Algorithm 2.1: SUBSETLEXRANK (n, T) |

r+20
fori «— 1ton
ifieT
do ﬁ then r + r 4 27—
return (7)

Algorithm 2.2: SUBSETLEXUNRANK (n,r)

T+0
for i +— n downto 1
ifrmod2=1
do then 7' + T'U {i}
r+ %]

As an example, suppose thatn = 8 and T = {1,3,4, 6}. Then Algorithm 2.1
computes

rank(T) = 27 + 2% 424 + 22
=128+32+16+4
= 180.

Conversely, if we run Algorithm 2.2 with n = 8 and r = 180, then we obtain the
following:

iv.r. rmod2 T

8 180 0 /]

7 90 0 1]

6 45 1 {6}

5 22 0 {6}

4 11 1 {4,6}

3 b5 1 {3,4,6}
2 2 0 {3,4,6}
i 1 1 {1,3,4,6).

This example illustrates that ranking and unranking are inverse operations,
since the subset {1,3,4,6} has rank 180 and unranking 180 produces the set
{1,3,4,6}.

We have assumed in this section that our base set is S = {1,...,n}. What
would we do if we wanted to rank and unrank the subsets of some other n-element
set, say S'? We could of course design algorithms for ranking and unranking

of S', but a different approach is usually more convenient. It suffices to
construct a bijection ¢ : 8" = S. Now we can rank any subset X C S’, using a
rank function for subsets of S, from the following formula:

rank(X) = rank(¢(X)).
Similarly, we can unrank r to a subset of S’, using the following formula:

it rank(r) = ¢~ (unrank(r)).

.H_.:wn.?nBEm above, ¢! is the inverse function of ¢, i.e., (X) =Y if and only

if ¢~ (Y) =X, whereX C S'andY C S.
For example if we want to rank and unrank subsets of S = {0,...,n — 1},
then we can use the bijections ¢ and ¢~ defined by the following formulas:

$(X)={i+1:i€ X}

. ¢~ (Y)={i-1:ieY}.

2.2.2 Gray codes

The lexicographic ordering defined above makes ranking and unranking very sim-
ple, but the ordering is not well suited to the sequential generation of all 2" subsets
of an n-set. This is because subsets that are consecutive with respect to the or-
dering can be very “different.” For example, in the case n = 3 considered above,
rank({2,3}) = 3 and rank({1}) = 4. Hence, we have two consecutive subsets
that are in fact complements of each other (so they are as different as they could
possibly be).

Given two subsets 77,75 C S, we define the symmetric difference of Ty and
T, denoted Ty ATy, to be

m.,p Dm._u = Hm:_ /MJMU U ﬁ.ﬂm /m.‘_u
The distance between T} and T% is defined to be
dist(Ty,T32) = |T1 ATy .

Alternatively, dist(Ty,T5) is equal to the number of coordinates in which x(77)
and x(T3) have different entries, which is called the Hamming distance between
the vectors x(77) and x(7%). The relevance of the distance between two subsets
is that it represents the number of elements that need to be added to and/or deleted
from one subset in order to obtain the other.

If we are going to generate all 2" subsets sequentially, it might be desirable to
do so in such a way that any two consecutive subsets have distance one (the small-
est possible). This means that any subset can be obtained from the previous one



