Combinatorial algorithms

computing graph isomorphism,
computing tree isomorphism

Jiri Vyskocil, Radek Marik
2013

g omputing Graph Isomorphism

definition:

Two graphs G,=(V,,E,) and G,=(V,,E,) are isomorphic if there is a
bijection f: V, » V, such that

vxyeV, : {f(xX)fV)}I€E, <= {xy}€E
The mapping f is said to be an isomorphism between G, and G,.

example:

G, (1) (2) [feay-=1

f(b)=6

f(c)=8

T 1 o
g =

(8)—2) f(h)=2
Fi)=4

(4} (3) F(i)=7

Advanced algorithms

S C0mputing Graph Isomorphism

problem:

The graph isomorphism problem is the computational

problem of determining whether two finite graphs are
iIsomorphic.

The graph isomorphism problem is one of a very small number of

problems belonging to NP neither known to be solvable in polynomial
time nor NP-complete.

However, there is a number of important special cases of the graph
iIsomorphism problem that have efficient, polynomial-time solutions:
trees, planar graphs, some bounded-parameter graphs, etc.

Advanced algorithms

S C0mputing Graph Isomorphism

definition of invariant:

Let F be a family of graphs. An invariant on F is a function @ with
domain F such that

VG,G, €EF : O(Gy) =P(G,) <« Gyisisomorphicto G,

example:
|V| for graph G=(V, E) is an invariant.

The following degree sequence [deg(v,), deg(v,), deg(vs), ..., deg(v,)]
IS not an invariant.

However, if the degree sequence is sorted in non-decreasing order,
then it is an invariant.

Advanced algorithms

S C0mputing Graph Isomorphism

definition :

Let F be a family of graphs on vertex set IV and let D be a function
with domain (F X V). Then the partition B, of V induced by D is

B; = B[0], Bgl1], ..., Bgln - 1] |
where
B li]={veV : D(Gv)=1i}
If the function
©,(G) = [[BglO]l, |1Bg[1]], ..., |Bg[n - 1]]

is an invariant, then we say that D is an invariant inducing function.

Advanced algorithms

] 'Wraph Isomorphism - Example

Let
D,(G,x)=deg;(x)
D,(Gx)=[d(x) : j = 1,2, .., max{deg;(x): x € V(G)}]
where d;(x)=|{y : y is adjacent to x and deg;(y) = }|

Suppose the following graphs G, and G,: 7

Advanced algorithms

XO(gl) -— {01 la 2; 3a 4! 5, 61 7, 8: 9}

Xo(Gs) = {0-, b,c,d,e, fayah:iaj}'

z |0123456789
Di(61,2) | 1336363331

m

U
X1(G1) = {0,9},{1,2,4,6,7,8}, {3, 5}

z labcde fghij

Dy(G2,7) | 3333663311

N——— ~” —
J

Xl (g2) — {7"]}1 {a’b,cad?gsh}a {6, f}

Advanced algorithms

— (] h
1
H
(@ S
| _—
—~—
- 5
O S . . p—. N M“UI\)))))))))}J
coococoocooco oo e cocoowmooocoo
(/) SSsSesSsSasss - o oo o0gO
= SSsSSSSSSSS| L SSosSes3g5S
c SN AN~ NN —-O T~ 11,2211.,21.,0".‘,
oo oo oco o ¢ OSSOSO
O Scocoocococ oo o ¥ O0O0SocOsS0oo
(U oGt S N NAA TS S -
f“_»!,n e === == ==
P N e I N
w SggesSesdgs
%o | N T | (O { | |
—— —
% SET/ITRRERT
)
G SR/
— I B S I I R IS DL
=Y s YaYaNaNaNaNagaga
L)
p ———_
oy
et

X2(G2) = {i, 5}, {h}, {b:ed 9}, {a}. {e. F}-

Advanced algorithms

] 'Waph Isomorphism - Example

This restricts a possible isomorphism to bijections between the following sets:

{0,9} +— {i,j}

{8} «— {h}
{2,4,6,7} +— {bcd,g}
{1} «— {a}
(3,5} «— {e f}

There are 96 = (21)(1!)(41)(11)2!) bijections giving the possible isomorphisms.
Examination of each of these possible isomorphisms shows that only the follow-
ing eight bijections are isomorphisms.

Advanced algorithms

@D
o
=
G
>
L
=
$2
i -
o
S
=)
=
O
v
-
o
S

o =
oo <
N~ ©
O Q
LN S~
<+ >
N v
N
— 3

o '~

o '~
0 <
D~ ©
O Q
LN S~
< D
M
NS
— T

O

o =
o <
N~
O ©
LN S~
<+ S
0N
N
— 3

O '~

o~
0 <
>~ Q
O O
LN S~
<t D
™M Qv
N
— T

O =

Advanced algorithms

SO mputing Graph Isomorphism

set of

Function FINDISOMORPHISM (set of invariant inducing functions I; graph G4, G,) : isomorphisms

try {
(partitions, X, Y) = GETPARTITIONS (I, G1, G3) ;

}

catch (“G; and G, are notisomorphic!“) { return @; }
for i=0 to partitions-1 do {
for each xe X[i] do {
Wix]=1i;

}

return COLLECTISOMORPHISMS(G1, G5, 0,Y, W, f)

Advanced algorithms

" RREMpUting Graph Isomorphism

set of invariant inducing functions I; number of partitions N,
Function GETPARTITIONS graph G; : parititions of G; X,
graph G, parititions of G, Y

N=1; X[0] =verticesof G;; Y[0]=vertices of G,;
for each Del do {
P=N;
for i=0 to P-1 do {
Partition X [i] into sets X; [i], X, [i], X5 [i], ..., X,, []] where xyeX; [i] © D (G1,x)=D(G1y) ;
Partition Y [i] into sets Y, [i], Y, [i], Y5 [i], ..., Y, [i]] where xy<eY; [i] & D(G,,x)=D(G,.y) ;
if n#m then throw exception “G; and G, are not isomorphic!“;
Order Y [i] into sets Y, [i], Y, [1], Y5 [i], ..., Y,, [{] so that
Vx e X[i], vy e Y[i] : D(G1,X) =D(Gpy) @ x € X; [i] and y € Y, [i] ;
if orderingis not possible then throw exception “G; and G, are not isomorphic! “;
N=N+m-1;
}
Reorder the partitions so that: |X [i]|=|Y [i]| < [X[i+1]|=|Y [i+1]| forO0<i<N-1;

}
return (N, X,Y)

Advanced algorithms

SO mputing Graph Isomorphism

. graph G;, G, ; partition mapping W as current isomorphism f as

Function (starting vertex of G, v; array [vertices of G,] of . array [vertices of G,] of) . set Of_
COLLECTISOMORPHISMS parititions of G, Y; indices of partitions of G; vertices of G, isomorphisms
if v=number of vertices of G; then return {f };
R=0;
p=WI[v];
for each yeY[p] do {

OK = true ;

for u=0 to v-1 do {
if {u,v} €edgesof G; xor {f[u],y } € edgesof G, then { OK-=false;break; }

}
if OK then {

flvl=y;

R =R U COLLECTISOMORPHISMS(G4, Gy, v+1, Y, W, f);

}

return R

Advanced algorithms

— Certificate

A certificate Cert for family F of graphs is a function such
that

VG,G,€F : Cert(G, =Cert(G,) < G,isisomorphictoga,

Currently, the fastest general graph isomorphism algorithms
use methods based on computing of certificates.

Computing of certificates works not only for general graphs

but it can be also applied on some classes of graphs like
trees.

Advanced algorithms

" ERC0omputing Tree Certificate

1) Label all the vertices of ¢ with the string 01.

2) While there are more than two vertices of ¢ do:
For each non-leaf x of G:

a) LetY be the multi-set of labels of the leaves adjacent to x and
the label of x, with the initial 0 and trailing 1 deleted from x;

b) Replace the label of x with concatenation of the labels in
Y sorted in increasing lexicographic order, with 0 prepended
and a 1 appended,

c) Remove all leaves adjacent to x.

3) If there is only one vertex left, report the label of x as certificate.

4) If there are two vertices x and y left, then report the labels of
x and y, concatenated in increasing lexicographic order, as the
certificate.

Advanced algorithms

" EOmpUting Tree Certificate - Example

Advanced algorithms

number of vertices: 12

non—leaves vertices:

0:Y=()
1:Y=(01)
2:Y=(01,01)
5: Y =(01)
7:Y =(01)
8:Y=(01)

" EOmpUting Tree Certificate - Example

1:0011

2: 001011
0:01

7: 0011

5:0011

8: 0011

Advanced algorithms

number of vertices: 6

non—leaves vertices:

001011,
0: Y=< oo11,>

0011

. Y:=<0011>

01

" EOmpUting Tree Certificate - Example

number of vertices: 2

0:0001011001100111

5:00011011

Al A
r N R

Certificate=000101100110011100011011

Advanced algorithms

" = Computing Tree Certificate

properties of certificate:

the length is 2 - |V|
the number of 1s and 0Os iIs the same

furthermore, the number of 1s and Os is the
same for every partial subsequence that arise
from any label of vertex (during the whole run
of the algorithm)

Advanced algorithms

" RRCOnetruction of Tree from Certificate - Example

f(0)=0 FOO) + 1 Cert(G)[x]
x) + 1, ert X
flxr+1) = {f () =1, Cert(G)lx]

Cert(G) = 000101100110011100011011

Advanced algorithms

" RRCOnetruction of Tree from Certificate - Example

Cert(G) = 000101100110011100011011

Advanced algorithms

" RRCOnetruction of Tree from Certificate - Example

Cert(G) = 00010110011001110001101

Advanced algorithms

" RRCOnetruction of Tree from Certificate - Example

Cert(G) = 00010110011001 01

Advanced algorithms

L EEEonStruction of Tree from Certificate

Function FINDSUBMOUNTAINS (integer [, certificate as string C) : number of submountines in C
k = 0; M[0] = the empty string; f = 0;
for x =1—1 to |C|—1 do {
if C[x]=0 then{f=f+1;}else{f=f—-1;}
Mlk] = M[k] - Clx];
if f=0 then { k=k+1; MJ[k] = the empty string; f = 0; }
}

return k;

Function CERTIFICATETOTREE (certificate as string C) : treeas G = (V,E)

n= |2ﬂ; v=0; (V,E)=empty graph ofordern; V ={0,..,n—1};

k = FINDSUBMOUNTAINS(1,C);
if k=1 then {Labellv]=M[0]; v=v+1; }
else { Label[v] = M[0]; v =v+ 1; Label|[v] = M[1]; v=v+1; E=E U{{O,l}}; }
for i = 0 to n—1 do {
if |Label[i]| > 2 then {
k = FINDSUBMOUNTAINS (2, Label[i]); Label[i] = "01";
for j =0 to k—1 do { Label[v]=M[jl; E=EU{{i,v}}; v=v+1;}

ieturnG=(V,E); 0(|C|2)

Advanced algorithms

L EEEonStruction of Tree from Certificate

Function FASTCERTIFICATETOTREE (certificate as string C) : treeas G = (V,E)

(V,E) = empty digraph of order lzﬂ; V= {O, ...,%};

n=0;

p=n;

for x =1 to |C|—2 do {
if C[x] =0 then {

n=n+1;
E=Eu{(pn)}
p=n

} else {
p = parent’(p);

}

return G = (V,remove_orientation(E));

f parent(x) returns the parent of a node x. It returns x in the case where x has no parent.

o(|Cl)

Advanced algorithms

References

D.L. Kreher and D.R. Stinson , Combinatorial Algorithms:
Generation, Enumeration and Search , CRC press LTC , Boca
Raton, Florida, 1998.

Advanced algorithms

