certificate Cert for family \mathcal{F} of graphs is a function such that
$\forall G_{1}, G_{2} \in \mathcal{F}: \operatorname{Cert}\left(G_{1}\right)=\operatorname{Cert}\left(G_{2}\right) \Leftrightarrow G_{1}$ is isomorphic to G_{2}
- Currently, the fastest general graph isomorphism algorithms use methods based on computing of certificates.
- Computing of certificates works not only for general graphs but it can be also applied on some classes of graphs like trees.

Computing Tree Certificate

1) Label all the vertices of G with the string 01 .
2) While there are more than two vertices of G do:

For each non-leaf x of G :
a) Let Y be the multi-set of labels of the leaves adjacent to x and the label of x, with the initial 0 and trailing 1 deleted from x;
b) Replace the label of x with concatenation of the labels in Y sorted in increasing lexicographic order, with 0 prepended and a 1 appended;
c) Remove all leaves adjacent to x.
3) If there is only one vertex left, report the label of x as certificate.
4) If there are two vertices x and y left, then report the labels of x and y, concatenated in increasing lexicographic order, as the certificate.

Computing Tree Certificate - Example

number of vertices: 12
non-leaves vertices:
$0: Y=\langle \rangle$
$1: Y=\langle 01\rangle$
$2: Y=\langle 01,01\rangle$
$5: Y=\langle 01\rangle$
$7: Y=\langle 01\rangle$
$8: Y=\langle 01\rangle$

Computing Tree Certificate - Example

number of vertices: 6

non-leaves vertices:
$0: Y=\left(\begin{array}{c}001011, \\ 0011, \\ 0011\end{array}\right)$
$5: Y=\left\langle\begin{array}{c}0011 \\ 01\end{array}\right\rangle$

Computing Tree Certificate - Example

number of vertices: 2

Certificate $=000101100110011100011011$

Computing Tree Certificate

properties of certificate:

\square the length is $2 \cdot|V|$
\square the number of 1 s and 0 s is the same
\square furthermore, the number of 1 s and 0 s is the same for every partial subsequence that arise from any label of vertex (during the whole run of the algorithm)

Reconstruction of Tree from Certificate - Example

$$
\begin{aligned}
& f(0)=0 \\
& f(x+1)= \begin{cases}f(x)+1, & \operatorname{Cert}(G)[x]=0 \\
f(x)-1, & \operatorname{Cert}(G)[x]=1\end{cases}
\end{aligned}
$$

$\operatorname{Cert}(G)=000101100110011100011011$

Reconstruction of Tree from Certificate - Example

Reconstruction of Tree from Certificate - Example

Reconstruction of Tree from Certificate - Example

Reconstruction of Tree from Certificate

1) Function FindSubMountains (integer l, certificate as string C) : number of submountines in C
2) $k=0 ; M[0]=$ the empty string; $f=0$;
3) for $x=l-1$ to $|C|-l$ do $\{$
if $C[x]=0$ then $\{f=f+1 ;\}$ else $\{f=f-1 ;\}$
$M[k]=M[k] \cdot C[x] ;$
if $f=0$ then $\{k=k+1 ; M[k]=$ the empty string; $f=0 ;\}$
\}
return k;
4) Function CertificateTo Tree (certificate as string C) : tree as $G=(V, E)$
$n=\frac{|C|}{2} ; v=0 ;(V, E)=$ empty graph of order $n ; V=\{0, \ldots, n-1\} ;$
$k=\operatorname{Fin}$ D Sub Mountains $(1, C)$;
if $k=1$ then $\{\operatorname{Label}[v]=M[0] ; v=v+1 ;\}$
else $\{\operatorname{Label}[v]=M[0] ; v=v+1 ; \operatorname{Label}[v]=M[1] ; v=v+1 ; E=E \cup\{\{0,1\}\} ;\}$
5) for $i=0$ to $n-1$ do $\{$
6) if \mid Label $[i] \mid>2$ then $\{$
$k=$ Find Sub Mountains (2, Label $[i]) ;$ Label $[i]=$ "01";
for $j=0$ to $k-1$ do $\{\operatorname{Label}[v]=M[j] ; E=E \cup\{\{i, v\}\} ; v=v+1 ;\}$
7) $\}$
8) return $G=(V, E)$;

Reconstruction of Tree from Certificate

1) Function FastCertificateto Tree (certificate as string C) : tree as $G=(V, E)$
2) $(V, E)=$ empty digraph of order $\frac{|C|}{2} ; V=\left\{0, \ldots, \frac{|C|}{2}\right\}$;
3) $n=0$;
4) $p=n$;
5) for $x=1$ to $|C|-2$ do $\{$
6) if $C[x]=0$ then $\{$
$n=n+1$;
$E=E \cup\{(p, n)\} ;$
$p=n$;
\} else \{
$p=\operatorname{parent}^{\dagger}(p) ;$
\}
\}
return $G=(V$, remove_orientation $(E))$;
${ }^{\dagger} \operatorname{parent}(x)$ returns the parent of a node x. It returns x in the case where x has no parent.

References

- D.L. Kreher and D.R. Stinson , Combinatorial Algorithms: Generation, Enumeration and Search, CRC press LTC , Boca Raton, Florida, 1998.

