Algorithm 2.1: SubsetLexrank
$$(n,T)$$
 $r \leftarrow 0$ for $i \leftarrow 1$ to n do $\begin{cases} \text{if } i \in T \\ \text{then } r \leftarrow r + 2^{n-i} \end{cases}$ return (r)

$$\begin{aligned} & \textbf{Algorithm 2.2: SUBSETLEXUNRANK} \ (n,r) \\ & T \leftarrow \emptyset \\ & \textbf{for} \ i \leftarrow n \ \textbf{downto} \ 1 \\ & \textbf{do} \ \begin{cases} & \textbf{if} \ r \ \text{mod} \ 2 = 1 \\ & \textbf{then} \ T \leftarrow T \cup \{i\} \\ & r \leftarrow \left \lfloor \frac{r}{2} \right \rfloor \end{aligned}$$

As an example, suppose that n=8 and $T=\{1,3,4,6\}$. Then Algorithm 2.1 computes

$$rank(T) = 2^7 + 2^5 + 2^4 + 2^2$$
$$= 128 + 32 + 16 + 4$$
$$= 180.$$

Conversely, if we run Algorithm 2.2 with n=8 and r=180, then we obtain the following:

_	2	ಬ	4	OT.	6	7	00	2
\vdash	2	OT	11	22	45	90	180	r
1	0	1	1	0	1	0	0	$r \mod 2$
$\{1, 3, 4, 6\}.$	$\{3, 4, 6\}$	$\{3, 4, 6\}$	$\{4,6\}$	{6}	{6}	0	0	T

This example illustrates that ranking and unranking are inverse operations, since the subset $\{1, 3, 4, 6\}$ has rank 180 and unranking 180 produces the set $\{1, 3, 4, 6\}$.

We have assumed in this section that our base set is $S = \{1, ..., n\}$. What would we do if we wanted to rank and unrank the subsets of some other n-element set, say S'? We could of course design algorithms for ranking and unranking

subsets of S', but a different approach is usually more convenient. It suffices to construct a bijection $\phi: S' \to S$. Now we can rank any subset $X \subseteq S'$, using a rank function for subsets of S, from the following formula:

$$\operatorname{rank}(X) = \operatorname{rank}(\phi(X)).$$

Similarly, we can unrank r to a subset of S', using the following formula:

$$\operatorname{rank}(r) = \phi^{-1}(\operatorname{unrank}(r)).$$

In the formula above, ϕ^{-1} is the inverse function of ϕ , i.e., $\phi(X) = Y$ if and only if $\phi^{-1}(Y) = X$, where $X \subseteq S'$ and $Y \subseteq S$.

For example if we want to rank and unrank subsets of $S' = \{0, ..., n-1\}$, then we can use the bijections ϕ and ϕ^{-1} defined by the following formulas:

$$\phi(X) = \{i+1 : i \in X\}$$

nd

$$\phi^{-1}(Y) = \{i - 1 : i \in Y\}.$$

2.2.2 Gray codes

The lexicographic ordering defined above makes ranking and unranking very simple, but the ordering is not well suited to the sequential generation of all 2^n subsets of an n-set. This is because subsets that are consecutive with respect to the ordering can be very "different." For example, in the case n=3 considered above, $\operatorname{rank}(\{2,3\})=3$ and $\operatorname{rank}(\{1\})=4$. Hence, we have two consecutive subsets that are in fact complements of each other (so they are as different as they could possibly be).

Given two subsets $T_1, T_2 \subseteq S$, we define the symmetric difference of T_1 and T_2 , denoted $T_1 \Delta T_2$, to be

$$T_1 \Delta T_2 = (T_1 \backslash T_2) \cup (T_2 \backslash T_1).$$

The distance between T_1 and T_2 is defined to be

$$\operatorname{dist}(T_1, T_2) = |T_1 \Delta T_2|$$

Alternatively, dist (T_1, T_2) is equal to the number of coordinates in which $\chi(T_1)$ and $\chi(T_2)$ have different entries, which is called the *Hamming distance* between the vectors $\chi(T_1)$ and $\chi(T_2)$. The relevance of the distance between two subsets is that it represents the number of elements that need to be added to and/or deleted from one subset in order to obtain the other.

If we are going to generate all 2^n subsets sequentially, it might be desirable to do so in such a way that any two consecutive subsets have distance one (the smallest possible). This means that any subset can be obtained from the previous one