
BE0M3BDT

Advanced Spark

Tomáš Duda 15th November 2023

2

Outline

• Revision

• Catalyst

• Monitoring and Debugging Spark

• Spark Optimization

• Joins

• Adaptive Query Execution

• Common Issues

• Reading and writing data

• Common errors

• Conclusion and Trends

Revision

4

Revision: What is Spark?

• BigData compute engine

• In-memory processing, lazy evaluation

• Supports multiple languages: Scala, Java, Python, R

• Batch and stream processing, machine learning, graph analysis

• Spark program = Transformations + Actions

• Core APIs: RDD and DataFrame

5

Revision: Spark - RDD

• RDD: Resilient Distributed Dataset

• Collection of data

• Immutable

• Transformations – map, flatMap, filter, …

• Actions – take, count, collect, …

• Computation = DAG

RDD output

Transformation action

6

Revision: Spark - Demo

• Example: Country with the highest avg temperature in summer months

sc = SparkContext()

lines = sc.textFile(‘input.csv’)

lines = lines.map(lambda r: r.split(‘,’)).map(lambda r: (r[8], r[1], r[4]))

lines = lines.filter(lambda r: is_float(r[2]))

lines = lines.filter(lambda r: r[1] in [‘07’, ‘08’, ’09’])

lines = lines.map(lambda r: (r[0], (float(r[2]), 1)))

.reduceByKey(lambda a, b: (a[0] + b[0], a[1] + b[1]))

.map(lambda r: (r[0], r[1][0] / r[1][1])))

lines = lines.sortBy(lambda r: r[1], ascending=False)

lines = lines.take(1)

• Can it be simplified?

7

Revision: Step aside – Demo setup

• Local testing – Docker image

• Distributed environment – I will be using GCP DataProc

• Alternatives – DataBricks, AWS EMR, on-premise Hadoop, …

8

Revision: Spark SQL - DataFrame

• DataFrame: „RDD with columns“

• Table-like

• Immutable

• With metadata

• Works with SQL

• Strong typing (Scala, Java)

• Catalyst optimizer (more on that later)

9

Revision: Spark SQL - Demo

• Example: Country with the highest avg temperature in summer months

df.createOrReplaceTempView('temps')

df = spark.sql('SELECT `Country`, AVG(`Temperature`) AS avg_temp

FROM `temps`

WHERE `month` IN (7, 8, 9)

GROUP BY `Country`

ORDER BY `avg_temp` DESC')

10

Revision: Spark – Concepts

• Computational model

• Application manager

• Driver

• Executors

• Spark program

• Jobs, stages, tasks

• Deploy mode – local, client, cluster

• Spark partitions (too few x too many)

• Repartition, coalesce, partitionBy

• Interactive x Batch mode (spark-shell and spark-submit)

• Spark configuration

• Memory model

• Cores allocation

11

Narrow and Wide Transformations

• Narrow

• Does not incur shuffle

• E.g. map, filter, flatMap, …

• Wide

• Incurs shuffle and changes the number of partitions

• E.g. reduceByKey, groupByKey, join, sortBy, …

Spark Catalyst

13

Spark Catalyst – motivation

• Spark SQL unifies the access to data stored on various systems

and in various formats

• Higher-level API enables further optimizations

14

Spark Catalyst – query planning

• Catalyst is the Spark SQL optimizer

• Execution plan is a translation of Spark statements (queries,

transformations, actions, …) to a sequence of logical and physical

operations (DAG)

• Function explain() shows the plan(s)

15

Spark Catalyst – step by step

• Unresolved logical plan = Spark’s interpretation of what we want to

do

• Logical plan = metadata check, typing (resolution of tables,

AnalysisException)

• Optimized logical plan = reordering of operations, simplification

(rules executor)

16

Spark Catalyst – step by step

• Physical plan = different ways how to compute the result

• Cost-based optimization (CBO)

• Promoted physical plan = the plan selected for execution

• Since Spark 3 – Adaptive Query Execution

17

Spark Catalyst – execution plans in Spark HS

• SELECT country, avg(temp) from temps group by country LIMIT 20

Monitoring and Debugging Spark

19

Debugging Spark applications - SparkUI

• SparkUI vs Spark History Server

• Interactive vs Batch jobs

• Common ports – HistoryServer 18080, SparkUI 4040+

• Beware: Using one node for too many drivers

• Beware: Hanging interactive sessions

• Available information

• Current state

• Statistics

• Effective configuration

• Logical and physical plans

20

SparkUI – Applications

• List of completed and Incomplete applications

• Name your applications

21

SparkUI – Application and Job details

• Application timeline – Jobs: ID, duration, stages, tasks

• Drill down – Job – DAG – Stages – Tasks

• Input and output size, amount of shuffled data

22

SparkUI – Storage, Environment, Executors

• Amount of cached or persisted data

• Spilled data on disk

• Visible only for running jobs (SparkUI)

• Effective configuration

23

SparkUI – SQL / DataFrame

• Execution plans and metrics

24

Debugging Spark applications

• What to look for in Spark UI?

• Failing tasks

• Data spill

• Pending tasks – possible skew

• Where are the logs?

• Depends on Spark deploy mode

• Interactive sessions

• Batch jobs with local or client mode – standard output

• Batch jobs with cluster mode – must be retrieved from

executor

Spark Optimization

26

What to optimize?

• CPU, memory, storage, network

• What are the most expensive operations?

• Data serialization and deserialization

• Shuffles – wide vs narrow transformations

• CPU is rarely the bottleneck

• How can we optimize?

• Adjust configuration

• Write more effective code

• Optimize storage – inputs

• Be always aware how much we can benefit from optimization

27

General recommendations

• Know your data

• Check for data quality

• Check for data stability

• Version your interfaces

• Collect all useful information (monitoring, logging)

28

Critical Spark configuration

• Many problems can be solved by adjusting the configuration

• Deploy mode of batch jobs

• Avoid running too many drivers on a single node

• Parallelism

• spark.default.parallelism, spark.sql.shuffle.partitions

• spark.executor.instances

• spark.executor.cores

• Memory configuration

• spark.driver.memory

• spark.executor.memory

• Dynamic allocation

• spark.dynamicAllocation – long running jobs, shared cluster

• spark.dynamicAllocation.minExecutors

• spark.dynamicAllocation.maxExecutors

Spark Joins

30

Spark joins

• What scenarios can occur?

• Small + Small

• Small + Large

• Large + Large

• Does the input table grow over time?

• Do we really need to send all data into join?

• Join types

• INNER, OUTER, SEMI, ANTI, CROSS

• Join strategies

• Sort-Merge Join

• Broadcast Join

31

Spark joins – Types

• INNER

• LEFT | RIGHT | FULL OUTER

• LEFT | RIGHT SEMI

• LEFT | RIGHT ANTI

• CROSS

Name Company

Jack Apple

John Unknown

Lucy Microsoft

Elisabeth Google

Company Employees

Apple 161 000

Google 182 000

Microsoft 221 000

?

32

Spark joins – Strategies

• SortMerge Join

• Broadcast Join (Hash/Nested Loop)

• How to find out which algorithm Spark chose?

• History server

• How to force Spark to use a different join strategy?

• Join hints

Adaptive Query Execution (AQE)

34

Adaptive Query Execution

• New feature in Spark 3

• spark.sql.adaptive.enabled

• Enabled by default since Spark 3.2

• Execute on a part of data and recompute plan

35

Adaptive Query Execution – Optimizations

• Shuffle optimization

• Coalesce post shuffle partitions – avoid too small partitions

• Join strategy optimization

• Use faster strategy on small data

• Sort-merge join to broadcast join conversion

• Sort-merge join to shuffled hash join conversion

• Optimizing Skew Join

• Split tasks in skewed merge-joins

• Avoid pending tasks

36

Adaptive Query Execution – Demo

Common Issues:

Reading and Writing Data

38

Small files

• Beware of small input files

Number of files

(parquet)

Size of file Scan time

(sum over executors)

10 50 MB 4.1 s

100 5 MB 5.0 s

1000 0.5 MB 39.3 s

39

Small files – mitigation

• Remember when writing data from Spark job (default shuffle!)

• One Spark partition = 1 part-file written

• Repartition, coalesce

• Ideal part-file is between 128MB and 1GB

• Avoid small files in Hadoop in general

40

Small files – writing data

• Especially when the job significantly reduces the amount of data

• Adaptive Query Execution: spark.sql.adaptive.coalescePartitions.enabled

• Use coalesce: df.coalesce(n).write.mode(…).format(…)

41

Small files – compaction

• Algorithm

• Determine the size of your dataset on disk

• Decide what your ideal part-file size is

• Compute the number of spark-partitions required

(size-on-disk / ideal-size)

• Read data, repartition by N and write to disk

42

Reading data, writing data

• Data format and compression

• Choosing the most effective format – columnar, row-based

• Compression – snappy by default for AVRO and PARQUET

• https://spark.apache.org/docs/latest/sql-data-sources.html

https://spark.apache.org/docs/latest/sql-data-sources.html

Common Issues: Frequent errors

44

Broadcast join

• Typical error
• Caused by: org.apache.spark.SparkException: Could not execute

broadcast in 300 secs. You can increase the timeout for broadcasts

via spark.sql.broadcastTimeout or disable broadcast join by setting

spark.sql.autoBroadcastJoinThreshold to –1

• How to solve it

• Switch off broadcasting
• spark.sql.autoBroadcastJoinThreshold=-1

• Increase timeout from 300
• spark.sql.broadcastTimeout=1000

• Refresh table stats:
• ANALYZE TABLE <tableName> COMPUTE STATISTICS

45

Driver out of memory

• Typical error
• org.apache.spark.SparkException: Job aborted due to stage

failure: Total size of serialized results of 3800 tasks

(1024.2 MB) is bigger

than spark.driver.maxResultSize (1024.0 MB)

• How to solve it

• Increase driver memory
• spark.driver.memory=2G

• Increase maxResultSize
• spark.driver.maxResultSize=2G

• Avoid .collect() on large results

• Write data to file
• Use .show() or .take(n) for data exploration

46

Executor out of memory

• Typical error
• org.apache.spark.SparkException: Job aborted due to stage

failure: Task 251 in stage 10.0 failed 4 times, most recent

failure: Lost task 251.3 in stage 10.0:

org.apache.spark.memory.SparkOutOfMemoryError: Unable to

acquire 16384 bytes of memory, got 0

• How to solve it

• Check Spark UI

• Increase executor memory size
• spark.executor.memory

• Increase number of executors
• spark.dynamicAllocation.maxExecutors

• Repartition data
• repartition(numPartitions, *cols)

• Rewrite code

Conclusion

48

When the problem is outside Spark

• Take a step back

• Input validation

• Are the assumptions about our data coded into our programs?

• Did the input/output system change? Is it versioned?

• Is there reliable monitoring?

• Do we know how to reprocess the data on failure?

49

Summary

• Monitoring Spark applications

• Spark UI

• Logs

• Spark optimization – focus on expensive operations

• Joins in Spark – know types, execution strategies

• Adaptive Query Execution – use Spark 3.2+ when possible

• Common issues

• Small files

• Memory errors

• Spark in Cloud – still need to write effective jobs (~ cost optimization)

• Refer to documentation when in doubt

Any questions?

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Thank you for your attention

