
Apache Spark - basics

October 11th, 2023Martin Oharek

Outline

3

Outline

1. Spark overview

2. How Spark works

3. Spark Dataframes

4. Spark architecture

5. Spark configuration

6. Spark vs Databricks

Spark overview

5

The What, Why and When of Apache Spark

What:

– Unified engine for big data and machine learning

– Distributed data processing engine -> up to petabytes of data up to thousands of physical or virtual machines

– Open Source with over 1000 contributors from 250+ organizations

– Founded by people who founded Databricks

Why:

– High speed data querying, analysis, and transformation with large data sets.

– Great for iterative algorithms (using a sequence of estimations based on the previous estimate).

– Supports multiple languages (Java, Scala, R, Python)

– Free of charge

When:

– When you’re using functional programming (output of functions only depends on their arguments, not global states)

– Performing ETL or SQL batch jobs with large data sets

– Processing streaming

– Machine Learning tasks

6

Spark - facts

In-memory Map-Reduce engine

Written in Scala

Fault-tolerant

Connected with all major big data technologies

Runs „Everywhere“

7

Apache Spark Evolution

Spark 1.x – 2014 :

– Spark CORE - Fault-tolerant in memory computation engine

– Spark RDD (Resilient Distributed Dataset) API

– API for Streaming and Mlib

– Spark SQL

Spark 2.x - 2016:

– Speedups the computation 5 to 20 times.

– API for structured Streaming

– API for graph data processing

– SQL 2003 support

– Datasets API over RDD

› Spark 3.x - 2020:

– adaptive query execution, dynamic partition pruning and other optimizations

– Significant improvements in pandas APIs, including Python type hints and additional pandas UDFs

– Up to 40x speedup for calling R user-defined functions

– SQL ANSI supports

8

When does Spark work best?

› On distributed data systems or NoSQL Databases

› Collaboration – Data engineers, data scientist, BI analyst, ..

› Batch and streaming tasks

Common uses:

1. Calculation of client scores (risk score, fraud detection)

2. ETL or SQL batch jobs

3. Using streaming data to trigger a response

4. Machine Learning tasks

5. Graph algorithms

9

When not to use Spark?

› Small data

› Low computing capacity (memory)

› Poorly parallelizable

› real-time

e.g.:

1. Modeling on small data

2. Ingesting data in a publish-subscribe model

3. Median calculation

4. JOIN of very big tables

10

How to work with Spark?

Interactively

– Command line (shell for both Python and Scala)

– Databricks notebook

– Zeppelin/Jupyter notebook

– From IDE (Pycharm, IntelliJ, …)

Batch / application

– compiled .jar file

– *.py file

Learning path:

– http://spark.apache.org

– https://www.databricks.com/spark/getting-started-with-apache-spark

http://spark.apache.org/
https://www.databricks.com/spark/getting-started-with-apache-spark

How Spark works

12

Logical point of view

› RDD:

– resilient distributed dataset - the abstractions of Spark. It is used to handle distributed collection of data

elements (e.g.: rows in text file, data matrix, set of binary data) across all the nodes in a cluster.

– is immutable

› Transformation:

– are planned and optimized, but not evaluated

– planned as DAG – Direct acyclic graph

› Action:

– action is a trigger that started the whole process

RDD output

Transformation action

13

Technical point of view

Driver:

– Control all processes

– Convert user code to transformations and actions -> tasks

– Distribute tasks across executors

Executor:

– „worker“ – run tasks and return result to a driver

Both run as JVM

Driver

Executor Executor Executor

14

Example – word count

Task: count number of words in document

Source: text file splitted to lines

Approach:

– Load file from disk

– Transformation of lines: line  split to words  split to items (word, 1)

– Group items with the same word and sum up ones

Result of transformation: RDD with items (word, frequency)

15

Example – word count

Transformation:

lines = sc.textFile("bible.txt")

words = lines.flatMap(lambda line: line.split(" "))

items = words.map(lambda word: (word, 1))

counts = items.reduceByKey(lambda a, b: a + b)

Action:

counts.take(5)

Spark Dataframes

17

Spark SQL and DataFrames (DataSets)

New from spark 2.x  Enhances the classical RDD approach

Data structure DataFrame = „RDD with columns“

– similar to database relation table

– with metadata (field names, types)

– works with columns –> SQL syntax can be used

RDD

Dataframe

1;Andrea;35;64.3;Praha

2;Martin;43;87.1;Ostrava

3;Simona;18;57.8;Brno

id name age weight city

1 Andrea 35 64.3 Praha

2 Martin 42 87.1 Ostrava

3 Simona 18 57.8 Brno

18

WHY use DataFrames

Advantage over Spark RDD:

– Dataframe API - shorter and easier code

– Columns and Types

– SQL languague can be used

– Simplified work with databases

– Catalyst Optimizer can be applied  is faster

Optimized Code

Data Frames

SQL Queries

Data Sets

Catalyst Optimizer

Query Plan Optimized

Query Plan

Rules based

optimization

19

How to get a DataFrame?

transformation from existing RDD

– if convertable

– sqlContext.createDataFrame(RDD, schema)

direct input of file

– schema may be defined (Parquet, ORC) or inferred (CSV)

– sqlContext.read.format(format).load(path)

Hive query

– sqlContext.sql(sql_query)

20

How to work with a DataFrame?

1. registration of temporary table + SQL querying

– DF.registerTempTable("table")

– sqlContext.sql("select * from table")

2. SPARK API

– DF.operations; select, filter, join, groupBy, sort...

3. Convert to RDD -> RDD operation (map, flatMap, …) and then convert back -> Dataframe

21

Example – word count with Dataframes

Transformation

df_final = (

df.withColumn("word", explode(split(col("lines"), ' ')))

.groupBy("word")

.count()

)

Action

df_final.show()

22

Example – word count with Spark SQL

Transformation

df.registerTempTable("temp_df")

df_final = (

sqlContext.sql(“

SELECT word, count(*) FROM

(SELECT explode(split(Description, ' ')) AS word FROM temp_df)

GROUP BY word

“)

Action

df_final.show()

Spark Actions

24

Spark Actions

Every action starts all steps of transformation from the beginning!

RDD Dataframe Description

take take,show Show first n rows

count count Count of rows

collect collect Show rdd/dataframe as list

of rows

saveAsTextFile saveAsTable, write Save file/create table

… …

DF output

Transformation

count()

collect()

25

Spark Actions

DF saveAsTable()DF DF DF DF

DF

DF

saveAsTable()

DF DF

Count()

1h 2h 1m 1m

1m

1m

1m

1m

1m1m

Duration cca 3 hours

Duration next 3

hours

Count()

Duration next 3 hours

26

Spark Caching

Methods:

– persist() (several options)

– cache() (use persist with MEMORY_ONLY option)

– unpersist() (release persisted data)

Persist options:

– MEMORY_ONLY – Default –> deserialized JVM memory

– MEMORY_AND_DISK –> excessed partitions into disk.

– MEMORY_ONLY_SER -> serialized JVM memory

– MEMORY_AND_DISK_SER -> etc.

Persist is not an action!

27

Spark Caching

Different from (proprietary) Databricks Disk Cache – optimized caching on SSDs

Cache consistency:

– Databricks disk caching – changes are automatically detected and cache is updated

– Spark caching – cache must be manually invalidated and refreshed

Spark Architecture

29

Components of Spark Architecture

Driver

– It is a master node.

– Translates user code into a specified job.

– Schedules the job execution and negotiates with the cluster manager.

– Stores the metadata about all RDDs as well as their partitions.

– The key component is a SparkContext, others are DAG Scheduler, Task scheduler, backend scheduler and block manager.

Executors

– They are distributed agents those are responsible for the execution of tasks

– They perform all the data processing

› Cluster Manager

– Responsible for acquiring resources

Driver

SparkContext DAGScheduler TaskScheduler

Executor
Task Task

Executor
Task Task

Executor
Task Task

Cluster Manager

30

Spark data partitions

Partition

– part of data managed in one task

– default partition = 1 HDFS block = 1 task = 1 core

– partition is ideally managed on the node where is stored – data locality!

– More partitions  more tasks  higher parallelization

•  smaller data  lower efficiency  higher overhead

› Default for Joins:

– The default number of partitions to use when shuffling data for joins or aggregations.

– spark.sql.shuffle.partitions = 200

How to change number of partition?

– in load: sc.textFile(file, count_of_partitions)

– In the code (before/after specific transformation/action):

• coalesce (count_of_partitions)

• repartition(count_of_partitions)

• partitionBy (count_of_partitions)

31

Data locality & shuffling

Start and configuration

33

pyspark | spark-shell | spark-submit --param value

Useful parameters:

--name -> name of the application

--class -> The entry point for your application

--master -> The master URL for the cluster (local, Yarn, Mesos, ..)

--deploy_mode -> where the driver will be deployed (client/cluster)

--driver-memory -> memory for driver

--num-executors -> count of executors

--executor-cores -> count of cores for executor

--executor-memory -> memory for executor

NOTE: Spark is deployed in Databricks clusters by default and Spark Context (Spark session) is initialized,

you don‘t need to care about running Spark on your own

Deploy mode

35

Deploy mode (execution mode)

Deploy mode

› Determines where the resources used by Spark application are physically located

Deploy mode types:

– Local mode

– Client mode

– Cluster mode

Differences:

› Where the driver runs – client or cluster ?

› Where the executors run - client or cluster ?

› What is cluster manager – spark CM or 3rdParty (yarn, messos, ..)

36

Deploy mode: Local mode

Properties:

› The entire application is run on a single machine (paralelism through threads)

› The Spark driver runs on the client machine

› The Executor processes run on the client machine

› Spark CM is used

› Used on Databricks single node clusters

Purpose:

› Development

› Debugging

› Testing

37

Deploy mode: Client mode

Properties

› The Spark driver runs on the client machine that submitted the application (usually an edge node)

› The executor processes run on cluster

› Cluster manager is used

› On Databricks multi-node clusters in interactive environment (e.g. Notebook)

Purpose

› Spark-shell (interactive sessions)

› Easy debugging

› Input and output attached

› Can overload the edge node

38

Deploy mode: Client mode (example for YARN)

39

Deploy mode: Cluster mode

Properties

› The Spark driver runs on a worker node inside the cluster

› The executor processes run on cluster

› The cluster manager maintans the executor processes

› Databricks job clusters

Purpose

› The best deploy mode for stable applications

› Better resource utilization than in client mode

› More difficult debugging

40

Deploy mode: Cluster mode (example for YARN)

Spark configuration

42

Spark executor memory

Reserved - the memory is reserved for the system and is used to store Spark’s internal object. The size is hardcoded.

User Memory - It's used for storing your data structures and data needed for RDD conversion operations, such as lineage.

Unified memory:

• Execution memory - It’s mainly used to store temporary data in the calculation process of Shuffle, Join, Sort, Aggregation,

etc.

• Storage Memory - It’s mainly used to store Spark cache data, such as RDD cache, Unroll data, and so on.

• Size of an Execution and Storage memory can by dynamically changed by the Dynamic occupancy mechanism process.

Memory overhead - Off heap (no GC). Call stacks, shared libraries, constants defined in Code, the code itself, ….

43

Spark executor memory example

Spark.executor.memory = 4 GB

– Memory overhead = 10% of executor memory, max 384 MB

– Reserved memory = 300 MB

– User Memory = (Java Heap — Reserved Memory) * (1.0 — spark.memory.fraction) = (3640-300)* (1-

0,6)= 1336 MB

– Storage Memory = (Java Heap — Reserved Memory) * spark.memory.fraction *

spark.memory.storageFraction = (3640-300)*(0,6*0,5)= 1002 MB

– Execution Memory = (Java Heap — Reserved Memory) * spark.memory.fraction * (1.0 —

spark.memory.storageFraction) = (3640-300)*(0,6*0,5)=1002 MB

44

Resources configuration: Settings

Available settings:

spark.driver.memory

– Size of the Spark driver in MB

– Default 1024MB

spark.executor.memory

– Size of the each Spark executor in MB

– Default 1024MB

spark.executor.cores

– The number of virtual cores that will be allocated to each executor

– Default 1 (YARN)

Spark.dynamicAllocation.enabled

– Allows Spark dynamically change the number of executors based on the workload

45

Resources configuration: Spark Driver

Considerations:

› Client or cluster mode

› With the client mode – beware of overloading Edge node

› Size of the result returned by executor (collect action)

46

Resources configuration: Spark Executor

Considerations

Resources available in the cluster, sizing of cluster nodes

Few large executors or many small executors?

– Small executors

• Higher parallelization but more shuffling

• One partition - one executor, risk of spilling the data to disk

• Total overhead grows (Reserved memory)

– Large executors

• Lower parallelization

• Issue with resources allocation

• Might be wasteful

• GC overhead

47

Resources configuration: Recommendations

• Allows Spark dynamically change the number of executors based on the workload

• Number of cores – deside based on the load. Usually 2 - 4 cores/executor

• Driver memory – keep default

• Executor memory – ((data size) *1,5)/0,6) / number of executors (max 16G)

• For start use spark.executor.memory = 2G.

• Number of executors - number of task / executor > 100

• For start use spark.dynamicAllocation.maxExecutors < 10.

• For long running processes set spark.sql.ui.retainedExecutions <= 100 (default 1000)

Spark vs Databricks

49

Spark vs Databricks

Databricks

– Tool/platform built on top of Apache Spark

– Add other functionality, e.g. Notebooks, production jobs and workflows, etc.

– Databricks runtime

• Built on Apache Spark and optimized for performance

• Photon engine

• Disk caching, dynamic file pruning, predictive I/O, cost-based optimizers, etc.

• Auto-scaling compute

• Pre-installed Java, Scala, Python and R libraries

• …

– Apache Spark is running on Databricks clusters

• Can set spark configuration on cluster level and change some configurations during runtime

• Managed Delta Lake

• You cannot set spark configuration for managed compute (SQL warehouse)

Q&A

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Thanks for attention!

