
B0M33BDT – BigData Hadoop

Josef Vonášek 25. října 2023

2

Big Data

3

BIG DATA – Chat GPT

Big data se liší od běžných dat v několika ohledech ¹:

Velikost: Běžná data jsou obvykle menší a mohou být uložena na jednom

serveru, zatímco big data jsou obvykle mnohem větší a mohou být měřena v

petabytech, zettabajtech nebo exabytech ¹².

Struktura: Běžná data jsou obvykle strukturovaná a relační, zatímco big data

mohou být strukturovaná, nestrukturovaná nebo polostrukturovaná ¹².

Zdroj: Běžná data pocházejí obvykle z interních systémů organizace, zatímco

big data mohou pocházet z různých zdrojů, jako jsou sociální sítě, senzory IoT,

mobilní zařízení a další ¹².

Rychlost: Big data se často generují rychle a mohou být zpracovávána v

reálném čase, zatímco běžná data se obvykle generují pomaleji a mohou být

zpracovávána v dávkách ¹².

Zdroj: Konverzace s Bingem, 1. 10. 2023

4

Big data Landscape 3.0

5

Data Landscape 2020

6

Data Lanscape 2023

7

Apache Hadoop

Wikipedia:

– Apache Hadoop (pronunciation: /həˈduːp/) is an open-source software

framework for distributed storage and distributed processing of very

large data sets on computer clusters built from commodity hardware. All

the modules in Hadoop are designed with a fundamental assumption that

hardware failures are common and should be automatically handled by the

framework.

Commodity hardware

– Approx. 10 000 EUR+ (but not 100kEUR)

• 2-4 CPU, each CPU 8-20 cores

• 256-512 GB RAM, min. 128GB

• 10-20 2-4-8TB HDD

– But you will probably not buy it in Alza

8

History

2006 – part of Nutch project

– Doug Cutting

– Mike Cafarella

2007 – Yahoo Hadoop on 1000 node cluster

2008 – part of Apache projject

2011 – first 1.0 version

2012 – 2.0 version with YARN

2017 – 3.0 version – two NameNodes

Jun 2023 – 3.3.6 version – ARM support

9

How Hadoop looks like?

Yahoo

10

Hadoop - Seznam

11

Cheap HW

12

Hadoop – architecture I

13

Hadoop – architecture II

14

Read speed

RAM

– DDR4 approx. 15 GB/s

Network 10 Gbit

– 1.25 GB/s

SSD disk

– 200-700 MB/s

– There are „Enterprise level“ - guarantee 5 years

– Small capacity (~ TB) and pretty expensive

HDD 7.2k

– latency approximately 4ms

– Sequential read 50-100 MB/s

– Large capacities (4TB-8TB+) and relatively cheap

– Hadoop works typically with storage

15

Read speed – HDD

Sequential read – circa 100 MB/s on one disk

Random access

– Block size of ext4 is 4kB

– latency, to find the block circa 4ms

– max. speed of the pure random read 1/0.004*4096 = 1 MB/s

16

Bottlenecks

Example: 10 nodes, each node 12 * 2 TB HDD

– Read speed within the node: 12*100 MB/s = 1.2 GB/s

– Read speed within the cluster: 12 GB/s

Limits:

– RAM speed – 10x faster

– CPU – read is not consuming CPU

– Network – for one node limited!

– Bus – beware – number of disks and watch cache and throughput

17

Principles

Storage capacity

– Many servers = nodes [4 s -> 1000s]

– Every node many disks [10-20]

High availability

– Data replication (typically three copies of every file)

– 2 replicase in same rack, the third one different rack

Reading

– data is spreaded across cluster – single file can be spreaded as well!

– data is replicated – Parallel reading on several nodes

– Big files – sequential reading

Distributed computing

– Many nodes

18

Sizing

How to build Hadoop

– Why do I need Hadoop ?

• What data

• What task

• How do I use it

– HDD parameters

• Transfer speed

– RAID

• 0, 1, 1+0, 5, 6, (2,3,4,7)

– Network speed

– Memory

– CPU cores

HDFS

20

HDFS

HDFS

– NameNode, DataNode

– Replication

– File system operations

– Blocks, block size

21

HDFS- architecture

22

HDFS

Hadoop Distributed Filesystem

Good for

– Large files

– Stream access

Bad for

– Small files

– Random access

– Low latency access

Master-slave design

– Master – NameNode (Secondary NameNode)

– Slave – DataNode

23

HDFS

24

HDFS

HDFS files are splitted to blocks

– Default 64MB/128MB - > can be changed

– Very good for big files

– Very bad for small files

Replication

– Every block is (can be) replicated between nodes

– Fault tolerant

– Default replication factor -> 3

25

DataNode

Store data block

Get data block from clients

Get data block from other DataNodes

– Replication

Get delete request from NameNode

26

NameNode

Metadata

– Where are data

– Stored in Memory !

– Cca 1GB per 1M objects

Conected with:

– Clients

– DataNodes

– SecondaryNamenodes

• Checkpointing

• Editlogs a fsimage

27

HDFS filesystem

put

get

copyFromLocal

ls

Rights

– Chmod

– Chown

– Chgrp

– https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-

hdfs/HDFSCommands.html

Vyzkoušíme na cvičení

https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html

MapReduce

MapReduce

Paradigm / framework for distributed computation

Consists of 2 phases/functions:

– map(key: object, value: object) -> Tuple[object, object]

– reduce(key: object, values: List[object]) ->

Tuple[object, object]

Example: Lets count the number of students signed up for a course

student course

Alice BDT

Bob BDT

Cate ABC

course value

BDT 1

BDT 1

ABC 1

course values

BDT [1, 1]

ABC 1

course value

BDT 2

ABC 1

map shuffle reduce

Inputs

Usually an input for a MapReduce job is a file/directory on HDFS

The input is divided into data blocks of fixed sized called input

splits

For each split a map task is created

Map tasks can run on the same or different machines allowing us

to scale data pipeline as needed

Hadoop tries to allocate a map task next to a data block of the

input if possible (data locality principle)

Mapper

The mapper function is called once for the input row and it can

generate any number of output key-value pairs (even none)

The mapper function is stateless

The intermediate results are sorted by key and written to local disk

We can apply reduce operation on map-side to reduce amount of

data transferred over the network, this operation is called

Combiner

Shuffle

There might be more than one map task that processed data with a

specific key

It is responsibility of the shuffle stage to make sure that all map-

outputs with a specific key are delivered to a single reducer

Each result file is partitioned and sorted before it is sent to a

reducer

Reduce

Transforms the output of shuffle stage to final result

Reduce task download partial results files from mappers and

merge-sort them before processing

Number of reduce tasks is determined by the job author

We can set the number of reduce tasks to 0

Parallelization

Reduce operations should be

– Associative (A x B) x C = A x (B x C) (since values for the same key aren’t

sorted)

– Neutral “zero” element should exist

– Optionally: Commutative (A x B) = (B x A) (allows combine operations)

Typical operations include

– min, max

– count, sum, multiplication

– string concatenation

– set union and intersection

MapReduce task anatomy

Storage

37

Data access patterns

OLTP

– Online transaction processing is the heart of any IT application

– Touches only a single (a very few) rows at the time

– Typical operations: insert, update, delete

– “As a user I want to place a new order with X, Y, Z items”

OLAP

– Online analytical processing

– Allows business to answer a question “what is going on”

– Touches large fraction of rows in a table (all or a specific subset/segment)

– Typical operations: read

– “What is the average sum a customer pays us monthly”

38

Data exchange formats

Plain text

– XML

– json

– separated (CSV, TSV) etc.

Binary

– Various proprietary formats (Excel, pdf, protobuf)

– Multimedia files (image, video, sound)

39

Data exchange formats considerations

Plain text

– Self-contained and human-readable, no need for special software to

understand/change the content ✔

– Takes more space on disk compared to binary formats ✖

Binary

– Efficient use of disk space (data types and compression) ✔

– Use of data types allows data validation and data integrity ✔

– Is a must when performance is key ✔

– Requires specialized tool to read/change ✖

40

Tabular data formats

Row-oriented

– Faster writes

– Works best for OLTP mode

Columnar

– Optimal reads

– More efficient compression

– OLAP

41

Hadoop data formats

AVRO

– Binary row format (+ json schema definition)

– Has schema and schema evolution support

– Kafka

ORC

– Binary columnar format

– Well integrated into Hive (optimizations, data types, compression)

Parquet

– Binary columnar format

– Schema is a part of file, nested objects are also supported

– Has wide adoption and good performance on different workloads

42

Hadoop data formats

AVRO

– Binary row format (+ json schema definition)

– Has schema and schema evolution support

– Supported in Kafka

– Logo from British aircraft manufacturer

– See Avro F.C.

43

Hadoop data formats

Parquet

– Binary columnar format

– Schema is a part of file, nested objects are also supported

– Has wide adoption and good performance on different workloads

– “Twitter/Cloudera” format

– Row group size 512-1024 MB

44

Hadoop data formats

ORC

– Binary columnar format

– Well integrated into Hive (optimizations, data types, compression)

– “Hortonworks” format

– Group of row data - stripe

– Stripe – 250MB (orc.stripe.size)

– File footer

• list of stripes, number or rows per stripe

• Column level aggregates

– Compression – snappy, zlib, none

– You cannot use ORC in Impala

45

Small files trouble

Many small files is a problem

– small file typically hundreds of bytes to hundreds of kilobytes

Typical situation - if I have to process small files, then I can have a

lot of them (energetic company example)

How many ? 10M +

1 block record on HDFS about 200 bytes in RAM on NameNode

– Example 1 10kB file

– 10E6 files 100GB of data approx 2GB of RAM on NameNode

– 1E9 files of 10TB data approx 200GB RAM

Typical solution – sequence file

46

Hadoop data formats

RCFile

– Older, not used

– ORC is a successor

SequenceFile

– Good when you have many increments

– Supports append

– Block compression

– Good for fullscan

– Supports key/value

• Key – filename

• Value – file itself

47

Compression

Motivating example:

– How long does it take to read 100GB table in 10 nodes cluster (each node

has 4 disk with peak read speed 100MB/s)?

Helps us to trade I/O time for CPU time

Practical considerations is tradeoff between compression

coefficient and compression/decompression speed

– Gzip – very efficient in terms of compression, but is relatively slow

– Snappy – good balance between compression efficiency and speed

48

Comparison

„Splitable“

– Create blocks that can be decompressed independently

Compatibility

– Not every tool can read/write everything!

Algorithm Speed Effectivity „Splittable“

GZIP/ZLib

BZip2

LZO

Snappy

YARN

50

YARN

Yet Another Resource Negotiator

e.g. Resource Manager

– RAM

– CPU

– Number of threads

– Network...

Not all application used YARN, e.g.. Impala has it‘s own

– Every resource manager should have dedicated resources

51

YARN

Application – client application

Container – resources allocated to application on a defined node

Resource Manager – global resource manager for a whole cluster

– Scheduler - responsible for allocating resources

– ApplicationsManager -responsible for accepting ApplicationMaster

Node Manager – resource manager (launching and managing

container) for a defined node

Application master - negotiating resources from the

ResourceManager and NodeManager

52

YARN

Flow

– Job Submission

– Resource request for application master

– Start AM container

– Resource request for „working“ containers

– Start „working“ containers

53

YARN

54

YARN

yarn application

yarn container

yarn logs

yarn node

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-

site/YarnCommands.html

Hive

56

Hive

MapReduce is a big step towards easier distributed computation,

but requires a lot of coding in Java even for simple counting

SQL is lingua franca for data analytics

Apache Hive is a SQL-engine built on top of MapReduce

57

High-level architecture

58

Hive - data

Data is organized into tables stored on HDFS

– Table’s data files are stored in a HDFS directory

– Schema on read – schema is checked during the query

A table is metadata stored in the metastore. Metastore contains:

– Table schema

– Table data location and format

– Custom attributes

– Table statistics

59

Hive compared to relational DBs

Schema-on-read

Indexing is not supported*

Limited support for transactions and isolation

Materialized views are not supported

*initial design had flaws, usage was discouraged and indexing was removed in Hive 3.0

60

Hive - HQL

DDL (Data Definition Language)

– CREATE [EXTERNAL] TABLE

– DROP TABLE, TRUNCATE TABLE, ALTER TABLE

DML (Data Manipulation Language)

– LOAD DATA, INSERT INTO TABLE, INSERT OVERWRITE TABLE

Query

– SELECT

Limited support*

– UPDATE

– DELETE

*supported only in transactional tables

61

Hive – loading data

Hive defines multiple ways to load data

Load data from HDFS using LOAD DATA statement

– HDFS cp/mv operations, schema is not checked during load

Insert query results into a table using INSERT INTO table select *

from tbl

Inserting literal values using INSERT INTO table values (1, 2, 3)

– Least efficient way to insert values into a Hive, use this only for testing

– Every insert statement will create a single (small) file

62

Partitioning & Bucketing

Partitioning – a way to organize data into smaller chunks

– Logical and physical separation

– Can speed-up some queries

– Simplify governance

Design partitioning schema with the data volume in mind, we do

not want to have too many small files

– If we don’t have enough data, daily partitioning might not be very efficient

Bucketing – additional layer of organization data into files by using

hash function applied on bucketed column.

– We can make sure that rows with the same bucketing key will be in the same

file

63

Execution engines

MapReduce

Hive on Tez

– Optimized query execution that avoid some limitations of MapReduce

– Eliminate unnecessary stages and HDFS writes

Hive on Spark

– Another approach onto speeding up MapReduce jobs by translating it into

Spark jobs

LLAP

– Live Long And Process daemons for small/short queries

64

Hive example workflow

1. Raw data is delivered to front-end server

2. Raw data is copied to HDFS folder for raw data

3. An external table is registered in Hive

4. An internal table is created in Hive (optimized file format)

5. Data is transformed and inserted into internal table

Files on local disk External table

(files on HDFS)

Hive managed table

1 2 3 45

65

External table

CREATE EXTERNAL TABLE IF NOT EXISTS ap_temp (

ACC_KEY BIGINT,

BUS_PROD_TP_ID VARCHAR(255),

START_DATE TIMESTAMP,

BUS_PROD_TP_DESCR VARCHAR(255)

)

ROW FORMAT

DELIMITED FIELDS TERMINATED BY '~'

LINES TERMINATED BY '\n'

STORED AS TEXTFILE

LOCATION ‘/data/input/acc’;

66

Internal table

CREATE TABLE IF NOT EXISTS ap (

ACC_KEY BIGINT,

BUS_PROD_TP_ID VARCHAR(255),

START_DATE TIMESTAMP)

PARTITIONED BY (BUS_PROD_TP_DESCR VARCHAR(255))

CLUSTERED BY (ACC_KEY) INTO 32 BUCKETS

STORED AS ORC tblproperties ("orc.compress"="ZLIB");

67

Insert data

INSERT OVERWRITE TABLE ap

PARTITION (BUS_PROD_TP_DESCR)

SELECT

ACC_KEY,

BUS_PROD_TP_ID,

START_DATE,

BUS_PROD_TP_DESCR

FROM ap_temp;

DROP TABLE ap_temp;

68

Hive catalog

Hive defines statements that return information about databases

and tables

– show databases

– show tables <db_name>

– show create table <table>

– show partitions <table>

– describe <table>

– show columns from <table>

Hadoop Distribution

Components

71

Hadoop distribution

72

Hadoop ZOO

73

Component ZOO versions

Hadoop Platform

Enhancement

75

GPUs

76

Apache Ozone

Distributed key-value store

Can manage both small and large files alike

Separates the namespace management from block and node

management layer

Possible deployment with HDFS

Multi-protocol support (S3 API, HDFS API, …)

77

Apache Ozone

Ozone Manager - is the namespace manager (relation between

file and container)

Storage Container Manager - is the leader node of the block space

management (create and manage containers)

Containers - big binary units (5Gb by default) which can contain

multiple blocks

78

Apache Ozone

79

Apache Iceberg

The open table format for analytic datasets.

Table format that helps simplify data processing on large datasets

stored in data lakes.

– Full Schema Evolution

– Expressive SQL

– Hidden Partitioning

– Time Travel and Rollback

– Data Compaction

80

Apache Iceberg

Snapshot metadata file - contains metadata about the

table (data) at a point in time

Manifest list - contains an entry for each manifest file

associated with the snapshot

Manifest file - contains a list of paths to related data

files. Each entry for a data file includes some metadata

about the file

Data file - the physical data file, written in formats like

Parquet, ORC, Avro etc

81

CDP – Cloudera Data Platform

https://www.cloudera.com/products/open-data-lakehouse.html

82

Cloudera CDP

https://www.cloudera.com/products/open-data-lakehouse.html

Cloud?

84

Cloud and Big Data

Advantages

– Multi-site oriented infrastructure

– The on-demand scaling

– Infinitely scalable infrastructure

– Various tools and libraries

Issues

– The computational nodes are separated from the storage nodes

– High latency between computation units

– I/O throughput

85

TomusBlobs

Federating Virtual Disks

86

TomusBlobs

Performance

Radu Tudoran. High-Performance Big Data Management Across Cloud Data Centers. Computer science. ENS Rennes, 2014. English. ffNNT : ff. fftel-01093767v1

87

Google Big Query

88

Google Big Query

89

Petabit Network

https://incompliancemag.com/first-successful-demonstration-of-a-1-petabit-per-second-network-node/

90

Databricks

Cloud object storage (DataLake Parquets)

Data are cached to local disk during processing

91

Snowflake

Cloud object storage

– Accessible only using Snowflake

– Virtual warehouses

• Dedicated Nodes

• CPU

• RAM

• Storage

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Díky za pozornost

