
Databricks advanced

December 13th, 2023Martin Oharek

Outline

3

Outline

1. Data ingestion

2. Data processing & ETL

3. Data governance

4. ML development

Data ingestion

5

Data ingestion

• Ingestion backed by Delta Lake

• Different ingestion scenarios:

• Load data from (external) object storage

• Data resides in S3 bucket, Azure Blob Storage,…

• Both batch and streaming use cases

• Load data from external data sources

• JDBC connection to relational database systems (PostgreSQL, MySQL, SQL Server,…)

• Other Databricks workspace

• Use different Spark connectors to connect to bunch of different services

• Cassandra, MongoDb, ElasticSearch, Google BigQuery, Snowflake,…

• Streaming sources

• Kafka, Kinesis,…

6

Data ingestion

Built-in support for different data formats in Spark

– Delta Lake

– Delta sharing

– Avro

– ORC

– JSON

– XML

– TEXT

– Binary

– …

7

COPY INTO

Load data from file location into Delta Table

Configurable file or directory filters from cloud storage, including

S3, ADLS Gen2, ABFS, GCS, and Unity Catalog volumes

Exactly-once (idempotent) file processing by default

Target table schema inference, mapping, merging, and evolution

8

COPY INTO

Set schema and load data into a Delta Lake table

9

Auto Loader

incrementally and efficiently processes new data files as they arrive

in cloud storage

S3, ADLS Gen2, GCS, ABFS, ADLS Gen1, DBFS

Provides Structured Streaming source called cloudFiles

Supports both one time (batch) upload of existing files and

streaming uploads

Contains all features from COPY INTO and even more

10

Auto Loader

Metadata is persisted in checkpoint location

It can resume after error based on the information from checkpoint

location

Exactly-once guarantee

Incremental ingestion support (start where it left off)

Must provide schemaLocation to store inferred schema (or specify

schema directly)

11

Auto Loader

Advantages of Auto Loader over regular Spark Structured

Streaming directly on files?

– Scalability

• can discover billions of files efficiently. Backfills can be performed

asynchronously to avoid wasting any compute resources

– Performance

• cost of discovering files with Auto Loader scales with the number of files that

are being ingested instead of the number of directories that the files may land

in

– Schema inference and evolution support

– Cost

• uses native cloud APIs to get lists of files that exist in storage

• file notification mode can help reduce your cloud costs further

12

Auto Loader

Any new columns will fail the stream and evolve the schema

Parsing errors will go to _rescued_data

13

Auto Loader

Well-known schema handling

14

COPY INTO vs Auto Loader

Files in order of

– thousands -> COPY INTO

– millions and more -> Auto Loader

Frequently evolving schema -> Auto Loader

Loading a subset of re-uploaded files -> easier with COPY INTO

15

External data sources

Lakehouse federation

– Access data in external systems with external compute

– No data ingestion to Databricks

– Still can leverage Unity Catalog lineage features

16

External data sources

JDBC connectors

Might need to install JDBC driver on the cluster

17

External data sources

Other Spark connectors (example Snowflake)

Also might require installation of different libraries

Data processing & ETL

19

Data processing & ETL

Medallion architecture

20

Data processing & ETL

Can leverage „regular“ solution

– Implement ETL logic in plain scripts, notebooks,..

– Use Databricks workflows and job clusters to create tasks and job DAGs

– Orchestrate jobs to populate data entities defined in your logic

Or use managed „Delta Live Tables“

21

Databricks workflows

Orchestrates data processing, machine learning, and analytics

pipelines on Databricks

A workspace is limited to 1000 concurrent task runs

Number of jobs a workspace can create in an hour is limited to

10000

22

Databricks workflows

23

Delta Live Tables

Declarative framework for building reliable, maintainable, and

testable data processing pipelines

Delta Live Tables manage task orchestration, cluster management,

monitoring, data quality, and error handling

Instead of defining your data pipelines using a series of separate

Apache Spark tasks, you define streaming tables and materialized

views that the system should create and keep up to date

24

Delta Live Tables

25

Delta Live Tables

Streaming table

– Delta table with extra support for streaming or incremental data processing

Materialized view

– implements materialized views as Delta tables, but abstracts away

complexities associated with efficient application of updates

– refreshed according to the update schedule of the pipeline

View

– compute results from source datasets as they are queried, leveraging

caching optimizations when available. Delta Live Tables does not publish

views to the catalog

26

Delta Live Tables

27

Delta Live Tables

https://github.com/databrickslabs/dlt-meta

28

Optimization

Improve data layout of Delta Tables, improving read performance

– OPTIMIZE

• Reduce number of files present

• Optimize a subset of data or colocate data by column. If you do not specify colocation, bin-packing

optimization is performed

• Bin-packing is idempotent (aims to produce evenly-balanced data files with respect to their size on

disk)

– ZORDER indexes

• Data skipping technique for improved read performance

• Data skipping information is collected automatically when you write data into a Delta table

• Colocate related information in the same set of files

• Usually run on a columns that are expected to be used frequently in query predicates and that has

high cardinality

• Not idempotent in general

29

Optimization

30

Optimization

VACUUM command

– removes all files from the table directory that are not managed by Delta, as

well as data files that are no longer in the latest state of the transaction log

for the table and are older than a retention threshold

– omits directories starting with underscore (such as _delta_log)

– files are lost after VACUUM, so you lose ability to time travel back to older

versions

31

Optimization

NOTE: To improve performance when writing to Delta Table, it

might be beneficial to omit some columns for statistics collection,

especially when it contains huge string values

– By setting table property delta.dataSkippingNumIndexedCols

Data governance

33

Data governance

Unity catalog

– Governance solution for data + AI assets

– Centralized metadata layer

– Abstraction over cloud-native role management

– Ability to set low-level permissions on UC objects

– Not only data lineage between tables

• Notebooks, ML models

• Workflows, DLT

• Dashboards

• …

ML development

35

ML development

36

ML development

MLFlow

– Managed ML development lifecycle

– Logging of ML models, evaluation metrics, dependencies, other artifacts,…

AutoML

– Kick-off for ML projects

– Can automatically run ML training on your data sources

– Gives you notebooks for exploratory analysis and model training, ordered by

model performance

37

ML development

38

ML development

Model serving

– exposes MLflow machine learning models as scalable REST API endpoints

– Highly-available, low latency

– Scalable

– Serverless

Lakehouse monitoring

– Monitor the statistical properties and quality of the data in all of the tables

– Data quality, data drift monitoring

– Monitoring of model‘s performance

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Thanks for attention!

