
(Databricks) Spark streaming

November 8th, 2023Martin Oharek

Outline

3

Outline

1. Streaming intro

2. Basic concept and terminology

3. Sources and sinks for Structured Streaming

4. Operations over Streaming Dataframe

5. Micro-batch vs continuous mode

6. Extras

4

Streaming intro

Message processor Stream processorInput data stream Storage

5

Streaming intro

Real-time processing of continuous streams of data in motion

Generally, we can think of three major components:

– Message processors

• Deliver data for processing

– Stream processors

• Processing layer – runs some computations/application logic on the data

– Storage/Output

• Store results, prepare stream for other consumers, send notifications, etc.

6

Streaming intro

7

Batch processing vs Stream Processing

8

Streaming in Spark

Spark streaming

– https://spark.apache.org/docs/latest/streaming-programming-guide.html#overview

– Legacy project, no longer updated

– DStreams – low level RDD streaming API

Spark Structured Streaming

– https://spark.apache.org/docs/latest/structured-streaming-programming-

guide.html#overview

– Streaming API built on the Spark SQL engine, optimizations of execution plans available

– Unified API for batch/streaming – code can be reused

– You can use DataSet/DataFrame API in Java, Scala, Python and R

– Internally, queries are processed in micro-batches

– Since Spark 2.3 – introduced continous processing

https://spark.apache.org/docs/latest/streaming-programming-guide.html#overview
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#overview

Basic concept and terminology

10

Basic concept

Treat a live data stream as a table that is being continuously

appended

11

Example

Create stream and add logic

12

Example

Start receiving data

13

Basic concept

14

Output modes

Append

– Only the new rows appended in the Result Table since the last trigger will be

written to the external storage. This is applicable only on the queries where

existing rows in the Result Table are not expected to change.

Complete

– The entire updated Result Table will be written to the external storage. It is

up to the storage connector to decide how to handle writing of the entire

table.

Update

– Only the rows that were updated in the Result Table since the last trigger will

be written to the external storage (available since Spark 2.1.1).

15

Basic concept

Structured streaming does not materialize an entire table

– Process latest data incrementally, update the result and discard

– Keeps only minimal intermediate state that is required to update the result

Faul-tolerant

– Checkpoints

• Metadata/data checkpoints saved to durable/fault-tolerant storage (S3,

HDFS,..)

– Write-ahead logs

• Capture ingested data, but not yet processed by query

16

Basic concept

Handling recovery after system failure in streaming systems:

– Fault-tolerance semantics:

• At least once: Each message is guaranteed to be processed, but it may get

processed more than once

• At most once: Each message may or may not be processed. If a message is

processed, it's only processed once

• Exactly once: Each message is guaranteed to be processed once and only

once

17

How to achieve exactly-once delivery (simplified)?

Streaming source

– In case of failure, data should be replayable in the source system

Checkpointing and write ahead logs

– Store current state to durable, fault-tolerant storage to recover in case of

driver/executor failures

Idempotent processing and sinks

– Ensure that data is not duplicated when reprocessed/retried after failure

– Ensure correct final state of the system after data is reprocessed

Sources and Sinks for Structured

Streaming

19

Data sources for Structured Streaming

File source

– Reads file written in a directory as a stream of data

– CSV, JSON, ORC, Parquet, S3,…

20

Data sources for Structured Streaming

Messaging services

– Kafka, Kinesis, Event Hubs,…

21

Data sources for Structured Streaming

Delta table

– Incremental read of delta tables

– You can use change data feed (CDF) of Delta Lake table to upsert changes

in downstream tables

– Configure input rate

• maxFilesPerTrigger: How many new files to be considered in every micro-

batch (default 1000).

• maxBytesPerTrigger: How much data gets processed in each micro-batch.

This is not set by default.

22

Data sources for Structured Streaming

Ingesting supported files from cloud object storage

– Classic file source or Databricks Auto Loader (cloudFiles format)

– Auto Loader scales to support (near) real-time ingestion of millions of files

per hour

– S3, Azure Blob Storage, Google Cloud Storage,…

– cloudFiles.schemaLocation option: supports schema inference and evolution

23

Data sources for Structured Streaming

Benefits of Auto Loader over „classic“ file source:

– Efficient and more performant file discovery

– Schema inference and evolution

– Cheap file discovery

File detection modes

– Directory listing

• Used by default

• Reduced number of API calls by listing files in subdirectories

– File notification service

• Leverages file notifications and queue service in cloud infrastructure account

• Better for large input directories / high volume of files, more difficult to set up

24

Output Sinks for Structured Streaming

File sink

25

Output Sinks for Structured Streaming

Kafka sink

26

Output Sinks for Structured Streaming

Delta Lake table sink

– Good practice to ingest streaming data from external sources to Delta Lake

• Secured „exactly-once“ processing, enabled by transaction log

27

Output Sinks for Structured Streaming

forEachBatch

– Data are processed with custom logic per micro-batch -> can use (theoretically) arbitrary sink

– Provides only at-least-once guarantees

• You can use batchId to deduplicate data and secure exactly-once, but requires additional effort

– Does not work with continuous-processing mode

Operations over Streaming Dataframe

29

Operations over streaming dataframe

Most operations work just the same as in the case of „classic“

dataframe

– Select, where, groupBy,…

– Temporary tables + SQL

Joins

– Stream dataframe – Static dataframe

– Stream dataframe – Stream dataframe

30

Operations over streaming dataframe

We generally distinguish between two types of operations:

– Stateless

• E.g. Filter - needs only information available in current micro-batch

– Stateful

• Such as count of keys over 5 minute period (aggregation), drop duplicates, etc.

- need to preserve state and get information about previous data/results

31

Operations over streaming dataframe

Without restriction, state can become unbounded - will quickly

introduce latency or even errors

We should setup some threshold for how long to continue

processing updates for a given state – watermark

32

Operations over streaming dataframe

Append with watermark

– Rows are written to the target table once the watermark threshold has

passed. Old state is dropped once the threshold has passed.

Update with watermark

– Rows are written to the target table as results are calculated, and can be

updated and overwritten as new data arrives. Old state is dropped once the

threshold has passed.

Complete

– Aggregation state is not dropped. The target table is rewritten with each

trigger.

33

Operations over streaming dataframe - windows

Window operations over event-time

windowedCounts = words

.groupBy(

window(words.timestamp, "10 minutes", "5 minutes"),

words.word

)

.count()

10 minute window, slide every 5 minutes

34

Operations over streaming dataframe - windows

35

Operations over streaming dataframe - windows

36

Operations over streaming dataframe - windows

Introduce watermark to handle late data

– Old data arriving after watermark threshold has passed is not taken into

account

Conditions to use watermark:

– Update or append mode

– Aggregation should use event_time based column or window function over event_time column

– Watermark should be specified over same column as given aggregation

– withWatermark clause must precede given aggregation

windowedCounts = words

.withWatermark("timestamp", "10 minutes")

.groupBy(

window(words.timestamp, "10 minutes", "5 minutes"),

words.word

)

.count()

37

Operations over streaming dataframe - windows

38

Operations over streaming dataframe - windows

39

Trigger action

Allow flexibility over time interval triggers – if you don‘t need real

time processing, there is no need to have it – control cost

E.g. Update database every hour,…

.trigger(processingTime='10 seconds')

– Default 500ms

– Micro-batch mode

.trigger(once=True)

– Process all available data in single batch and exit, now deprecated

.trigger(availableNow=True)

– Process all available data in multiple micro-batches and exit

– Better scalability then „once“

.trigger(continuous= '1 second')

– Low-latency, continuous mode

Micro-batch vs continuous mode

41

Micro-batch vs continuous mode

Micro batch processing

42

Micro-batch vs continuous mode

Micro batch processing

43

Micro-batch vs continuous mode

Continuous processing

44

Micro-batch vs continuous mode

Continuous processing

Extras

46

Other streaming services

Apache Flink

– Real-time streaming

– Also supports batch processing

Apache Storm

– Real-time streaming

Kafka Streams

47

Resilient/stable streaming example

48

Latency cumulation

Q&A

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Thanks for attention!

