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The What, Why and When of Apache Spark

What:

– Unified engine for big data and machine learning

– Distributed data processing engine ->  up to petabytes of data up to thousands of physical or virtual machines

– Open Source with over 1000 contributors from 250+ organizations

– Founded by people who founded Databricks

Why:

– High speed data querying, analysis, and transformation with large data sets.

– Great for iterative algorithms (using a sequence of estimations based on the previous estimate).

– Supports multiple languages (Java, Scala, R, Python)

– Free of charge

When:

– When you’re using functional programming (output of functions only depends on their arguments, not global states)

– Performing ETL or SQL batch jobs with large data sets

– Processing streaming

– Machine Learning tasks
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Spark - facts

In-memory Map-Reduce engine

Written in Scala

Fault-tolerant

Connected with all major big data technologies

Runs „Everywhere“
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Apache Spark Evolution

Spark 1.x – 2014 :

– Spark CORE - Fault-tolerant in memory computation engine

– Spark RDD (Resilient Distributed Dataset) API

– API for Streaming and Mlib

– Spark SQL

Spark 2.x - 2016:

– Speedups the computation 5 to 20 times.

– API for structured Streaming

– API for graph data processing

– SQL 2003 support

– Datasets API over RDD

› Spark 3.x - 2020:

– adaptive query execution, dynamic partition pruning and other optimizations

– Significant improvements in pandas APIs, including Python type hints and additional pandas UDFs

– Up to 40x speedup for calling R user-defined functions

– SQL ANSI supports
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When does Spark work best?

› On distributed  data systems or NoSQL Databases

› Collaboration – Data engineers, data scientist,  BI analyst, ..

› Batch and streaming tasks

Common uses:

1. Calculation of client scores (risk score, fraud detection)

2. ETL or SQL batch jobs

3. Using streaming data to trigger a response

4. Machine Learning tasks

5. Graph algorithms
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When not to use Spark?

› Small data

› Low computing capacity (memory)

› Poorly parallelizable

› real-time

e.g.:

1. Modeling on small data

2. Ingesting data in a publish-subscribe model

3. Median calculation

4. JOIN of very big tables
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How to work with Spark?

Interactively

– Command line (shell for both Python and Scala)

– Databricks notebook

– Zeppelin/Jupyter notebook

– From IDE (Pycharm, IntelliJ, …)

Batch / application

– compiled .jar file

– *.py file

Learning path:

– http://spark.apache.org

– https://www.databricks.com/spark/getting-started-with-apache-spark

http://spark.apache.org/
https://www.databricks.com/spark/getting-started-with-apache-spark


How Spark works



12

Logical point of view

› RDD:

– resilient distributed dataset - the abstractions of Spark. It is used to handle distributed collection of data 

elements (e.g.: rows in text file, data matrix, set of binary data) across all the nodes in a cluster. 

– is immutable 

› Transformation:

– are planned and optimized, but not evaluated

– planned as DAG – Direct acyclic graph

› Action:

– action is a trigger that started the whole process

RDD output

Transformation action
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Technical point of view

Driver:

– Control all  processes

– Convert user code to transformations and actions ->  tasks

– Distribute tasks across executors

Executor:

– „worker“ – run tasks and return result to a driver

Both run as JVM

Driver

Executor Executor Executor
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Example – word count

Task: count number of words in document

Source: text file splitted to lines

Approach:

– Load file from disk

– Transformation of lines: line  split to words  split to items (word, 1)

– Group items with the same word and sum up ones

Result of transformation: RDD with items (word, frequency)
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Example – word count

Transformation:

lines = sc.textFile("bible.txt")

words = lines.flatMap(lambda line: line.split(" "))

items = words.map(lambda word: (word, 1))

counts = items.reduceByKey(lambda a, b: a + b)

Action:

counts.take(5)



Spark Dataframes
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Spark SQL and DataFrames (DataSets)

New from spark 2.x  Enhances the classical RDD approach

Data structure DataFrame = „RDD with columns“

– similar to database relation table

– with metadata (field names, types)

– works with columns –> SQL syntax can be used

RDD

Dataframe

1;Andrea;35;64.3;Praha

2;Martin;43;87.1;Ostrava

3;Simona;18;57.8;Brno

id name age weight city

1 Andrea 35 64.3 Praha

2 Martin 42 87.1 Ostrava

3 Simona 18 57.8 Brno
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WHY use DataFrames

Advantage over Spark RDD:

– Dataframe API - shorter and easier code

– Columns and Types

– SQL languague can be used

– Simplified work with databases 

– Catalyst Optimizer can be applied  is faster

Optimized Code

Data Frames

SQL Queries

Data Sets

Catalyst Optimizer

Query Plan Optimized

Query Plan

Rules based

optimization
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How to get a DataFrame?

transformation from existing RDD

– if convertable

– sqlContext.createDataFrame(RDD, schema)

direct input of file

– schema may be defined (Parquet, ORC) or inferred (CSV)

– sqlContext.read.format(format).load(path)

Hive query

– sqlContext.sql(sql_query)
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How to work with a DataFrame?

1. registration of temporary table + SQL querying

– DF.registerTempTable("table")

– sqlContext.sql("select * from table")

2. SPARK API

– DF.operations; select, filter, join, groupBy, sort...

3. Convert to RDD -> RDD operation (map, flatMap, …) and then convert back -> Dataframe
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Example – word count with Dataframes

Transformation

df_final = (

df.withColumn("word", explode(split(col("lines"), ' ')))

.groupBy("word")

.count()

)

Action

df_final.show()
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Example – word count with Spark SQL

Transformation

df.registerTempTable("temp_df")

df_final = (

sqlContext.sql(“

SELECT word, count(*) FROM

(SELECT explode(split(Description, ' ')) AS word FROM temp_df)

GROUP BY word

“)

Action

df_final.show()



Spark Actions
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Spark Actions

Every action starts all steps of transformation from the beginning!

RDD Dataframe Description

take take,show Show first n rows

count count Count of rows

collect collect Show rdd/dataframe as list 

of rows

saveAsTextFile saveAsTable, write Save file/create table

… …

DF output

Transformation

count()

collect()



25

Spark Actions

DF saveAsTable()DF DF DF DF

DF

DF

saveAsTable()

DF DF

Count()

1h 2h 1m 1m

1m

1m

1m

1m

1m1m

Duration cca 3 hours

Duration next 3 

hours

Count()

Duration next 3 hours
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Spark Caching

Methods:

– persist() (several options)

– cache() (use persist with MEMORY_ONLY option)

– unpersist() (release persisted data)

Persist options:

– MEMORY_ONLY – Default –> deserialized JVM memory

– MEMORY_AND_DISK –> excessed partitions into disk.

– MEMORY_ONLY_SER -> serialized JVM memory

– MEMORY_AND_DISK_SER -> etc.

Persist is not an action!
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Spark Caching

Different from (proprietary) Databricks Disk Cache – optimized caching on SSDs

Cache consistency: 

– Databricks disk caching – changes are automatically detected and cache is updated

– Spark caching – cache must be manually invalidated and refreshed



Spark Architecture
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Components of Spark Architecture

Driver

– It is a master node.

– Translates user code into a specified job.

– Schedules the job execution and negotiates with the cluster manager.

– Stores the metadata about all RDDs as well as their partitions.

– The key component is a SparkContext, others are DAG Scheduler, Task scheduler, backend scheduler and block manager.

Executors

– They are distributed agents those are responsible for the execution of tasks 

– They perform all the data processing

› Cluster Manager

– Responsible for acquiring resources

Driver

SparkContext DAGScheduler TaskScheduler

Executor
Task Task

Executor
Task Task

Executor
Task Task

Cluster Manager
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Spark data partitions

Partition

– part of data managed in one task

– default partition = 1 HDFS block = 1 task = 1 core

– partition is ideally managed on the node where is stored – data locality!

– More partitions  more tasks  higher parallelization

•  smaller data  lower efficiency  higher overhead

› Default for Joins:

– The default number of partitions to use when shuffling data for joins or aggregations.

– spark.sql.shuffle.partitions = 200

How to change number of partition?

– in load: sc.textFile(file, count_of_partitions)

– In the code (before/after specific transformation/action):

• coalesce (count_of_partitions)

• repartition(count_of_partitions)

• partitionBy (count_of_partitions)
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Data locality & shuffling



Start and configuration
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pyspark | spark-shell | spark-submit --param value

Useful parameters:

--name -> name of the application

--class -> The entry point for your application

--master -> The master URL for the cluster (local, Yarn, Mesos, ..)

--deploy_mode -> where the driver will be deployed (client/cluster)

--driver-memory -> memory for driver

--num-executors -> count of executors

--executor-cores -> count of cores for executor

--executor-memory -> memory for executor

NOTE: Spark is deployed in Databricks clusters by default and Spark Context (Spark session) is initialized, 

you don‘t need to care about running Spark on your own



Deploy mode
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Deploy mode (execution mode)

Deploy mode

› Determines where the resources used by Spark application are physically located

Deploy mode types:

– Local mode

– Client mode

– Cluster mode

Differences:

› Where the driver runs – client or cluster ?

› Where the executors run - client or cluster ?

› What is cluster manager – spark CM or 3rdParty (yarn, messos, ..)
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Deploy mode: Local mode

Properties:

› The entire application is run on a single machine (paralelism through threads)

› The Spark driver runs on the client machine

› The Executor processes run on the client machine

› Spark CM is used

› Used on Databricks single node clusters

Purpose:

› Development

› Debugging

› Testing
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Deploy mode: Client mode

Properties

› The Spark driver runs on the client machine that submitted the application (usually an edge node)

› The executor processes run on cluster

› Cluster manager is used

› On Databricks multi-node clusters in interactive environment (e.g. Notebook)

Purpose

› Spark-shell (interactive sessions)

› Easy debugging

› Input and output attached

› Can overload the edge node
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Deploy mode: Client mode (example for YARN)
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Deploy mode: Cluster mode

Properties

› The Spark driver runs on a worker node inside the cluster

› The executor processes run on cluster

› The cluster manager maintans the executor processes

› Databricks job clusters

Purpose

› The best deploy mode for stable applications

› Better resource utilization than in client mode

› More difficult debugging
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Deploy mode: Cluster mode (example for YARN)



Spark configuration
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Spark executor memory

Reserved - the memory is reserved for the system and is used to store Spark’s internal object. The size is hardcoded.

User Memory - It's used for storing your data structures and data needed for RDD conversion operations, such as lineage.

Unified memory:

• Execution memory - It’s mainly used to store temporary data in the calculation process of Shuffle, Join, Sort, Aggregation, 

etc.

• Storage Memory - It’s mainly used to store Spark cache data, such as RDD cache, Unroll data, and so on.

• Size of an Execution and Storage memory can by dynamically changed by the Dynamic occupancy mechanism process.

Memory overhead - Off heap (no GC). Call stacks, shared libraries, constants defined in Code, the code itself, ….
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Spark executor memory example

Spark.executor.memory = 4 GB

– Memory overhead = 10% of executor memory, max 384 MB

– Reserved memory = 300 MB

– User Memory = (Java Heap — Reserved Memory) * (1.0 — spark.memory.fraction) = (3640-300)* (1-

0,6)= 1336 MB

– Storage Memory = (Java Heap — Reserved Memory) * spark.memory.fraction * 

spark.memory.storageFraction = (3640-300)*(0,6*0,5)= 1002 MB

– Execution Memory = (Java Heap — Reserved Memory) * spark.memory.fraction * (1.0 —

spark.memory.storageFraction) = (3640-300)*(0,6*0,5)=1002 MB
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Resources configuration: Settings

Available settings:

spark.driver.memory

– Size of the Spark driver in MB

– Default 1024MB

spark.executor.memory

– Size of the each Spark executor in MB

– Default 1024MB

spark.executor.cores

– The number of virtual cores that will be allocated to each executor

– Default 1 (YARN)

Spark.dynamicAllocation.enabled

– Allows Spark dynamically change the number of executors based on the workload
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Resources configuration: Spark Driver

Considerations:

› Client or cluster mode

› With the client mode – beware of overloading Edge node

› Size of the result returned by executor (collect action)
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Resources configuration: Spark Executor

Considerations

Resources available in the cluster, sizing of cluster nodes

Few large executors or many small executors?

– Small executors

• Higher parallelization but more shuffling

• One partition - one executor, risk of spilling the data to disk

• Total overhead grows (Reserved memory)

– Large executors

• Lower parallelization

• Issue with resources allocation

• Might be wasteful

• GC overhead
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Resources configuration: Recommendations

• Allows Spark dynamically change the number of executors based on the workload

• Number of cores – deside based on the load. Usually 2 - 4 cores/executor

• Driver memory – keep default

• Executor memory – ((data size) *1,5)/0,6) / number of executors (max 16G)

• For start use spark.executor.memory = 2G.

• Number of executors - number of task / executor > 100

• For start use spark.dynamicAllocation.maxExecutors < 10.

• For long running processes set spark.sql.ui.retainedExecutions <= 100 (default 1000)



Spark vs Databricks
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Spark vs Databricks

Databricks

– Tool/platform built on top of Apache Spark

– Add other functionality, e.g. Notebooks, production jobs and workflows, etc.

– Databricks runtime

• Built on Apache Spark and optimized for performance

• Photon engine

• Disk caching, dynamic file pruning, predictive I/O, cost-based optimizers, etc.

• Auto-scaling compute

• Pre-installed Java, Scala, Python and R libraries

• …

– Apache Spark is running on Databricks clusters

• Can set spark configuration on cluster level and change some configurations during runtime

• Managed Delta Lake

• You cannot set spark configuration for managed compute (SQL warehouse)
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