ePAL - Approximate Text Searching

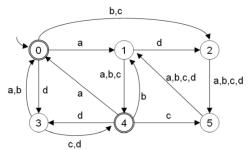
Radek Mařík Marko Genyk-Berezovskyj

ČVUT FEL, K13133

November 28, 2012

- Basic Automata
- 2 Non-deterministic Finite Automaton
- Regular Expressions
- 4 Languages
- 6 Hamming distance
- 6 Levenshtein distance
- Dictionary Automata
- 8 Binary Implementation of Searching Automata

- Basic Automata
- 2 Non-deterministic Finite Automator
- Regular Expressions
- 4 Languages
- 6 Hamming distance
- 6 Levenshtein distance
- Dictionary Automata
- 8 Binary Implementation of Searching Automata



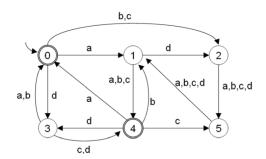
Automaton A_1 is given by its transition table. Draw its transition diagram.

	а	b	С	
0	0	1	3	
1	2	2	5	F
2 3 4 5	3	0	2	
3	3	4	1	F
4	1	4	4	
5	5	0	5	

Automaton A_2 is given by its transition diagram. Draw its transition table.

Make a decision if automaton A_1 accepts the following words

- adddca
- bbcca
- bbccaba


	а	b	С	
0	0	1	3	
1	2	2	5	F
2	3	0	2	
2 3 4 5	3	4	1	F
4	1	4	4	
5	5	0	5	

Make a decision if automaton A_2 accepts the following words

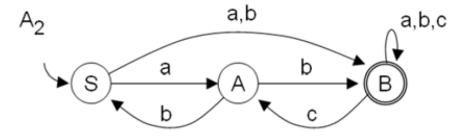
- adddca
- bbcca
- bbccaba

Draw a state diagram of an automaton that accepts just all words over alphabet $\{0,1\}$ which

- contain subsequence 01,
- 2 do not contain subsequence 01,
- ontain a single character 1 and an arbitrary number of characters 0,
- begin and end with symbol 1,
- represent binary represenations of numbers 0, 1, 2, 3, 4, 5, 6, 7 in their all 1-, 2- 3- digits sequences.

- Basic Automata
- Non-deterministic Finite Automaton
- Regular Expressions
- 4 Languages
- 6 Hamming distance
- 6 Levenshtein distance
- Dictionary Automata
- 8 Binary Implementation of Searching Automata

November 28, 2012


Automaton A_1 is given by its transition table. Determine its equivalent deterministic automaton

 A_1

	а	b	С	d
0	0, 1		2	2
1		0, 2		
2	1		1, 2	0, 2

Automaton A_2 is given by its transition table. Determine its equivalent deterministic automaton

Create an NFA over alphabet $\{a,b,c\}$ that accepts all words both beginning and ending with chain

- abc,
- acaca,

Create an NFA over alphabet $\{a,b,c\}$ that accepts all words not containing chain

- abc,
- acaca,

Create an NFA and its related DFA that searches for a given exact pattern

- aaba,
- abaa,

Create an NFA and its related DFA that searches for all subchains of a given pattern

- abcab,
- accbc,

Create an NFA and its related DFA that searches for all chains having Hamming distance at most 2 from a given pattern:

- bbaabb,
- acacab,

- Basic Automata
- 2 Non-deterministic Finite Automator
- Regular Expressions
- 4 Languages
- 6 Hamming distance
- 6 Levenshtein distance
- Dictionary Automata
- 8 Binary Implementation of Searching Automata

Write all words of length at most 5 of a language described by the following regular expression over alphabet $\{0,1\}$

- 0 (01|0) * 0
- **②** 0(10|0)★

Write a regular expression describing a language over alphabet $\{0,1\}$ such that

- 1 each word contains only zeros,
- each word contains just one 1,
- each word contains at least one 1,
- each word contains at least two 1,
- **5** each word contains an even number of 1,
- o each word contains an odd number of 1,

Write a regular expression describing a maximum set M of words over alphabet $\{a, b, c\}$ such that

- each word in M starts and ends with symbol b,
- each word in M contains just one occurance of symbol c anywhere in the word.
- \odot no word in M contains synmbol a on an odd position (positions are indexed from 1).

Create an automaton that searches for words described by regular expression R over alphabet A.

- $A = \{a, b, c\}$
- R = c * (ac + bb)*

Create an automaton that searches for words described by regular expression R over alphabet A.

- $A = \{0, 1\}$
- R = 0 * (101 + 11) * 0

- Basic Automata
- Non-deterministic Finite Automator
- Regular Expressions
- 4 Languages
- 6 Hamming distance
- 6 Levenshtein distance
- Dictionary Automata
- 8 Binary Implementation of Searching Automata

We are given two languages L_1 and L_2 over alphabet $\{0,1\}$. Words of L_1 are described by expression 0*1*0*1*0*, words of L_2 are described by expression (01|10)*.

- **1** Find the shortest non-empty word of intersection $L_1 \cap L_2$,
- ② Find the longest word of intersection $L_1 \cap L_2$,
- **③** Find the shortest non-empty word that belongs to L_1 but it is not contained in L_2 ,
- Find the shortest non-empty word that belongs to L_2 but it is not contained in L_1 ,
- **5** Find the shortest non-empty word of union $L_1 \cup L_2$.

- Basic Automata
- 2 Non-deterministic Finite Automator
- Regular Expressions
- 4 Languages
- 6 Hamming distance
- 6 Levenshtein distance
- Dictionary Automata
- 8 Binary Implementation of Searching Automata

November 28, 2012

Find all word occurances in text T having Hamming distance at most k from pattern P. Use the method of dynamic programming.

- T = aacacacbaabbbcbbcacc
- P = abbcba
- k = 2

Find all word occurances in text T having Hamming distance at most k from pattern P. Use the method of dynamic programming.

- \bullet T = 000111011000101010111110
- P = 110010
- k = 3

- Basic Automata
- 2 Non-deterministic Finite Automator
- Regular Expressions
- 4 Languages
- 6 Hamming distance
- 6 Levenshtein distance
- Dictionary Automata
- 8 Binary Implementation of Searching Automata

Find all words over alphabet $\{a,b,c\}$ having Levenshtein distance k from pattern P=aba.

- 1
- 2

Find all word occurances in text T having Levenshtein distance at most k from pattern P.

- T = aacacacbaabbbcbbcacc
- P = abbcba
- k = 2

Find all word occurances in text T having Levenshtein distance at most k from pattern P.

- \bullet T = 010011101000010101011100
- P = 11100
- k = 2

- Basic Automata
- 2 Non-deterministic Finite Automator
- Regular Expressions
- 4 Languages
- 6 Hamming distance
- 6 Levenshtein distance
- Dictionary Automata
- 8 Binary Implementation of Searching Automata

Create a DFA over alphabet A that accepts just words from set M over this alphabet.

- $A = \{a, b, c\}$
- $M = \{a, b, ba, bc, aaa, bab, ccc, abbc, abcc\}$

Create a DFA over alphabet A that accepts just words from set M over this alphabet.

- $A = \{0, 1\}$
- $M = \{10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 11101, 11111\}$

- Basic Automata
- 2 Non-deterministic Finite Automator
- Regular Expressions
- 4 Languages
- 6 Hamming distance
- 6 Levenshtein distance
- Dictionary Automata
- 8 Binary Implementation of Searching Automata

Create a table of a simulation for a searching automata using the method of bitwise paralelism in text T having Hamming distance k from pattern P.

- T = abcbcaaccbbaa
- \bullet P = bbac
- k = 2

Create a table of a simulation for a searching automata using the method of bitwise paralelism in text T having Hamming distance k from pattern P.

- T = accbbaaabcba
- \bullet P = acbb
- k = 2

References I

