{ PROFINIT 7

BOM33BDT — How to get/put
data to Hadoop, NiFi, Kafka,
Architecture patterns

Josef Vonasek 1. Listopadu 2023

Getting Data

Hadoop ZzOO { PROFINIT 7

GOVERNANCE
INTEGRATION TOOLS SECURITY OPERATIONS

Data Lifecycle & Zeppelin Ambari User Views Administration Provisioning,
Governance Authentication Managing,
Authorization & Monitoring
DATA ACCESS Auditing
Falcon Data Protection
. Ambari
Atlas Batch Script Sql NoSql Stream Search In-Mem Others
Map Pig Hive HBase Storm Solr Spark HAWQ Ranger Cloudbreak
Reduce
Accumulo Partners
Knox ZooKeeper
Data workflow Phoenix
Atlas
Sqoop Slider i
HDFS Encryption el
Flume YARN: Data Operating System Oozie
Kafka
NFS HDFS
Hadoop Distributed File System
WebHDFS

DATA MANAGEMENT

How to put data to hadoop

Webservice — webHDFS
SFTP & hdfs command
NFS gateway

VOOV WV

Sqoop — for databases — jdbc

- Full, increcemtal load
- configuration via metadata

? Flume (messages) — deprecated

7 Flink - streaming

{ PROFINIT 7

Commercial solutions

7> Commercial solutions
> Informatica, Talend, Oracle, ...

7 Typically as a bundle to something else

7> Spark and JDBC?
— Yes, it works as well

— But
* Performance issues
» Error handling

{ PROFINIT 7

Apache Nifi

NIFI (Niagara Files, Hortonworks Data Flow (HDF)) { PROFINIT >

?

NiFi is a processing engine designed to manage a continuous flow
of information as a series of events in an ecosystem

Visual creation and management of directed graphs of processors

Highly concurrent model without a developer having to worry about the
typical complexities of concurrency

Natural error handling

Cohesive and loosely coupled components which can then be reused

nifi@

Naming Convention { PROFINIT 7

7

Flowfiles - Information Packet. Represents each object moving through the
system and for each one. Map object (key, value pair)

Processors - Perform the work - data routing, transformation, or mediation
between systems.

Connections - Connections provide the actual linkage between processors.
These act as queues and allow various processes to interact at differing rates.

Flow Controller — Scheduler. The Flow Controller maintains the knowledge
of how processes connect and manages the threads and allocations thereof

which all processes use
Ll

B Empty FlowFile

GenerateFlowFile

in 0/ 0 bytes
L5000 D O bytes £ O bytes
Out 0/0 bytes

het U 0/ 00:00:00.000

(5 min)
(5 min)

Hello World - Example

MName success
Queued 070 bytes

B Set JSON contents
ReplaceText

in 0/ 0 bytes
Read/Write [N RN
Out 0/ 0 bytes
aet e U O 00:00:00.000

B Add dummy filename
UpdateAttribute

0/ 0 bytes
0 bytes [0 bytles
0/ 0 bytes
0/ 00:00:00.000

MName success
Queued 0/0 bytes

@ =
(5 min)
(5m

(5 min)

https://nifi.apache.org/docs.html

{ PROFINIT 7

9

(5 min)

Name success
Queued 0/ 0 byles

B ExecuteScript
ExecuteScript

in 0/ 0 bytes
GOm0 D O bytes £ O bytes
Out 0/ 0 bytes
art sy U 0 00:00:00.000

9

(5 min)
(5 min)
(5 min)
(5 min)

MName success
Queued 070 bytes

v

H LogAttribute
LogAttribute

070 bytes
PP O bytes / O bytes
Out 0/0 bytes

Tasks/Time DFREGATN]

k2

(5 min)
(5 min)
(5 min)
(5 min)

Architecture { PROFINIT

7> FlowFile Repository - where NiFi keeps track of the state of what it
knows about a given FlowFile that is presently active in the flow.

7> Content Repository - where the actual content bytes of a given
FlowFile live

? Provenance Repository - where all provenance event data is stored.

Processor 1 Extension N

S FlowFile S Content S Provenance
Repository Repository Repository

£ Flow Controller

|Cluster

£F Flow Controller

Processor 1 Extension N

g FlawFile g Content g Provenance
Repository Repositary Repositary

{ PROFINIT 7

ZooKeeper Server)

@ Cluster Coordinator
Primary Node
() ZooKeeper Client

Minifi { PROFINIT 7

7> A complementary data collection approach that
supplements the core tenets of NiFi

7> Small size and low resource consumption
— binary (3.2MB)
— Original Java agent (50MB)

7 Integration with NiFi for follow-on dataflow
management

Higher domain - remote server Field level - comms tower

Linux VM server Data Gateway OT device

signal
(r)) mosavitto «— POCE
\ - o Sit, 25 me n
(et NITI -
1) W
@y
-

- minifi¢® /((}A)))

enriching and routing

Apache Kafka

Motivation for message broker { PROFINIT 7

7 Itis a vacation day, your flight is scheduled for
14:00

7 Is my flight on time?

- B —

SRR

7

S /]
> > 88 > B8 -
o -

Apache Kafka { PROFINIT 7

7 Started as message broker at Linkedin, now it's a
data processing ecosystem

7 Key characteristics
— High-throughput
— Distributed
— Scalable

D S Y N S

- 11) e
UUUUUU APP TWITTER SFDC source

DATA
NoSQL ORACLE HADOOP WAREHOUSE

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

Kafka 101 — naming convention { PROFINIT 7

7> Consumer

— An application that is reading data from Kafka

7 Consumer Group
— A group of an application processes that read data from Kafka

7 Producer
— An application that is writing data to Kafka
? Broker

— Kafka process (single server) that is receiving data from producers, storing
data on disk and provide them to consumers

Kafka 101 — naming convention { PROFINIT 7

7 Topic

— Named ,message queue”
7 Partition

— Topics are broken down into partitions
7 Offset

— The position of a last committed message of a consumer in a topic/partition

Kafka cluster { PROFINIT

? Broker — a single Kafka server

7> Kafka cluster — collection of brokers that work together

Kafka Cluster

oot Tt TTTs T r T m s s \
] I
1 I
1 Broker 1]
: :
', Tupi_c A Tu|_:i_c A 1

fﬂrﬂ.m : I.eadel' : from A/O
: Replicate Replicat i

Producer - eplicate Consumer
: AJ’U‘ I A :
[] I
Messages ! Broker 2 : IMessages

for A1 ! ! from A1
. — Topic A TopicA :
: Partition 0 Partition 1 !
- Leader :
] I
A J

Kafka basics — Topic and partitioning { PROFINIT 7

7 Topic
— Named container for similar events
« Usually there are many topics in a system
« Data in one topic can be duplicated with data in another topic
— Durable logs of events
« New message always on the end

« Can be read by seaking arbitrary offset

« Are immutable - once something has happened, it is exceedingly difficult to
make it un-happen

* Are durable — stored on filesystem

Kafka basics — Topic and partitioning { PROFINIT 7

7 Partitioning

— Breaked single topic log to multiple logs that can live independently
— Are spread out across a cluster

Topic "topicName"

Panmon0012345678910111213)4—

Pamtion1o123456789')1

| Message

Writes
partiion2 [0 [1] 23] als]e]7[8]9]n0 11]47
partion3 |0 [1] 23456 7]8|o]t0]n 12}1i

Kafka basics - Offset { PROFINIT

) The consumer offset is a way of tracking the sequential order in which messages are received by Kafka
topics.

) Consumer offsets are persisted

Topic "topichName" Consumer
partition0 [0 [1 [23]a|s]e[7]s]o]w]n[u}ni r---61°5"----|
* & 1
il(onsumero’i
Partition1 | 0 | 1 | 2 |3 |4 |5]|6|7]|8}9 : :
T | — |
i ill:onsumozn'i
Partition2|0 112 |3|4]|5]|6|7|8]9]10}MN : :
]]
s | Consumer 2 i

]

Partition3|0 12]3als]sel7]8|o]w0|[n}n R —— a

Message structure { PROFINIT 7

Key
Value

TopicName

VOOV VY

Key and Value can be any type (as long as we can
serialize/deserialize them to bytes)
— We can easily send json records as Values

— Another very popular format to serialize data is Avro, but it requires Schema
Registry

Message with

Consumer
schema ID

Producer

Deserializer

Serializer

Current version
of schema

Schema
Registry

Message ordering in Kafka { PROFINIT 7

7> Message order
— Kafka guarantees to maintain a message order per partition
— That doesn’t guarantee an order of messages per topic

? Messages with the same key are guaranteed to be send to the
same partition

— By default a hash partitioned is used
— Messages without a key will be uniformly distributed between partitions

Kafka basic - Producer { PROFINIT

7 Client application

7 Write data to appropriate kafka topic and broker
— Serialize data

— Defi n e partiti o n |Acks Throughput Latency Durability

o High Low No Guarantee. The producer
\does not wait for

— Compress data

1 Medium Medium Leader writes the record to its

local log, and responds without

— Handle errors

ifrom all followers.

-1 Low High Leader waits for the full set of in-
isync replicas (ISRs) to
lacknowledge the record. This
\guarantees that the record is not
lost as long as at least one IRS
is active.

Kafka basic - Producing data { PROFINIT 7

ProducerRecord
Topic
[Partition]
s 7 ld [Key]
Value
Send ()
G o T e T N e v Ny S T S TR P SR T)
| 1
When successful, | 1 If can't retry, Serializer !
return Metadata : throw exception :
!]
: :
! 1
s { |
! Topic A TopicB 1
] Partition 0 Partition 1 -
)
: Batch 0 Batch 0 :
]
: Batch 1 Batch 1 :
! Batch 2 Batch 2 !
|]
| 1
1

N e] - - -

Kafka Broker

Kafka basic - Consumer { PROFINIT

7 Client application
? Read data from Kafka topic
> Scallable — organized to consumer groups

? Keep up to date metadata (offset)

Kafka basics — Consumer Group

TopicT1

Consumer Group 1

Partition 0

Partition 1

Partition 2

Partition 3

IT0

7

A Consumer 1 l

TopicT1

Partition 0

Consumer Group 1

[¢

Partition 1

| Consumer 1 l
I_
[(ol

Partition 2

nsumer 2
I_
N (€

Partition 3

onsumer 3
_
N C

il

1 onsumer 4

TopicT1 Consumer Group 1
| Partition 0 ﬂ Consumer 1 l
| Partition 1 // ’I Consumer 2 l
| Partition 2 /
| Partition 3
TopicT1 Consumer Group 1
Partition 0 »| Consumer 1
Partition 1 7{‘ Consumer 2 I
Partition 2 »| Consumer 3
Partition 3 »| Consumer4

| Consumer 5

{ PROFINIT 7

Kafka basics — Consumer Groups { PROFINIT 7

TopicT1 Consumer Group 1
Partition 0 Consumer 1
Partition1 F Consumer 2

Partition 2
Partition 3

\

Consumer Group 1

Consumer 1
Consumer 2

Message delivery semantics { PROFINIT 7

> Exactly once

— Every message is delivered only once
— We need to keep track which messages were delivered and processed

7> Atleast once

— A message might be delivered more than once
— Might be OK given pragmatic consideration

7 At most once
— The system will never try to deliver a message again once it was sent
— Good option for non-critical data, that quickly become irrelevant

At least once example { PROFINIT 7

? def consume_loop(consumer, topics):

? try:

) consumer.subscribe(topics)

? msg_count = 0

? while running:

) msg = consumer.poll(timeout=1.0)

’ msg_process(msg)

’ msg_count += 1

) consumer.commit(async=False)

? finally:

’ # Close down consumer to commit final offsets.

) consumer.close()

At most once example { PROFINIT 7

? def consume_loop(consumer, topics):

? try:

) consumer.subscribe(topics)

? while running:

? msg = consumer.poll(timeout=1.0)

) consumer.commit(async=False)

’ msg_process(msg)

? finally:

’ # Close down consumer to commit final offsets.

’ consumer.close()

Exactly once — Kafka support { PROFINIT 7

7 ldempotence: Exactly-once in order semantics per partition

— Safeguard against duplicates in retry logic, that might be caused by broker or
producer failure (hash

— The message will be written to the Kafka topic once
— Enable enable.idempotence=true in producer configuration
» Transactions: Atomic writes across multiple partitions
— New transation API - atomic writes across multiple partitions
— Consumer side - configuration
 isolation.level (read_committed, read _uncommitted)
» Kafka streams
« processing.guarantee=exactly once

Log compaction { PROFINIT 7

? When the data is no longer needed (after retention period) the
default action is to delete the message

> Kafka has special retention policy called “compaction” in case we
want to store most recent message for each key

K1 | K2 | K3 | K4 | KT | K2 | K2 | K5
Vifvifvipvivzvzyvsiw

L/

K3 | K4 | K1 | K2 | K5
Vipvi(vaivg|wv

Kafka ecosystem

Kafka Connect { PROFINIT

?

Common framework for building connectors to integrate various
data stores with Kafka

Allows both getting data into and from Kafka

If you find yourself trying to get data into or from Kafka, there is
probably a connector for that

The ingest process can be speeded up by running multiple
connector instances in distributed fashion

Aside from plain piping the data from system a to Kafka, also
supports simple transformations of data records in transition

https://docs.confluent.io/cloud/current/connectors/index.html

https://docs.confluent.io/kafka-connectors/self-managed/supported.html#supported-self-managed-connectors

Kafka Connect- Example

{ PROFINIT 7

JDBC Source Connect data
ResultSer—»| -

L bytel]
Connector AP format AvroConverter

(Awro)

(Avro) AP| format Connector [Faraue

% —bvtell___) avroConverter [—Connect data | HORS Sink

{

"name": "gcs-sink-01",

"config": {
"connector.class": "io.confluent.connect.gcs.GcsSinkConnector”,
"tasks.max": "1",
"topics™: "gcs_topic”,
"gcs.bucket.name”: "<my-gcs-bucket>",
"storage.class": "io.confluent.connect.gcs.storage.GcsStorage”,
"format.class": "io.confluent.connect.gcs.format.avro.AvroFormat",
"partitioner.class": "io.confluent.connect.storage.partitioner.DefaultPartitioner",
"value.converter": "io.confluent.connect.avro.AvroConverter",
"value.converter.schema.registry.url": "http://localhost:8081",
"schema.compatibility": "NONE",
"confluent.topic.bootstrap.servers": "localhost:9092",
"errors.tolerance™: "all",

"errors.deadletterqueue.topic.name": "dlg-gcs-sink-01"

Kafka Streams { PROFINIT

?

Library build on-top of Kafka Producer/Consumer API for real-time
stream processing

It's best suited for reading data from Kafka topic, doing some work
and then writing data to another Kafka topic

Application instance is a JVM process

The parallelism of a Kafka Streams application is primarily
determined by how many partitions the input topics have

TopicT1 Consumer Group 1
| Partition 0 :Il Consumer 1
| Partition 1 :ll Consumer 2 '
| Partition 2 :ll Consumer 3 |
| Partition 3 rll Consumer 4 '

Kafka Streams naming convention { PROFINIT 7

7 Source processor
— produces an input stream to its topology from one or multiple Kafka topics by
consuming records from these topics.
7 Sink processor

— sends any received records from its up-stream processors to a specified
Kafka topic.

> Stream processor O&"”}I’r‘élﬁ.‘,r\

— represents a processing step in a topology - itis T data.
Standard operations are map or filter, joins, and i O O

> Stream task Q
— smallest unit of work within a Kafka Streams | ok prcser
application instance. The number of tasks is determir fo.cssor Torowoey
by an application’s source topic with the highest number

nf nartitinnc

Kafka Streams Architecture { PROFINIT

/n.rod Katka Stre amg

\

Congumer 1 M| Comsumer n
g ey v S Rerord Budfus
/ 'y N

S R
\ \\hmA Buffers

.
b
=
: %
3) . 4 7
T 2" ok 4 o e iy ? Tad weg
Froducer 1 Froducer n

Stnnm'l;l\nnl , Stream Threed

0u+r\1 Katka Stre amg

ksqlDB { PROFINIT 7

7> DB-like abstraction on top of Kafka Streams

7 Provides table-like interface over Kafka topic (using extended SQL
syntax)

> Main components
— KSQL Server — processes SQL statements and queries
— KSQL CLI - CLI program to | ksqIDB architecture and components

% Kafka cluster
Y

1
ksqIDB Server " ksqIDB Ul in Confluent Control Center .
ngine REST API FON - B -
(runs queries) 8088AcH R H

ksqIDBCu| | ksqIDB Ul ‘

ksqIDB clients: | ksql>

Kafka use-cases { PROFINIT)

7 loT and any message-oriented application
— Sensor data
— Financial transactions
— Stock market
— Logs

» Asynchronous application communication
» Publish subscribe messaging

» Data integration (Kappa & Lambda architecture)

Architectures

Lambda { PROFINIT

From Apache Storm
Nathan Marz, 2011
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

...................

Yahoo, Netflix [BAHIAER,

vV

IIC. > Incoming data

Queries

]

1

1

1

1

i

H Historical

1 — Results
| —| data =

] storage
1

1

storage

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Lambda { PROFINIT

? 4 layers

BATCH LAYER!

———————

e e o

serving &’

31 backend
Queries

IIIC_ > Incoming data
L — -
i
: engine

Historical
data
storage

Results
storage

o

Lambda { PROFINIT

? Mapping to the technologies

Storm :
Kafka Cluster Serving DB(s)
/r processing_job |
i i d_table
input_topic speed_ .
< Hadoop queries= App
\. batch_table
N processing_job

Speed Layer Stream
Processing Incremental
Views
NesaL @
or @,ﬁ ; _-_ :a _______
enving Layer Real-time
Web Logs View
- Batch View
ERP ;ﬂb Mew Data Streams Batch View
pems/epw 1 | TTTTTTm==-
Legacy @ Batch Layer

Pre-Compute
All Data Views

Kappa { PROFINIT 7

7 2014 Jay Kreps — Linkedin

7 https://www.oreilly.com/ideas/questioning-the-lambda-architecture

__

Serving
=] backend

r%

Queries

.......................................

Hlstorlcal
Results
i) storage
storage €

...

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

Kappa { PROFINIT 7

? 3 layers — batch layer removed
? Long retention can be used

7 How to work with state — microbatches?

1
1
1
1 : : :
! ! Serving
NN ~—— hackend
i i
1
’

Queries

I 1
I

1

l i
I

Hlstorlcal '

i Results |
! data i
storage H

! storage !
1 1

...

Kappa

? Mapping to technologies

Stream Processing

Kafka Cluster System

Serving DB

queries

App

_| : -]
job_version_n

input_topic < |

|

|

>| job_version_n+1

transactions
(eventfu)

tx_codes
(reference data)

i
. 4

[[
(] §g (
I:C kafka

S =

Kafka Connect
(sources)

customers

(‘stateful) (change

customers

log)

"
I

KStreams, KSQL

ooo ——

o

|:> ' Amazon 53
] e Google
e— Cloud Storage

ks)

Kafka Connect
sin

4 Azure
I::> BLOE Storage

{ PROFINIT 7

PROFINIT

Diky za pozornost

Profinit EU, s.r.o. in LINKEDIN f FACEBOOK
Tychonova 2, 160 00 Praha 6 linkedin.com/company/profinit facebook.com/Profinit.EU
Y
X TWITTER YOUTUBE

Tel.: + 420 224 316 016, web: www.profinit.eu @profinit_EU Profinit EU, s.r.o.

