
Introduction to Databricks

October 4th, 2023Martin Oharek

Outline

3

Outline

1. History context

– Challenges of traditional/legacy solutions

– What managed platforms (e.g. Databricks) bring to the table and why the companies want it

2. Databricks intro

– Lakehouse concept

– Databricks architecture

– Building blocks (cloud integration, Apache Spark, MLFlow, Delta Lake,…)

– Use cases

3. Core Databricks features

– Compute x Storage, Delta Lake

– Clusters

– Databricks workflows

– Data object types

4. Real world Databricks use cases

History context

5

History context

6

History context

Structured data (RDBMS - ~1970) -> (semi/un)structured data (Data lake)

Data volumes increased rapidly (internet (~1991), mobile/sensor devices and applications (~2010),…)

Traditional data processing and storage approaches couldn‘t handle so much data

Hadoop ecosystem (2006 initial release) – distributed parallel computing and storage

Managed (cloud) services (AWS EMR, Kinesis, Azure Data Factory, Azure Synapse,…)

Cloud-based data platforms and unified (scalable) environments (Databricks, Snowflake,…)

7

Legacy technology challenges

– Infrastructure challenges

• On-premise infrastructure management

• No scaling (not easily achievable and expensive)

• Over-provisioning to keep-up with increasing compute and storage demands (expensive)

• Security/availability/reliability/back ups, etc. of data centers must be handled by the company -> a

lot of people involved

• Software version updates and patching

• Keynote: A LOT OF TASKS THAT DON‘T PRODUCE ANY VALUE FOR THE CUSTOMER‘S

BUSINESS, but must be done

– Operational challenges

• A lot of different data-related tasks (ingestion, ETL, analysis, dashboarding, data science) handled

by different pieces of technology – usually leads to complex architectures

• Data silos – problems with access to data throughout the organization (among different teams,..),

often leads to data redundancy and duplication, „many sources of truth“

• Complexity

• Bad performance

8

Databricks intro

10

How do Databricks solve the challenges?

Cloud-based (AWS, Azure, GCP)

– Infrastructure is managed by the cloud vendor, you just need to provision it

Auto-scaling support (alleviate the over-provisioning issue)

Provide tools for handling all data-related processing demands (batch, streaming, ML, data sharing,…), all

unified under single platform

Software versions, libraries and runtimes are managed by Databricks, also come with handy libraries

preinstalled

On-demand cluster provisioning -> no need to run machines when idle

Lakehouse concept + centralized data governance solution – supports the „single source of truth“

11

Databricks

Founded in 2013

Unified, data analytics platform for building, deploying, sharing, and maintaining enterprise-grade data,

analytics, and AI solutions at scale

Integrated with cloud vendors – AWS, Azure, GCP

Cloud agnostic

Databricks Lakehouse platform

~ 15% of market share in big-data-analytics domain (https://6sense.com/tech/big-data-analytics/databricks-

market-share)

Databricks account -> Databricks workspaces associated with the account

https://6sense.com/tech/big-data-analytics/databricks-market-share

12

Databricks

13

Databricks spaces

Databricks SQL

– Compute resources for SQL queries, visualizations and dashboards executed against data sources in

the lakehouse

– SQL warehouse, optimized for processing large-scale data, multi-tenancy

– Alerting

Data Science & Engineering

– Notebooks, Apache Spark, Spark Structured Streaming

– Databricks Jobs

– ETL – Delta Live Tables

Machine learning

– AutoML, MLFlow

– Scalable machine learning - Spark MLLib, HyperOpt, EDA with Spark

14

Databricks architecture

15

Databricks serverless architecture

Databricks SQL serverless

16

Databricks serverless architecture

Model serving

17

Databricks architecture

Control plane

– Backend services managed by Databricks (in its own account)

– Notebook commands, workspace configurations, etc.

Data plane

– Where data is processed (customer‘s AWS account)

– Classic data plane

• Data is stored in your cloud account

• Notebooks, jobs, pro/classic Databricks SQL warehouses

– Serverless data plane

• Shared

• For serverless compute of Databricks SQL or Model serving

18

Databricks Lakehouse

19

Databricks Lakehouse

https://docs.databricks.com/en/lakehouse/index.html

Combines best elements from

– Data warehouses

• ACID transactions, data governance

– Data lakes

• Flexibility, cost-efficiency

Built on top of open source technologies – Parquet, Apache Spark, Delta Lake, MLFlow – prevents vendor-

lock

Delta tables (stored with Delta Lake protocol)

– ACID, Data versioning, ETL, indexing

Unity Catalog

– Data governance, Data sharing, Data auditing, Data lineage

https://docs.databricks.com/en/lakehouse/index.html

Databricks core features

21

Databricks core features

Decoupled compute from storage

– Storage provided by cloud object storage (e.g. AWS S3) or external locations

– Compute provided by compute clusters

• Clusters also have their own disk attached

Storage layer powered by Delta Lake

– Data versioning, historization

– Indexing, optimization

– ACID transactions

– Optimized for structured streaming

Databricks workflows (jobs)

– Running non-interactive workloads

– On schedule, on demand

– Notifications

22

Databricks clusters

Computation resources for data engineering, data science and analytics workloads

Created on classic data plane = your AWS account

Running Spark

All-purpose clusters

– For interactive workloads, usually used with notebooks

– Can be shared accross multiple users

Job clusters

– For non-interactive workloads, automated jobs

– Is terminated when job is finished

Controlled with UI, CLI, or REST API

Pools

– Keep warm instances as idle to reduce start and scale-up times

23

Databricks clusters

1 driver node, 0-n worker nodes

Autoscaling

– Add or remove instances from the cluster based on the workload

Init script for custom initializations

Arbitrary Spark configurations

Policy, access mode

Databricks runtime

– Scala, Spark preinstalled

Autotermination

Tags (Metadata)

Arbitrary log destinations

24

Databricks clusters

25

Delta Lake

Default data storage format

Data stored as Parquet files

ACID transactions

– Secured by transaction log, tracks all changes made to the table

Data are versioned

– Keep data files for every version (w.r. to retention period)

– Time travel

26

Databricks workflows

Using job clusters

– Job clusters are terminated immediately after job is finished

Consisting of tasks

– Python script

– Spark submit

– Notebook

– JAR, Python wheel

– SQL – Query, Dashboard, Alert

– Job

Compute can be shared or different cluster can be selected for different tasks

Run on demand/schedule/trigger

Databricks native alternative to open source orchestration tools (AirFlow, Dagster, etc.)

Can show nice DAG (graphical view)

27

Data objects

Kept and organized in cloud object storage (AWS S3, Azure Blob Storage,…)

28

Data objects

Metastore

– Contains metadata of data objects

– Configured with root storage in cloud object storage (e.g. S3 bucket in AWS)

– Can be assigned to multiple workspaces

– One workspace may have only a single metastore

Catalog

– The highest abstraction in DBX Lakehouse relational model

– Collection of schemas (databases)

– Default catalog is hive_metastore

Schema

– LOCATION on cloud object storage

– Collection of tables, views and functions

29

Data objects

Table

– Collection of structured data

– Default storage provider – Delta Lake (https://delta.io/)

• ACID transcations

• Optimized performance (OPTIMIZE, Z-ORDER,…)

• Driven by parquet

– Managed table

• In the same location as database

• Metadata and data is managed by Databricks

• DROP = delete data and metadata

– Unmanaged table

• Only metadata is managed by Databricks

• DROP = data is preserved

https://delta.io/

30

Data objects

View

– Query text is registered to the metastore (database)

– No actual data is written

Temporary view

– Limited scope and persistence

– Not registered to metastore

– Scopes:

• Notebooks and jobs

• Databricks SQL – query level

• Global temporary views – cluster level

31

Data objects

User-defined function

– Associate user-defined logic with a database

– In SQL or Python/Scala/Java

• Code in Python can have a negative impact on performance

• Outside of JVM – data serialization

• Databricks have code optimizers for SQL, not Python

– Usually not good for production workloads (instead use native Apache Spark methods if possible)

32

Data objects

Volume

– Represents logical volume of storage in cloud object storage location

– Accessing, storing, governing and organizing files

– Add governance over also to non-tabular datasets

– Only in Unity Catalog

– Managed

– External

33

Advanced Databricks features – to be continued

– Machine learning tooling

• MLFlow, Scalable ML with Spark, AutoML, Model serving

– Delta Live Tables

• ETL tool

• Declarative definitions

• A lot of „self optimization and maintanance“

• Development or production modes

– Photon

• New generation data processing engine

• Written in C++

• Compatible with Apache Spark APIs

– SQL warehouses

– Lakehouse federation

– LakehouseIQ

34

Real-world Databricks use cases

Gucci

• Use case: media budget allocation to maximize ROI

https://www.youtube.com/watch?v=mq3IxO_toDA

• MLOps

• Trying to adopt community-recommended best practices

• Speed-up time to market

• Benefit from managed ML services – distributed hyperparameter tuning with HyperOpt and Spark, MLFlow,

AutoML (kick-off stage)

CDQ

• Use case: migrate custom reporting ETL pipeline to Databricks

• Get scalable solution with usage of Delta Live Tables

• Exploit Lakehouse architecture

• Performance boost

Shell

• Use case: Databricks as key tool in Shell.ai platform https://www.databricks.com/customers/shell

• Democratize data access in organization, supported cross-team collaboration, develop over 100 AI models

https://www.youtube.com/watch?v=mq3IxO_toDA
https://www.databricks.com/customers/shell

Q&A

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Thanks for attention!

