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Outline

1. History context

– Challenges of traditional/legacy solutions

– What managed platforms (e.g. Databricks) bring to the table and why the companies want it

2. Databricks intro

– Lakehouse concept

– Databricks architecture

– Building blocks (cloud integration, Apache Spark, MLFlow, Delta Lake,…)

– Use cases

3. Core Databricks features

– Compute x Storage, Delta Lake

– Clusters

– Databricks workflows

– Data object types

4. Real world Databricks use cases
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History context

Structured data (RDBMS - ~1970) -> (semi/un)structured data (Data lake)

Data volumes increased rapidly (internet (~1991), mobile/sensor devices and applications (~2010),…)

Traditional data processing and storage approaches couldn‘t handle so much data

Hadoop ecosystem (2006 initial release) – distributed parallel computing and storage

Managed (cloud) services (AWS EMR, Kinesis, Azure Data Factory, Azure Synapse,…)

Cloud-based data platforms and unified (scalable) environments (Databricks, Snowflake,…)
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Legacy technology challenges

– Infrastructure challenges

• On-premise infrastructure management

• No scaling (not easily achievable and expensive)

• Over-provisioning to keep-up with increasing compute and storage demands (expensive)

• Security/availability/reliability/back ups, etc. of data centers must be handled by the company -> a 

lot of people involved

• Software version updates and patching

• Keynote: A LOT OF TASKS THAT DON‘T PRODUCE ANY VALUE FOR THE CUSTOMER‘S 

BUSINESS, but must be done

– Operational challenges

• A lot of different data-related tasks (ingestion, ETL, analysis, dashboarding, data science) handled

by different pieces of technology – usually leads to complex architectures

• Data silos – problems with access to data throughout the organization (among different teams,..), 

often leads to data redundancy and duplication, „many sources of truth“

• Complexity

• Bad performance
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How do Databricks solve the challenges?

Cloud-based (AWS, Azure, GCP)

– Infrastructure is managed by the cloud vendor, you just need to provision it

Auto-scaling support (alleviate the over-provisioning issue)

Provide tools for handling all data-related processing demands (batch, streaming, ML, data sharing,…), all

unified under single platform

Software versions, libraries and runtimes are managed by Databricks, also come with handy libraries

preinstalled

On-demand cluster provisioning -> no need to run machines when idle

Lakehouse concept + centralized data governance solution – supports the „single source of truth“
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Databricks

Founded in 2013

Unified, data analytics platform for building, deploying, sharing, and maintaining enterprise-grade data, 

analytics, and AI solutions at scale

Integrated with cloud vendors – AWS, Azure, GCP

Cloud agnostic

Databricks Lakehouse platform

~ 15% of market share in big-data-analytics domain (https://6sense.com/tech/big-data-analytics/databricks-

market-share)

Databricks account -> Databricks workspaces associated with the account

https://6sense.com/tech/big-data-analytics/databricks-market-share
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Databricks
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Databricks spaces

Databricks SQL

– Compute resources for SQL queries, visualizations and dashboards executed against data sources in 

the lakehouse

– SQL warehouse, optimized for processing large-scale data, multi-tenancy

– Alerting

Data Science & Engineering

– Notebooks, Apache Spark, Spark Structured Streaming

– Databricks Jobs

– ETL – Delta Live Tables

Machine learning

– AutoML, MLFlow

– Scalable machine learning - Spark MLLib, HyperOpt, EDA with Spark
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Databricks architecture
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Databricks serverless architecture

Databricks SQL serverless
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Databricks serverless architecture

Model serving
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Databricks architecture

Control plane

– Backend services managed by Databricks (in its own account)

– Notebook commands, workspace configurations, etc.

Data plane

– Where data is processed (customer‘s AWS account)

– Classic data plane

• Data is stored in your cloud account

• Notebooks, jobs, pro/classic Databricks SQL warehouses

– Serverless data plane

• Shared

• For serverless compute of Databricks SQL or Model serving
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Databricks Lakehouse
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Databricks Lakehouse

https://docs.databricks.com/en/lakehouse/index.html

Combines best elements from

– Data warehouses

• ACID transactions, data governance

– Data lakes

• Flexibility, cost-efficiency

Built on top of open source technologies – Parquet, Apache Spark, Delta Lake, MLFlow – prevents vendor-

lock

Delta tables (stored with Delta Lake protocol)

– ACID, Data versioning, ETL, indexing

Unity Catalog

– Data governance, Data sharing, Data auditing, Data lineage

https://docs.databricks.com/en/lakehouse/index.html


Databricks core features



21

Databricks core features

Decoupled compute from storage

– Storage provided by cloud object storage (e.g. AWS S3) or external locations

– Compute provided by compute clusters

• Clusters also have their own disk attached

Storage layer powered by Delta Lake

– Data versioning, historization

– Indexing, optimization

– ACID transactions

– Optimized for structured streaming

Databricks workflows (jobs)

– Running non-interactive workloads

– On schedule, on demand

– Notifications
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Databricks clusters

Computation resources for data engineering, data science and analytics workloads

Created on classic data plane = your AWS account

Running Spark

All-purpose clusters

– For interactive workloads, usually used with notebooks

– Can be shared accross multiple users

Job clusters

– For non-interactive workloads, automated jobs

– Is terminated when job is finished

Controlled with UI, CLI, or REST API

Pools

– Keep warm instances as idle to reduce start and scale-up times
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Databricks clusters

1 driver node, 0-n worker nodes

Autoscaling

– Add or remove instances from the cluster based on the workload

Init script for custom initializations

Arbitrary Spark configurations

Policy, access mode

Databricks runtime

– Scala, Spark preinstalled

Autotermination

Tags (Metadata)

Arbitrary log destinations
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Databricks clusters
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Delta Lake

Default data storage format

Data stored as Parquet files

ACID transactions

– Secured by transaction log, tracks all changes made to the table

Data are versioned

– Keep data files for every version (w.r. to retention period)

– Time travel
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Databricks workflows

Using job clusters

– Job clusters are terminated immediately after job is finished

Consisting of tasks

– Python script

– Spark submit

– Notebook

– JAR, Python wheel

– SQL – Query, Dashboard, Alert

– Job

Compute can be shared or different cluster can be selected for different tasks

Run on demand/schedule/trigger

Databricks native alternative to open source orchestration tools (AirFlow, Dagster, etc.)

Can show nice DAG (graphical view)
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Data objects

Kept and organized in cloud object storage (AWS S3, Azure Blob Storage,…)



28

Data objects

Metastore

– Contains metadata of data objects

– Configured with root storage in cloud object storage (e.g. S3 bucket in AWS)

– Can be assigned to multiple workspaces

– One workspace may have only a single metastore

Catalog

– The highest abstraction in DBX Lakehouse relational model

– Collection of schemas (databases)

– Default catalog is hive_metastore

Schema

– LOCATION on cloud object storage

– Collection of tables, views and functions
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Data objects

Table

– Collection of structured data

– Default storage provider – Delta Lake (https://delta.io/)

• ACID transcations

• Optimized performance (OPTIMIZE, Z-ORDER,…)

• Driven by parquet

– Managed table

• In the same location as database

• Metadata and data is managed by Databricks

• DROP = delete data and metadata

– Unmanaged table

• Only metadata is managed by Databricks

• DROP = data is preserved

https://delta.io/
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Data objects

View

– Query text is registered to the metastore (database)

– No actual data is written

Temporary view

– Limited scope and persistence

– Not registered to metastore

– Scopes:

• Notebooks and jobs

• Databricks SQL – query level

• Global temporary views – cluster level
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Data objects

User-defined function

– Associate user-defined logic with a database

– In SQL or Python/Scala/Java

• Code in Python can have a negative impact on performance

• Outside of JVM – data serialization

• Databricks have code optimizers for SQL, not Python

– Usually not good for production workloads (instead use native Apache Spark methods if possible)
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Data objects

Volume

– Represents logical volume of storage in cloud object storage location

– Accessing, storing, governing and organizing files

– Add governance over also to non-tabular datasets

– Only in Unity Catalog

– Managed

– External
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Advanced Databricks features – to be continued

– Machine learning tooling

• MLFlow, Scalable ML with Spark, AutoML, Model serving

– Delta Live Tables

• ETL tool

• Declarative definitions

• A lot of „self optimization and maintanance“

• Development or production modes

– Photon

• New generation data processing engine

• Written in C++

• Compatible with Apache Spark APIs

– SQL warehouses

– Lakehouse federation

– LakehouseIQ
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Real-world Databricks use cases

Gucci

• Use case: media budget allocation to maximize ROI 

https://www.youtube.com/watch?v=mq3IxO_toDA

• MLOps

• Trying to adopt community-recommended best practices

• Speed-up time to market

• Benefit from managed ML services – distributed hyperparameter tuning with HyperOpt and Spark, MLFlow, 

AutoML (kick-off stage)

CDQ

• Use case: migrate custom reporting ETL pipeline to Databricks

• Get scalable solution with usage of Delta Live Tables

• Exploit Lakehouse architecture

• Performance boost

Shell 

• Use case: Databricks as key tool in Shell.ai platform https://www.databricks.com/customers/shell

• Democratize data access in organization, supported cross-team collaboration, develop over 100 AI models

https://www.youtube.com/watch?v=mq3IxO_toDA
https://www.databricks.com/customers/shell
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