
B0M33BDT – How to get/put

data to Hadoop, NiFi, Kafka,

Architecture patterns

Josef Vonášek 1. Listopadu 2023

Getting Data

3

Hadoop ZOO

4

How to put data to hadoop

Webservice – webHDFS

SFTP & hdfs command

NFS gateway

Sqoop – for databases – jdbc

- Full, increcemtal load

- configuration via metadata

Flume (messages) – deprecated

Flink - streaming

5

Commercial solutions

Commercial solutions

Informatica, Talend, Oracle, …

Typically as a bundle to something else

Spark and JDBC?

– Yes, it works as well

– But

• Performance issues

• Error handling

Apache Nifi

7

NIFI (Niagara Files, Hortonworks Data Flow (HDF))

NiFi is a processing engine designed to manage a continuous flow

of information as a series of events in an ecosystem

Visual creation and management of directed graphs of processors

Highly concurrent model without a developer having to worry about the

typical complexities of concurrency

Natural error handling

Cohesive and loosely coupled components which can then be reused

8

Naming Convention

Flowfiles - Information Packet. Represents each object moving through the
system and for each one. Map object (key, value pair)

Processors - Perform the work - data routing, transformation, or mediation
between systems.

Connections - Connections provide the actual linkage between processors.
These act as queues and allow various processes to interact at differing rates.

Flow Controller – Scheduler. The Flow Controller maintains the knowledge
of how processes connect and manages the threads and allocations thereof
which all processes use

9

Hello World - Example

https://nifi.apache.org/docs.html

10

Architecture

FlowFile Repository - where NiFi keeps track of the state of what it

knows about a given FlowFile that is presently active in the flow.

Content Repository - where the actual content bytes of a given

FlowFile live

Provenance Repository - where all provenance event data is stored.

11

|Cluster

12

Minifi

A complementary data collection approach that

supplements the core tenets of NiFi

Small size and low resource consumption

– binary (3.2MB)

– Original Java agent (50MB)

Integration with NiFi for follow-on dataflow

management

Apache Kafka

14

Motivation for message broker

It is a vacation day, your flight is scheduled for

14:00

Is my flight on time?

Flight radar

mobile app

Getting rid of peer-to-peer data transfer

Message broker

(Apache Kafka)

Flight radar

mobile app

analytics

16

Apache Kafka

Started as message broker at Linkedin, now it’s a

data processing ecosystem

Key characteristics

– High-throughput

– Distributed

– Scalable

– Multiple producers support

– Multiple consumers support

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

17

Kafka 101 – naming convention

Consumer

– An application that is reading data from Kafka

Consumer Group

– A group of an application processes that read data from Kafka

Producer

– An application that is writing data to Kafka

Broker

– Kafka process (single server) that is receiving data from producers, storing

data on disk and provide them to consumers

18

Kafka 101 – naming convention

Topic

– Named „message queue“

Partition

– Topics are broken down into partitions

Offset

– The position of a last committed message of a consumer in a topic/partition

19

Kafka cluster

Broker – a single Kafka server

Kafka cluster – collection of brokers that work together

20

Kafka basics – Topic and partitioning

Topic

– Named container for similar events

• Usually there are many topics in a system

• Data in one topic can be duplicated with data in another topic

– Durable logs of events

• New message always on the end

• Can be read by seaking arbitrary offset

• Are immutable - once something has happened, it is exceedingly difficult to

make it un-happen

• Are durable – stored on filesystem

21

Kafka basics – Topic and partitioning

Partitioning

– Breaked single topic log to multiple logs that can live independently

– Are spread out across a cluster

22

Kafka basics - Offset

The consumer offset is a way of tracking the sequential order in which messages are received by Kafka

topics.

Consumer offsets are persisted

23

Message structure

Key

Value

TopicName

Key and Value can be any type (as long as we can

serialize/deserialize them to bytes)

– We can easily send json records as Values

– Another very popular format to serialize data is Avro, but it requires Schema

Registry

24

Message ordering in Kafka

Message order

– Kafka guarantees to maintain a message order per partition

– That doesn’t guarantee an order of messages per topic

Messages with the same key are guaranteed to be send to the

same partition

– By default a hash partitioned is used

– Messages without a key will be uniformly distributed between partitions

25

Kafka basic - Producer

Client application

Write data to appropriate kafka topic and broker

– Serialize data

– Define partition

– Compress data

– Handle errors

26

Kafka basic - Producing data

27

Kafka basic - Consumer

Client application

Read data from Kafka topic

Scallable – organized to consumer groups

Keep up to date metadata (offset)

28

Kafka basics – Consumer Group

29

Kafka basics – Consumer Groups

30

Message delivery semantics

Exactly once

– Every message is delivered only once

– We need to keep track which messages were delivered and processed

At least once

– A message might be delivered more than once

– Might be OK given pragmatic consideration

At most once

– The system will never try to deliver a message again once it was sent

– Good option for non-critical data, that quickly become irrelevant

31

At least once example

def consume_loop(consumer, topics):

try:

consumer.subscribe(topics)

msg_count = 0

while running:

msg = consumer.poll(timeout=1.0)

msg_process(msg)

msg_count += 1

consumer.commit(async=False)

finally:

Close down consumer to commit final offsets.

consumer.close()

32

At most once example

def consume_loop(consumer, topics):

try:

consumer.subscribe(topics)

while running:

msg = consumer.poll(timeout=1.0)

consumer.commit(async=False)

msg_process(msg)

finally:

Close down consumer to commit final offsets.

consumer.close()

33

Exactly once – Kafka support

Idempotence: Exactly-once in order semantics per partition

– Safeguard against duplicates in retry logic, that might be caused by broker or

producer failure (hash

– The message will be written to the Kafka topic once

– Enable enable.idempotence=true in producer configuration

› Transactions: Atomic writes across multiple partitions

– New transation API - atomic writes across multiple partitions

– Consumer side - configuration

• isolation.level (read_committed, read_uncommitted)

› Kafka streams

• processing.guarantee=exactly_once

34

Log compaction

When the data is no longer needed (after retention period) the

default action is to delete the message

Kafka has special retention policy called “compaction” in case we

want to store most recent message for each key

Kafka ecosystem

36

Kafka Connect

Common framework for building connectors to integrate various

data stores with Kafka

Allows both getting data into and from Kafka

If you find yourself trying to get data into or from Kafka, there is

probably a connector for that

The ingest process can be speeded up by running multiple

connector instances in distributed fashion

Aside from plain piping the data from system a to Kafka, also

supports simple transformations of data records in transition

https://docs.confluent.io/kafka-connectors/self-managed/supported.html#supported-self-managed-connectors

https://docs.confluent.io/cloud/current/connectors/index.html

37

Kafka Connect- Example

{

"name": "gcs-sink-01",

"config": {

"connector.class": "io.confluent.connect.gcs.GcsSinkConnector",

"tasks.max": "1",

"topics": "gcs_topic",

"gcs.bucket.name": "<my-gcs-bucket>",

"storage.class": "io.confluent.connect.gcs.storage.GcsStorage",

"format.class": "io.confluent.connect.gcs.format.avro.AvroFormat",

"partitioner.class": "io.confluent.connect.storage.partitioner.DefaultPartitioner",

"value.converter": "io.confluent.connect.avro.AvroConverter",

"value.converter.schema.registry.url": "http://localhost:8081",

"schema.compatibility": "NONE",

"confluent.topic.bootstrap.servers": "localhost:9092",

"errors.tolerance": "all",

"errors.deadletterqueue.topic.name": "dlq-gcs-sink-01"

}

}

38

Kafka Streams

Library build on-top of Kafka Producer/Consumer API for real-time

stream processing

It’s best suited for reading data from Kafka topic, doing some work

and then writing data to another Kafka topic

Application instance is a JVM process

The parallelism of a Kafka Streams application is primarily

determined by how many partitions the input topics have

39

Kafka Streams naming convention

Source processor

– produces an input stream to its topology from one or multiple Kafka topics by

consuming records from these topics.

Sink processor

– sends any received records from its up-stream processors to a specified

Kafka topic.

› Stream processor

– represents a processing step in a topology - it is used to transform data.

Standard operations are map or filter, joins, and aggregations.

› Stream task

– smallest unit of work within a Kafka Streams

application instance. The number of tasks is determined

by an application’s source topic with the highest number

of partitions.
Stream task

40

Kafka Streams Architecture

41

ksqlDB

DB-like abstraction on top of Kafka Streams

Provides table-like interface over Kafka topic (using extended SQL

syntax)

Main components

– KSQL Server – processes SQL statements and queries

– KSQL CLI – CLI program to interact with Server

42

Kafka use-cases

IoT and any message-oriented application

– Sensor data

– Financial transactions

– Stock market

– Logs

› Asynchronous application communication

› Publish subscribe messaging

› Data integration (Kappa & Lambda architecture)

Architectures

44

Lambda

From Apache Storm

Nathan Marz, 2011

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Yahoo, Netflix

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

45

Lambda

4 layers

46

Lambda

Mapping to the technologies

47

Kappa

2014 Jay Kreps – Linkedin

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

48

Kappa

3 layers – batch layer removed

Long retention can be used

How to work with state – microbatches?

49

Kappa

Mapping to technologies

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Díky za pozornost

