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Preface

Text is the simplest and most natural representation of information in a
range of areas. Text is a linear sequence of symbols from some alphabet.
The text is manipulated in many application areas: processing of text in
natural and formal languages, study of sequences in molecular biology, music
analysis, etc.

The design of algorithms that process texts goes back at least thirty
years. In particular, the 1990s produced many new results. This progress is
due in part to genome research, where text algorithms are often used.

The basic problem of text processing concerns string matching. It is
used to access information, and this operation is used very frequently.

We have recognized while working in this area that finite automata are
very useful tools for understanding and solving many text processing prob-
lems. We have found in some cases that well known algorithms are in fact
simulators of non-deterministic finite automata serving as models of these
algorithms. Far this reason the material used in this course is based mainly
on results from the theory of finite automata.

Because the string is a central notion in this area, Stringology has become
the nickname of this subfield of algorithmic research.

We suppose that you, the reader of this tutorial, have basic knowledge
in the following areas:

Finite and infinite sets, operations with sets.
Relations, operations with relations.
Basic notions from the theory of oriented graphs.
Regular languages, regular expressions, finite automata, operations
with finite automata.

The material included in this tutorial corresponds to our point of view
on the respective aspects of Stringology. Some parts of the tutorial are the
results of our research and some of the principles described here have not
been published before.

Prague, November 2004 Authors
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1 Text retrieval systems

Text retrieval systems deal with the representation, storage, organization of,
and access to text documents. The organization of text documents should
provide the user with easy access to documents of interest. The database of
a retrieval system contains a collection of documents. The user can ask for
some documents. He must formulate his needs in the form of a query. The
query is processed by the search engine and the result is a set of selected
documents. This process is depicted in Fig. 1.1. The query is an expression

DATABASE

SEARCH ENGINE

SET OF SELECTED
DOCUMENTSQUERY

Figure 1.1: Retrieval system

containing keywords as basic elements. The simplest operation of the search
engine is the selection of documents containing some keywords of a given
query. In this text, we will concentrate on the algorithms used by search
engines. The simplest task can be formulated in this way:

Given text string T = t1t2 . . . tn and pattern (keyword)
P = p1p2 . . . pm, verify if string P is a substring of text T , where ti and pi

are symbols of the alphabet.
This task is very simple but it is used very frequently. Very fast algo-

rithms are therefore necessary for this task. The design of algorithms that
process texts goes back at least to the 1970s. thirty years. In particular,
the last decade has produced many new results. We have recognized that
finite automata are very useful tools for understanding and solving many
text processing problems. We have found in some cases that well known al-
gorithms are in fact simulators of nondeterministic finite automata serving
as models of these algorithms.

Because the string is the central notion in this area, stringology has
become the nickname of this subfield of algorithmic research. To achieve
fast text searching, we can prepare either the pattern or the text or both.
This preparation is called preprocessing. We can use preprocessing as the
criterion for a general classification of text searching approaches. There are
four categories in this classification:

1. Neither the pattern nor the text is preprocessed. Elementary algo-
rithms belong in this category.

2. The pattern is preprocessed. Pattern matching automata belong in
this category.

3. The text is preprocessed. Factor automata and index methods belong
in this category.
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4. Both the text and the pattern are preprocessed. Signature methods,
pattern matching automata and factor automata belong in this cate-
gory.

This classification is represented in Fig. 1.2.

Text preprocessing
NO YES

Pattern NO Elementary algorithms Factor automata, index
preprocessing methods

Pattern matching Pattern matching automata,
YES automata factor automata,

signature methods

Figure 1.2: Classification of text searching approaches

1.1 Basic notions and notations

Some basic notions will be used in the following chapters. This section
collects definitions of them.

An alphabet is a nonempty finite set of symbols. The alphabet can be
either ordered or unordered. The ordering is supposed to be the total. Most
operations can be used for either ordered or unordered alphabets (general
alphabets). Some specific operations can be used only for totally ordered
alphabets.

A string over a given alphabet is a finite sequence of symbols. Empty
string ε is empty sequence of symbols. We denote by A∗ the set of all strings
over alphabet A (including empty string ε). This set is always infinite. A
set of nonempty strings over alphabet A is denoted by A+. It holds that
A∗ = A+ ∪ {ε}. The complement of alphabet A for some set of symbols
B, B ⊂ A is denoted B = A \ B. Notation a means A \ {a}. The operation
concatenation is defined on the set of strings in this way: if x and y are
strings over A, then the concatenation of these strings is xy. This operation
is associative, i.e. (xy)z = x(yz). On the other hand, it is not commutative,
i.e. xy 6= yx. Empty string ε is the neutral element: xε = εx = x. The
set of strings A∗ over alphabet A is a free monoid with ε as the neutral
element. The length of string |x| is the number of symbols of x. It holds that
|x| ≥ 0, |ε| = 0. We will use integer exponents for a string with repetitions:
a0 = ε, a1 = a, a2 = aa, a3 = aaa, . . ., for a ∈ A and x0 = ε, x1 = x, x2 =
xx, x3 = xxx, . . . , for x ∈ A∗.

Definition 1.1
Set Pref(x), x ∈ A∗, is the set of all prefixes of string x:

Pref(x) = {y : x = yu, u, x, y ∈ A∗}. 2
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Definition 1.2
Set Suff(x), x ∈ A∗, is the set of all suffixes of string x:

Suff(x) = {y : x = uy, u, x, y ∈ A∗}. 2

Definition 1.3
Set Fact(x), x ∈ A∗, is the set of all substrings (factors) of string x:

Fact(x) = {y : x = uyv, u, v, x, y ∈ A∗}. 2

Definition 1.4
Set Sub(x), x ∈ A∗, is the set of all subsequences of string x:

Sub(x) = { a1a2 . . . am : x = y0a1y1a2 . . . amym,
yi ∈ A∗, i = 0, 1, 2, . . . , m, aj ∈ A, j = 1, 2, . . . , m, m ≥ 0}. 2

Definition 1.5
The terms proper prefix, proper suffix, proper factor, proper subsequence
are used for a prefix, suffix, factor, subsequence of string x which is not
equal to x. 2

The definitions of sets Pref, Suff, Fact and Sub can be extended for finite
and infinite sets of strings.

Definition 1.6
Set Pref(X), X ⊂ A∗, is the set of all prefixes of all strings x ∈ X:

Pref(X) = {y : x = yu, x ∈ X, u, x, y ∈ A∗}. 2

Definition 1.7
Set Suff(X), X ⊂ A∗, is the set of all suffixes of all strings x ∈ X:

Suff(X) = {y : x = yu, x ∈ X, w, x, y ∈ A∗}. 2

Definition 1.8
Set Fact(X), X ⊂ A∗, is the set of all substrings (factors) of all strings
x ∈ X:

Fact(X) = {y : x = yu, x ∈ X, u, x, y ∈ A∗}. 2

Definition 1.9
Set Sub(X), X ⊂ A∗, is the set of all subsequences of all strings x ∈ X:

Sub(X) = { a1a2 . . . am : x = y0a1y1a2 . . . amym, x ∈ X, yi ∈ A∗,
i = 0, 1, 2, . . . , m, aj ∈ A, j = 1, 2, . . . , m, m ≥ 0}. 2

The definition of the abovementioned sets can also be extended for approx-
imate cases. In the following definitions D is a metrics, k is the distance.

Definition 1.10
The set of approximate prefixes APref of string x is:

APref(x) = {u : v ∈ Pref(x), D(u, v) ≤ k}. 2

Definition 1.11
The set of approximate suffixes ASuff of string x is:

ASuff(x) = {u : v ∈ Suff(x), D(u, v) ≤ k}. 2
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Definition 1.12
The set of approximate factors AFact of string x is:

AFact(x) = {u : v ∈ Fact(x), D(u, v) ≤ k}. 2

Definition 1.13
The set of approximate subsequences ASub of string x is:

ASub(x) = {u : v ∈ Sub(x), D(u, v) ≤ k}. 2

The term pattern matching is used for both string matching and sequence
matching. The term subpattern matching is used for matching substrings
or subsequences of a pattern.

Definition 1.14
The “don’t care” symbol is a special universal symbol ◦ that matches any
other symbol, including itself.

Definition 1.15 (Basic pattern matching problems)
Given text T = t1t2 . . . tn and pattern P = p1p2 . . . pm, we may define:

1. String matching: verify whether string P is a substring of text T .

2. Sequence matching: verify whether sequence P is a subsequence of
text T .

3. Subpattern matching: verify whether a subpattern of P (substring or
subsequence) occurs in text T .

4. Approximate pattern matching: verify whether string x occurs in text
T so that distance D(P, x) ≤ k for given k < m.

5. Pattern matching with “don’t care” symbols: verify if pattern P con-
taining “don’t care” symbols occurs in text T . 2

Definition 1.16 (Matching a sequence of patterns)
Given text T = t1t2 . . . tn and a sequence of patterns (strings and/or se-
quences) P1, P2, . . . , Ps. Matching of a sequence of patterns P1, P2, . . . , Ps is
a verification whether an occurrence of pattern Pi in text T is followed by
an occurrence of Pi+1, 1 ≤ i < s. 2

Definitions 1.15 and 1.16 define pattern matching problems as decision
problems, because the output is a Boolean value. A modified version of these
problems consists in searching for the first, the last, or all occurrences of a
pattern and moreover the result may be the set of positions of the pattern
in the text.

Instead of just one pattern, one can consider a finite or infinite set of
patterns.

Definition 1.17 (Distances of strings - general alphabets)
Three variants of distances between two strings x and y are defined as the
minimum number of editing operations:
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1. replace (Hamming distance, R-distance),

2. delete, insert and replace (Levenshtein distance, DIR-distance),

3. delete, insert, replace and transpose of neighbour symbols (Damerau
distance, generalized Levenshtein distance, DIRT -distance),

needed to convert string x into string y. 2

The Hamming distance is a metrics on a set of strings of equal length.
The Levenshtein distance and the generalized Levenshtein distance are met-
rics on a set of strings not necessarily of equal length.

Definition 1.18 (Distance of strings - ordered alphabet)
Let A = {a1, a2, . . . , ap} be an ordered alphabet. Let ai, aj be symbols from
alphabet A, then the ∆-distance of ai, aj is definined as

∆(ai, aj) = |i − j|

1. ∆-distance:
Let x, y be strings over alphabet A such that |x| = |y|, then the ∆-
distance of x, y is definined as

∆(x, y) = max
i∈{1..|x|}

∆(xi, yi)

2. Γ-distance:
Let x, y be strings over alphabet A such that |x| = |y|, then the Γ-
distance of x, y is definined as

Γ(x, y) =
∑

i∈{1..|x|}

∆(xi, yi)
2

Definition 1.19 (Approximate pattern matching - ordered alpha-
bet)
Given text T = t1t2 . . . tn and pattern P = p1p2 . . . pm over a given ordered
alphabet A, then we define:

1. ∆-matching:
Find all occurrences of string x in text T so that |x| = |P | and
∆(P, x) ≤ k, where k is a given positive integer.

2. Γ-matching:
Find all occurrences of string x in text T so that |x| = |P | and
Γ(P, x) ≤ k, where k is a given positive integer.

3. (∆, Γ)-matching:
Find all occurrences of string x in text T so that |x| = |P | and
∆(P, x) ≤ l and Γ(P, x) ≤ k, where k, l are given positive integers
such that l ≤ k. 2
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1.2 Classification of pattern matching problems

One–dimensional pattern matching problems for a finite size alphabet can
be classified according to several criteria. We will use six criteria for a clas-
sification leading to a six dimensional space in which one point corresponds
to a particular pattern matching problem.

Let us make a list of all dimensions including possible “values” in each
dimension:

1. Nature of the pattern:

– string,

– sequence.

2. Integrity of the pattern:

– full pattern,

– subpattern.

3. Number of patterns:

– one,

– finite number greater than one,

– infinite number.

4. Way of matching:

– exact,

– approximate matching with Hamming distance (R-matching),

– approximate matching with Levenshtein distance (DIR-matching),

– approximate matching with generalized Levenshtein distance
(DIRT -matching),

– ∆-approximate matching,

– Γ-approximate matching,

– (∆, Γ)-approximate matching.

5. Importance of symbols in a pattern:

– take care above all symbols,

– don’t care above some symbols.

6. Sequences of patterns:

– one,

– finite sequence.

The above classification is represented in Figure 1.3. If we count the
number of possible pattern matching problems, we obtain N = 2·2·3·7·2·2 =
336.

In order to facilitate references to a particular pattern matching problem,
we will use abbreviations for all problems. These abbreviations are summa-
rized in Table 1.1 (D means DIR–matching and G means DIRT–matching,
generalized Levenshtein distance).
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Figure 1.3: Classification of pattern matching problems

Using this method, we can, for example, refer to exact string matching
of one string as an SFOECO problem.

Instead of a single pattern matching problem we will use the notion of
a family of pattern matching problems. In this case we will use symbol
? instead of a particular letter. For example SFO??? is the family of all
problems concerning one full string matching.

Each pattern matching problem has several instances. For example, an
SFOECO problem has the following instances:

1. verify whether a given string occurs in the text or not,

2. find the first occurrence of a given string,

3. find the number of all occurrences of a given string,

4. find all occurrences of a given string and their positions.

If we take into account all possible instances, the number of pattern matching
problems grows further.
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Dimension 1 2 3 4 5 6

S F O E C O
Q S F R D S

I D
G
∆
Γ

(∆, Γ)

Table 1.1: Abbreviations for pattern matching problems

1.3 Two ways of pattern matching

There are two different ways in which matching of patterns can be per-
formed:

- forward pattern matching,
- backward pattern matching.

The basic principle of forward pattern matching is depicted in Fig. 1.4. The

TEXT

PATTERN

Figure 1.4: Forward pattern matching

text and the pattern are matched in the forward direction. This means that
the comparison of symbols is performed from left to right. All algorithms
for forward pattern matching must compare each symbol of the text at least
once. Therefore the lowest time complexity is equal to the length of the
text.

The basic principle of backward pattern matching is depicted in Fig 1.5.

TEXT

PATTERN

Figure 1.5: Backward pattern matching

The comparison of symbols is performed from right to left. There are three
main principles of backward pattern matching:

- looking for a repeated suffix of the pattern,
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- looking for a prefix of the pattern,
- looking for an antifactor (a string which is not a factor) of the pattern.

Algorithms for backward pattern matching allow us to skip some part of the
text and therefore the number of comparisons can be lower than the length
of the text.

1.4 Finite automata

We will use finite automata in all subsequent Chapters as a formalism for
the description of various aspects of pattern matching. In this Section we
introduce basic notions from the theory of finite automata and we also show
some basic algorithms concerning them. The material included is not ex-
haustive and we recommend using the special literature covering this area
in detail.

Definition 1.20 (Deterministic finite automaton)
A deterministic finite automaton (DFA) is quintuple M = (Q, A, δ, q0, F ),
where
Q is a finite set of states,
A is a finite input alphabet,
δ is a mapping from Q × A to Q, (Q × A 7→ Q)
q0 ∈ Q is an initial state,
F ⊂ Q is the set of final states.

Definition 1.21 (Configuration of FA)
Let M = (Q, A, δ, q0, F ) be a finite automaton. A pair (q, w) ∈ Q × A∗

is a configuration of the finite automaton M. Configuration (q0, w) is called
an initial configuration, configuration (q, ε), where q ∈ F , is called a final
(accepting) configuration of the finite automaton M .

Definition 1.22 (Transition in DFA)
Let M = (Q, A, δ, q0, F ) be a deterministic finite automaton. Relation `M∈
(Q × A∗) × (Q × A∗) is called a transition in automaton M . If δ(q, a) = p,
then (q, aw) `M (p, w) for each w ∈ A∗. The k-power of the relation `M will
be denoted by `k

M . Symbols `+
M and `∗

M denote a transitive and a transitive
reflexive closure of relation `M , respectively.

Definition 1.23 (Language accepted by DFA)
We will say that input string w ∈ A∗ is accepted by finite deterministic
automaton M = (Q, A, δ, q0, F ) if (q0, w) `∗

M (q, ε) for some q ∈ F .
Language L(M) = {w : w ∈ T ∗ , (q0, w) `∗ (q, ε), q ∈ F} is the language
accepted by finite automaton M . String w ∈ L(M) if it consists only of
symbols from the input alphabet and there is a sequence of transitions such
that it leads from initial configuration (q0, w) to final configuration (q, ε),
q ∈ F .
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Definition 1.24 (Complete DFA)
Finite deterministic automaton M = (Q, A, δ, q0, F ) is said to be complete
if the mapping δ(q, a) is defined for each pair of states q ∈ Q and input
symbols a ∈ A.

Definition 1.25 (Nondeterministic finite automaton)
A nondeterministic finite automaton (NFA) is quintuple M = (Q, A, δ, q0, F ),
where
Q is a finite set of states,
A is a finite input alphabet,
δ is a mapping from Q × A into the set of subsets of Q,
q0 ∈ Q is an initial state,
F ⊂ Q is the set of final states.

Definition 1.26 (Transition in NFA)
Let M = (Q, A, δ, q0, F ) be a nondeterministic finite automaton. Relation
`M⊂ (Q × A∗) × (Q × A∗) will be called a transition in automaton M if
p ∈ δ(q,a) then (q, aw) `M (p, w), for each w ∈ A∗.

Definition 1.27 (Language accepted by NFA)
String w ∈ A∗ is said to be accepted by nondeterministic finite automaton
M = (Q, A, δ, q0, F ), if there exists a sequence of transitions (q0, w) `∗ (q, ε)
for some q ∈ F . Language L(M) = {w : w ∈ A∗, (q0, w) `∗ (q, ε) for some
q ∈ F} is then the language accepted by nondeterministic finite automaton
M.

Definition 1.28 (NFA with ε-transitions)
A nondeterministic finite automaton with ε-transitions is quintuple M =
(Q, A, δ, q0, F ), where
Q is a finite set of states,
A is a finite input alphabet,
δ is a mapping from Q × (A ∪ {ε}) into the set of subsets of Q,
q0 ∈ Q is an initial state,
F ⊂ Q is the set of final states.

Definition 1.29 (Transition in NFA with ε-transitions)
Let M = (Q, A, δ, q0, F ) be a nondeterministic finite automaton with ε-
transitions. Relation `M⊂ (Q × A∗) × (Q × A∗) will be called a transition
in automaton M if p ∈ δ(q,a), a ∈ A ∪ {ε}, then (q, aw) `M (p, w), for each
w ∈ A∗.

Definition 1.30 (ε−CLOSURE)
Function ε−CLOSURE for finite automaton M = (Q, A, δ, q0, F ) is defined
as:

ε−CLOSURE(q) = {p : (q, ε) `∗ (p, ε), p ∈ Q}.
Definition 1.31 (NFA with a set of initial states)
Nondeterministic finite automaton M with the set of initial states I is quin-
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tuple M = (Q, A, δ, I, F ), where:
Q is a finite set of states,
A is a finite input alphabet,
δ is a mapping from Q × A into the set of subsets of Q,
I ⊂ Q is the non-empty set of initial states,
F ⊂ Q is the set of final states.

Definition 1.32 (Accessible state)
Let M = (Q, A, δ, q0, F ) be a finite automaton. State q ∈ Q is called ac-
cessible if there exists string w ∈ A∗ such that there exists a sequence of
transitions from initial state q0 into state q:

(q0, w) `M (q, ε)

A state which is not accessible is called inaccessible.

Definition 1.33 (Useful state)
Let M = (Q, A, δ, q0, F ) be a finite automaton. State q ∈ Q is called useful
if there exists a string w ∈ A∗ such that there exists a sequence of transitions
from state q into some final state:

(q, w) `M (p, ε), p ∈ F .

A state which is not useful is called useless.

Definition 1.34 (Finite automaton)
Finite automaton (FA) is DFA or NFA.

Definition 1.35 (Equivalence of finite automata)
Finite automata M1 and M2 are said to be equivalent if they accept the
same language, i.e., L(M1) = L(M2).

Definition 1.36 (Sets of states)
Let M = (Q, A, δ, q0, F ) be a finite automaton. Let us define for arbitrary
a ∈ A set Q(a) ⊂ Q as follows:

Q(a) = {q : q ∈ δ(p, a), a ∈ A, p, q ∈ Q}.
Definition 1.37 (Homogenous automaton)
Let M = (Q, A, δ, q0, F ) be a finite automaton and Q(a) be sets of states
for all symbols a ∈ T . If for all pairs of symbols a, b ∈ A, a 6= b, it holds
Q(a)∩Q(b) = ∅, then automaton M is called homogeneous. The collection of
sets {Q(a) : a ∈ A} is for the homogeneous finite automaton a decomposition
on classes having one of these two forms:

1. Q =
⋃

a∈A

Q(a) ∪ {q0} in the case that q0 6∈ δ(q, a) for all q ∈ Q and
all a ∈ A,

2. Q =
⋃

a∈A

Q(a) in the case that q0 ∈ δ(q, a) for some q ∈ Q, a ∈
A. In this case q0 ∈ Q(a).
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Algorithm 1.38
Construction of a nondeterministic finite automaton without ε-transitions
equivalent to a nondeterministic finite automaton with ε-transitions.
Input: Finite automaton M = (Q, A, δ, q0, F ) with ε-transitions.
Output: Finite automaton M ′ = (Q, A, δ′, q0, F

′) without ε-transitions
equivalent to M .
Method:

1. δ′(q, a) =
⋃

p∈ε−CLOSURE(q)

δ(p, a).

2. F ′ = {q : ε−CLOSURE(q) ∩ F 6= ∅, q ∈ Q}. 2

Algorithm 1.39
Construction of a nondeterministic finite automaton with a single initial
state equivalent to a nondeterministic finite automaton with several initial
states.
Input: Finite automaton M = (Q, A, δ, I, F ) with a nonempty set I.
Output: Finite automaton M ′ = (Q′, A, δ′, q0, F ) with a single initial
state q0.
Method: Automaton M ′ will be constructed using the following twosteps:

1. Q′ = Q ∪ {q0}, q0 6∈ Q,

2. δ′(q0, ε) = I,
δ′(q, a) = δ(q, a) for all q ∈ Q and all a ∈ A. 2

The next Algorithm constructs a deterministic finite automaton equivalent
to a given nondeterministic finite automaton. The construction used is called
a subset construction.

Algorithm 1.40
Transformation of a nondeterministic finite automaton to a deterministic
finite automaton.
Input: Nondeterministic finite automaton M = (Q, A, δ, q0, F ).
Output: Deterministic finite automaton M ′ = (Q′, A, δ′, q′0, F

′) such that
L(M) = L(M ′).
Method:

1. Set Q′ = {{q0}} will be defined, state q′0 = {q0} will be treated as
unmarked. (Please note that each state of a deterministic automaton
consists of a set of state of a nondeterministic automaton.)

2. If each state in Q′ is marked then continue with step 4.

3. Unmarked state q′ will be chosen from Q′ and the following operations
will be executed:
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(a) δ′(q′, a) =
⋃

δ(p, a) for p ∈ q′ and for all a ∈ A,

(b) Q′ = Q′ ∪ δ′(q′, a) for all a ∈ A,

(c) state q′ ∈ Q′ will be marked,

(d) continue with step 2.

4. q′0 = {q0}.
5. F ′ = {q′ : q′ ∈ Q′, q′ ∩ F 6= ∅}. 2

Note: Let us mention that all states of the resulting deterministic finite
automaton M ′ are accessible states. (See Def. 1.32)

Definition 1.41 (d–subset)
Let M1 = (Q1, A, δ1, q01, F1) be a nondeterministic finite automaton. Let
M2 = (Q2, A, δ2, q02, F2) be the deterministic finite automaton equivalent
to automaton M1. Automaton M2 is constructed using the standard deter-
minization algorithm based on subset construction (see Alg. 1.40). Every
state q ∈ Q2 corresponds to some subset d of Q1. This subset will be called
a d–subset (deterministic subset). 2

Notational convention:
A d-subset created during the determinization of a nondeterministic finite
automaton has the form: {qi1, qi2, . . . , qin}. If no confusion arises we will
write such d-subset as qi1qi2 . . . qin.

Definition 1.42
A d-subset is simple if it contains just one element. The corresponding state
to it is called a simple state. A d-subset is multiple if it contains more than
one element. The corresponding state to it will be called a multiple state.2

Algorithm 1.43
Construction of a finite automaton for an union of languages.
Input: Two finite automata M1 and M2.
Output: Finite automaton M accepting the language L(M) = L(M1) ∪
L(M2).
Method:

1. Let M1 = (Q1, A, δ1, q01, F1), M2 = (Q2, A, δ2, q02, F2), Q1 ∩ Q2 = ∅.
2. The resulting automaton M = (Q, A, δ, q0, F ) is constructed using the

following steps:

(a) Q = Q1 ∪ Q2 ∪ {q0}, q0 6∈ Q1 ∪ Q2,

(b) δ(q0, ε) = {q01, q02},
δ(q, a) = δ1(q, a) for all q ∈ Q1 and all a ∈ A,
δ(q, a) = δ2(q, a) for all q ∈ Q2 and all a ∈ A.
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3. F = F1 ∪ F2. 2

Algorithm 1.44
Construction of a finite automaton for the intersection of two languages.
Input: Two finite automata M1 = (Q1, A, δ1, q01, F1), M2 = (Q2, A, δ2, q02, F2).
Output: Finite automaton M = (Q, A, δ, q0, F ), accepting language L(M) =
L(M1) ∩ L(M2).
Method:

1. Let Q = {(q01, q02)}. State (q01, q02) will be treated as unmarked.

2. If all states in Q are marked go to step 4.

3. Take any unmarked state q = (qn1, qm2) from Q and perform these
operations:

(a) determine δ((qn1, qm2), a) = (δ1(qn1, a), δ2(qm2, a)) for all a ∈ A,

(b) if both transitions δ1(qn1, a) and δ2(qm2, a) are defined then
Q = Q ∪ (δ1(qn1, a), δ2(am2, a)) and state (δ1(qn1, a), δ2(qm2, a))
will be treated as unmarked only if it is a new state in Q,

(c) state (qn1, qm2) in Q will be treated as marked,

(d) go to step 2.

4. q0 = (q01, q02).

5. F = {q : q ∈ Q, q = (qn1, qm2), qn1 ∈ F, qm2 ∈ F}. 2

1.5 Regular expressions

1.5.1 Definition of regular expressions

Definition 1.45
Regular expression V over alphabet A is defined as follows:

1. ∅, ε, a are regular expressions for all a ∈ A.

2. If x, y are regular expressions over A then:

(a) (x + y) (union)

(b) (x · y) (concatenation)

(c) (x)∗ (closure)

are regular expressions over A.

Definition 1.46
The value h(x) of regular expression x is defined as follows:
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1. h(∅) = ∅, h(ε) = {ε}, h(a) = {a},
2. h(x + y) = h(x) ∪ h(y),

h(x · y) = h(x) · h(y),
h(x∗) = (h(x))∗.

The value of any regular expression is a regular language, and each reg-
ular language can be represented by some regular expression. Unnecessary
parentheses in regular expressions can be avoided by the convention that
precedence is given to regular operations. The closure operator has the
highest precedence, and the union operator has the lowest precedence.

The following axioms are defined for regular expressions:
A1 : x + (y + z) = (x + y) + z (union associativity),
A2 : x · (y · z) = (x · y) · z (concatenation associativity),
A3 : x + y = y + x (union commutativity),
A4 : (x + y) · z = x · z + y · z (distributivity from the right),
A5 : x · (y + z) = x · y + x · z (distributivity from the left),
A6 : x + x = x (union idempotention),
A7 : εx = x (ε is a unitary element for the operation

concatenation),
A8 : ∅x = ∅ (∅ is a zero element for the operation con-

catenation),
A9 : x + ∅ = x (∅ is a zero element for the operation

union),
A10 : x∗ = ε + x∗x
A11 : x∗ = (ε + x)∗

A12 : x = xα + β ⇒ x = βα∗ (solution of left regular equation),
A13 : x = αx + β ⇒ x = α∗β (solution of right regular equation).
It has been proven that all other equalities between regular expressions

can be derived from these axioms.

1.5.2 The relation between regular expressions and finite au-
tomata

It is possible to construct for each regular expression V an equivalent finite
automaton M , which means for such on automaton that h(V ) = L(M).
There are several techniques for building up a finite automaton for a given
regular expression. The method shown here is based on the notion of adja-
cent symbols.

Algorithm 1.47
Construction of an equivalent finite automaton for a given regular expres-
sion.
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Input: Regular expression V .
Output: Finite automaton M = (Q, T, δ, q0, F ) such that h(V ) = L(M).
Method: Let A be an alphabet, over which expression V is defined.

1. Number by numbers 1, 2, ..., n all occurrences of symbols from A in
expression V so that each two occurrences of the same symbol will be
numbered by different numbers. The resultant regular expression will
be denoted by V ′.

2. Build up the set of start symbols
Z = {xi : x ∈ A, some string from h(V ′) may start with symbol xi}.

3. Construct the set P of adjacent symbols:
P = {xiyj : symbols xi and yj may be adjacent in some string from
h(V ′)}.

4. Construct set of final symbols F in the following way:
F = {xi: some string from h(V ′) may end with symbol xi}.

5. Set of states of the finite automaton
Q = {q0} ∪ {xi : x ∈ T, i ∈ <1, n>}.

6. Mapping δ will be constructed in the following way:

(a) δ(q0, x) includes xi for each xi ∈ Z such that xi was created by
the numbering of x.

(b) δ(xi, y) includes yj for each couple xiyj ∈ P such that yj was
created by the numbering of y.

(c) Set F is the set of final states.
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2 Forward pattern matching

The basic principles of the forward pattern matching approach are discussed
in this Chapter. We will discuss two approaches from the classification
shown in Fig. 1.2:

1. Neither the pattern nor the text is preprocessed. We will introduce
two programs implementing elementary algorithms for exact and ap-
proximate pattern matching using Hamming distance, in both cases
for a single pattern.

2. The pattern is preprocessed but the text is not preprocessed.

The preprocessing of the pattern is divided into several steps. The first step
is the construction of a nondeterministic finite automaton which will serve
as a model of the solution of the pattern matching problem in question.
Using this model as a basis for the next step, we can construct either ae
deterministic finite automaton or a simulator, both equivalent to the basic
model. If the result of the preprocessing is a deterministic finite automaton
then the pattern matching is preformed so that the text is read as the
input of the automaton. Both the nondeterministic finite automaton as a
model and the equivalent deterministic finite automaton are constructed as
automata that are able to read any text. An occurrence of the pattern in
the text is found when the automaton is reaching a final state. Finding the
pattern is then reported and reading of the text continues in order to find
all following occurrences of the pattern including overlapping cases.

This approach using deterministic finite automata has one advantage:
each symbol of the text is read just once. If we take the number of steps
performed by the automaton as a measure of the time complexity of the
forward pattern matching then it is equal to the length of the text. On
the other hand, the use of deterministic finite automata may have space
problems with space complexity. The number of states of a deterministic
finite automaton may in some cases be very large in comparison with the
length of the pattern. Approximate pattern matching in an example of this
case. It is a limitation of this approach. A solution of this “space” problem
is the use of simulators of nondeterministic finite automata. We will show
three types of such simulators in the next Chapters:

1. use of the “fail” function,

2. dynamic programming, and

3. bit parallelism.

The space complexity of all of these simulators is acceptable. The time
complexity is greater than for deterministic finite automata in almost all
cases. It is even quadratic for dynamic programming.

Let us recall that text T = t1t2 . . . tn and pattern P = p1p2 . . . pm, and
all symbols of both the text and the pattern are from alphabet A.
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2.1 Elementary algorithm

The elementary algorithm compares the symbols of the pattern with the
symbols of the text. The principle of this approach is shown in Fig. 2.1.

var TEXT[1..N] of char;
PATTERN[1..M] of char;
I,J: integer;

begin
I:=0;
while I≤ N-M do
begin

J:=0;
while J<M and PATTERN[J+1]=TEXT[I+J+1] do J:=J+1;
if J=M then output(I+1);
I:=I+1; {length of shift=1}

end;
end;

Figure 2.1: Elementary algorithm for exact matching of one pattern

The program presented here implements the algorithm performing the
exact matching of one pattern. The meanings of the variables used in the
program are represented in Fig. 2.2. When the pattern is found then the

Figure 2.2: Meaning of variables in the program from Fig. 2.1

value of variable I is the index of the position just before the first symbol
of the occurrence of the pattern in the text. Comment {length of shift=1}
means that the pattern is shifted one position to the right after each mis-
match or finding the pattern. The term shift will be used later.

We will use the number of symbol comparisons (see expression
PATTERN[J+1]=TEXT[I+J+1]) as the measure for the complexity of the
algorithm. The maximum number of symbol comparisons for the elementary
algorithm is

NC = (n − m + 1) ∗ m, (1)

where n is the length of the text and m is the length of the pattern. We
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assume that n � m. The time complexity is O(n ∗ m). The maximum
number of comparisons NC is reached for text T = an−1b and for pattern
P = am−1c, where a, b, c ∈ A, c 6= a. Elementary algorithm has no extra
space requirements.

The experimental measurements show that the number of comparisons
of elementary algorithm for texts written in natural languages is linear with
respect to the length of the text. It has been observed that a mismatch
of the symbols is reached very soon (at the first or second symbol of the
pattern). The number of comparisons in this case is:

NCnat = CL ∗ (n − m + 1), (2)

where CL is a constant given by the experiments for given language L.
The value of this constant for English is CE = 1.07. Thus, the elementary
algorithm has linear time complexity (O(n)) for the pattern matching in
natural language texts.

The elementary algorithm can be used for matching a finite set of pat-
terns. In this case, the algorithm is used for each pattern separately. The
time complexity is

O(n ∗
s∑

i=1

mi),

where s is the number of patterns in the set and mi is the length of the i–th
pattern, i = 1, 2, . . . , s.

The next variant of the elementary algorithm is for approximate pattern
matching of one pattern using Hamming distance. It is shown in Fig. 2.3.

2.2 Pattern matching automata

In this Section, we will show basic models of pattern matching algorithms.
Moreover, we will show how to construct models for more complicated prob-
lems using models of simple problems.

Notational convention:
We replace names of states qi, qij by i, ij, respectively, in subsequent tran-
sition diagrams. The reason for this is to improve the readability.

2.2.1 Exact string and sequence matching

The model of the algorithm for exact string matching (SFOECO problem)
for pattern P = p1p2p3p4 is shown in Fig. 2.4. The SFOECO nondetermin-
istic finite automaton is constructed in this way:

1. Create the automaton accepting pattern P .

2. Insert the selfloop for all symbols from alphabet A in the initial state.
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var TEXT[1..N] of char;
PATTERN[1..M] of char;
I,J,K,NERR: integer;
K:=number of errors allowed;

begin
I:=0;
while I≤ N-M do
begin

J:=0;
NERR:=0
while J<M and NERR<K do
begin if PATTERN[J+1]6= TEXT[I+J+1] then NERR:=NERR+1;

J:=J+1
end;
if J=M then output(I+1);
I:=I+1; {length of shift=1}

end;
end;

Figure 2.3: Elementary algorithm for approximate matching of one pattern
using Hamming distance

A

p1 p2 p3 p40 1 2 3 4

Figure 2.4: Transition diagram of NFA for exact string matching (SFOECO
automaton) for pattern P = p1p2p3p4

Algorithm 2.1 describes the construction of the SFOECO automaton in
detail.

Algorithm 2.1
Construction of the SFOECO automaton.
Input: Pattern P = p1p2 . . . pm.
Output: SFOECO automaton M .
Method: NFA M = ({q0, q1, . . . , qm}, A, δ, q0, {qm}), where mapping δ is
constructed in the following way:
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1. qi+1 ∈ δ(qi, pi+1) for 0 ≤ i < m,

2. q0 ∈ δ(q0, a) for all a ∈ A. 2

The SFOECO automaton has m + 1 states for a pattern of length m.

A model of the algorithm for exact sequence matching (QFOECO prob-
lem) for pattern P = p1p2p3p4 is shown in Fig. 2.5. The QFOECO nonde-

p2 p3 p4A

p1 p2 p3 p40 1 2 3 4

Figure 2.5: Transition diagram of NFA for exact sequence matching
(QFOECO automaton) for pattern P = p1p2p3p4

terministic finite automaton is constructed as the SFOECO automaton with
the addition of some new selfloops. The new selfloops are added in all states
but the initial and final ones for all symbols, with the exception of the sym-
bol for which there is already the transition to the next state. Algorithm 2.2
describes the construction of the QFOECO automaton in detail.

Algorithm 2.2
Construction of the QFOECO automaton.
Input: Pattern P = p1p2 . . . pm.
Output: QFOECO automaton M .
Method: NFA M = ({q0, q1, . . . , qm}, A, δ, q0, {qm}), where mapping δ is
constructed in the following way:

1. qi ∈ δ(qi, a) for 0 < i < m and all a ∈ A and a 6= pi+1.

2. q0 ∈ δ(q0, a) for all a ∈ A,

3. qi+1 ∈ δ(qi, pi+1) for 0 ≤ i < m. 2

The QFOECO automaton has m + 1 states for a pattern of length m.

2.2.2 Substring and subsequence matching

A model of the algorithm for exact substring matching (SSOECO problem)
for pattern P = p1p2p3p4 is shown in Fig. 2.6.

Notational convention:
The following nondeterministic finite automata have a regular structure. For
clarity of expandion, we will use the following terminology:
State qij is at depth i (a position in the pattern) and on level j.
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The SSOECO nondeterministic finite automaton is constructed by com-
posing the collection of m copies of SFOECO automata. The composition
is done by inserting ε-transitions. These ε-transitions are inserted in the
“diagonal” direction. They start from the initial state of the zero level and
are directed to the next level of it. The next ε-transitions always start from
the end state of the previous ε-transition. As the final step, the inacces-
sible states are removed. Algorithm 2.3 describes the construction of the
SSOECO automaton in detail.

Figure 2.6: Transition diagram of NFA for exact substring matching
(SSOECO automaton) for pattern P = p1p2p3p4

Algorithm 2.3
Construction of the SSOECO automaton.
Input: Pattern P = p1p2 . . . pm, SFOECO automaton M ′ = (Q′, A, δ′, q′0, F

′

)
for P .
Output: SSOECO automaton M .
Method:

1. Create a sequence of m instances of SFOECO automata for pattern P
M ′

j = (Q′
j , A, δ′j , q0j , F

′

j ) for j = 0, 1, 2, . . . , m− 1. Let the states in Q
′

j

be
q0j , q1j , . . . , qmj .

2. Construct automaton M = (Q, A, δ, q0, F ) as follows:
Q =

⋃m−1
j=0 Q

′

j ,
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δ(q, a) = δ
′

j(q, a) for all q ∈ Q, a ∈ A, j = 0, 1, 2, . . . , m − 1,
δ(q00, ε) = {q11},
δ(q11, ε) = {q22},

...
δ(qm−2,m−2, ε) = {qm−1,m−1},
q0 = q00,
F = Q \ {q00, q11, . . . , qm−1,m−1}.

3. Remove all states which are inaccessible from state q0. 2

The SSOECO automaton has (m+1)+m+(m−1)+. . .+2 = m(m+3)
2 states.

The SSOECO automaton can be minimized. The direct construction of the
main part of the minimized version of this automaton is described by Algo-
rithm 3.14 (construction of factor automaton) and shown in Example 3.15.
It is enough to add selfloops in the initial state for all symbols of the al-
phabet in order to obtain the SSOECO automaton. The advantage of the
nonminimized SSOECO automaton is that the unique state corresponds to
each substring of the pattern.

A model of the algorithm for exact subsequence matching (QSOECO
problem) for pattern P = p1p2p3p4 is shown in Fig. 2.7. Construction of
the QSOECO nondeterministic finite automaton starts in the same way as
for the SSOECO automaton. The final part of this construction is addition
of the ε-transitions. The “diagonal” ε-transitions star in all states having
transitions to following states on levels from 0 to m − 1. Algorithm 2.4
describes the construction of the QSOECO automaton in detail.

Algorithm 2.4
Construction of the QSOECO automaton.
Input: Pattern P = p1p2 . . . pm, QFOECO automaton M ′ = (Q′, A, δ

′

, q
′

0, F
′

)
for P .
Output: QSOECO automaton M .
Method:

1. Create a sequence of m instances of QFOECO automata for pattern
P M

′

j = (Q
′

j , A, δ
′

j , q0j , F
′

j ) for j = 0, 1, 2, . . . , m − 1. Let the states in

Q
′

j be
q0j , q1j , . . . , qmj .

2. Construct automaton M = (Q, A, δ, q0, F ) as follows:
Q =

⋃m−1
j=0 Q

′

j ,

δ(q, a) = δ
′

j(q, a) for all q ∈ Q, a ∈ A, j = 0, 1, 2, . . . , m − 1,
δ(qij , ε) = {qi+1,j+1}, for i = 0, 1, . . . , m − 1, j = 0, 1, 2, . . . , m − 1,
q0 = q00,
F = Q \ {q00, q11, . . . , qm−1,m−1}.

3. Remove the states which are inaccessible from state q0. 2

29



Figure 2.7: Transition diagram of NFA for exact subsequence matching
(QSOECO automaton) for pattern P = p1p2p3p4

The QSOECO automaton has (m + 1) + m + (m − 1) + . . . + 2 = m(m+3)
2

states.

2.2.3 Approximate string matching - general alphabet

We will discuss three variants of approximate string matching corresponding
to the three definitions of distances between strings in the general alphabet:
Hamming distance, Levenshtein distance, and generalized Levenshtein dis-
tance.

Note:
The notion level of the state corresponds to the number of errors in the
nondeterministic finite automata for approximate pattern matching.

2.2.3.1 Hamming distance Let us recall that the Hamming distance
(R-distance) between strings x and y is equal to the minimum number of
editing operations replace which are necessary to convert string x into string
y (see Def. 1.17). This type of string matching using R-distance is called
string R-matching.

A model of the algorithm for string R-matching (SFORCO problem) for
string P = p1p2p3p4 is shown in Fig. 2.8. The construction of the SFORCO
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nondeterministic finite automaton again uses a composition of SFOECO
automata similarly to the construction of SSOECO or QSOECO automata.
The composition is done in this case by inserting “diagonal” transitions
starting in all states having transitions to next states on levels from 0 to k−2.
The diagonal transitions are labelled by all symbols for which no transition
to the next state exists. These transitions represent replace operations.
Algorithm 2.5 describes the construction of the SFORCO automaton in
detail.

Figure 2.8: Transition diagram of NFA for string R-matching (SFORCO
automaton) for pattern P = p1p2p3p4, k = 3

Algorithm 2.5
Construction of the SFORCO automaton.
Input: Pattern P = p1p2 . . . pm, k, SFOECO automaton M

′

= (Q
′

, A, δ
′

,
q
′

0, F
′

) for P .
Output: SFORCO automaton M .
Method:

1. Create a sequence of k + 1 instances of SFOECO automata
M

′

j = (Q
′

j , A, δ
′

j , q
′

0j , F
′

j ) for j = 0, 1, 2, . . . , k. Let states in Q
′

j be
q0j , q1j , . . . , qmj .

2. Construct SFORCO automaton M = (Q, A, δ, q0, F ) as follows:
Q =

⋃k
j=0 Q

′

j ,
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δ(q, a) = δ
′

j(q, a) for all q ∈ Q, a ∈ A, j = 0, 1, 2, . . . , k,
δ(qij , a) = {qi+1,j+1}, for all i = 0, 1, . . . , m − 1, j = 0, 1, 2, . . . , k − 1,

a ∈ A \ {pi+1},
q0 = q00,
F =

⋃k
j=0 F

′

j .

3. Remove all states which are inaccessible from state q0. 2

The SFORCO automaton has (m + 1) + m + (m − 1) + . . . + m − k + 1 =
m(k+1)+1−(k(k−1))

2 states.

2.2.3.2 Levenshtein distance Let us recall that the Levenshtein dis-
tance (DIR distance) between strings x and y is equal to the minimum
number of editing operations delete, insert and replace which are necessary
to convert string x into string y (see Def. 1.17). This type of string matching
using DIR-distance is called string DIR-matching. A model of the algorithm
for string DIR-matching (SFODCO problem) for the string P = p1p2p3p4

is shown in Fig. 2.9. Construction of the SFODCO nondeterministic finite
automaton is performed by an extension of the SFORCO automaton. The
extension is done by the following two operations:

1. Adding ε-transitions parallel to the “diagonal” transition of the
SFORCO automaton. These represent delete operations.

2. Adding “vertical” transitions starting in all states as ε-transitions. La-
belling added “vertical” transitions is the same as for diagonal transi-
tions. The “vertical” transitions represent insert operations.

Algorithm 2.6 describes the construction of the SFODCO automaton in
detail.

Algorithm 2.6
Construction of the SFODCO automaton.
Input: Pattern P = p1p2 . . . pm, k, SFORCO automaton M

′

= (Q, A, δ
′

,
q0, F ) for P .
Output: SFODCO automaton M for P .
Method: Let states in Q be
q00, q10, q20, . . . , qm0,

q11, q21, . . . , qm1,
...
qk,k, . . . , qmk.

Construct SFODCO automaton M = (Q, A, δ, q0, F ) as follows:
δ(q, a) = δ′(q, a) for all q ∈ Q, a ∈ A,
δ(qij , ε) = {qi+1,j+1}, for i = 0, 1, . . . , m − 1, j = 0, 1, 2, . . . , k − 1,
δ(qij , a) = {qi,j+1}, for all i = 1, 2, . . . , m − 1, j = 0, 1, 2, . . . , k − 1, a ∈
A \ {pi+1}. 2
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Figure 2.9: Transition diagram of NFA for string DIR-matching (SFODCO
automaton) for pattern P = p1p2p3p4, k = 3

2.2.3.3 Generalized Levenshtein distance Let us recall that the gen-
eralized Levenshtein distance (DIRT -distance) between strings x and y is
equal to the minimum number of editing operations delete, insert, replace
and transpose which are necessary to convert string x into string y (see
Def 1.17). This type of string matching using DIRT -distance is called string
DIRT -matching.

A model of the algorithm for string DIRT -matching (SFOGCO prob-
lem) for pattern P = p1p2p3p4 is shown in Fig. 2.10. Construction of the
SFOGCO nondeterministic finite automaton is performed by an extension of
the
SFODCO automaton. The extension is done by adding the “flat diagonal”
transitions representing transpose operations of neighbor symbols. Algo-
rithm 2.7 describes the construction of the SFOGCO automaton in detail.

Algorithm 2.7
Construction of the SFOGCO automaton.
Input: Pattern P = p1p2 . . . pm, k, SFODCO automaton
M

′

= (Q
′

, A, δ
′

, q0, F ) for P .
Output: SFOGCO automaton M for P .
Method: Let states in Q

′

be
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Figure 2.10: Transition diagram of NFA for string DIRT -matching
(SFOGCO automaton) for pattern P = p1p2p3p4, k = 3

q00, q10, q20, . . . , qm0,
q11, q21, . . . , qm1,

...
qkk, . . . , qmk.

Construct SFOGCO automaton M = (Q, A, δ, q0, F ) as follows:
Q = Q

′ ∪ {rij : j = 1, 2, . . . , k, i = j − 1, j, . . . , m − 2},
δ(q, a) = δ

′

(q, a) for all q ∈ Q, a ∈ A ∪ {ε},
δ(qij , a) = rij , j = 1, 2, . . . , k, i = j − 1, j, . . . , m − 2, if δ(qi+1,j , a) = qi+2,j ,
δ(rij , a) = qi+2,j+1, j = 1, 2, . . . , k, i = j−1, j, . . . , m−2, if δ(qij , a) = qi+1,j .

2

2.2.4 Approximate string matching - ordered alphabet

We will discuss three variants of approximate string matching corresponding
to the three definitions of distances between strings in ordered alphabets:
∆-distance, Γ-distance, and (∆, Γ)-distance. The notation introduced in the
following definition will be used in this Section.

Definition 2.8
Let A be an ordered alphabet, A = {a1, a2, . . . , a|A|}. We denote following
sets in this way:

aj
i = {ai−j , ai+j},
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aj+
i = {ai−1, ai−2, . . . , ai−j , ai+1, ai+2, . . . , ai+j},

aj∗
i = aj+

i ∪ {ai}.

Some elements of these sets may be missing when ai is close either to the
beginning or to the end of ordered alphabet A. 2

The definition is presented in Fig. 2.11.
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Figure 2.11: Visualisation of aj
i , a

j+
i , aj∗

i from Definition 2.8, j = 2

2.2.4.1 ∆–distance Let us note that two strings x and y have ∆-distance
equal to k if the symbols on the equal positions have maximum ∆-distance
equal to k (see Def. 1.18). This type of string matching using ∆-distance is
called string ∆-matching (see Def. 1.19).

A model of the algorithm for string ∆-matching (SFO∆CO problem)
for string P = p1p2p3p4 is shown in Fig. 2.12.

The construction of the SFO∆CO nondeterministic finite automaton is
based on the composition of k +1 copies of the SFOECO automaton with a
simple modification. The modification consists in changing the “horizontal”
transitions in all copies but the first change is to transitions for all symbols
in p∗i , i = 2, 3, . . . , m. The composition is done by inserting “diagonal”
transitions having different “angles” and starting in all non-final states of
all copies but the last one. They lead to all following next copies. The
inserted transitions represent replace operations. Algorithm 2.9 describes
the construction of the SFO∆CO automaton in detail.

Algorithm 2.9
Construction of SFO∆CO automaton
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Figure 2.12: Transition diagram of NFA for string ∆-matching (SFO∆CO
problem) for pattern P = p1p2p3p4

Input: Pattern P = p1p2 . . . pm, k, SFOECO automaton
M

′

= (Q
′

, A, δ
′

, q
′

0, F
′

) for P .
Output: SFO∆CO automaton M .
Method:

1. Create a sequence of k + 1 instances of SFOECO automata
M

′

j = (Q
′

j , A, δ
′

j , q
′

0j , F
′

j ) for j = 0, 1, 2, . . . , k. Let states in Q
′

j are
q0j , q1j , . . . , qmj .

2. Construct SFO∆CO automaton M = (Q, A, δ, q0, F ) as follows:
Q =

⋃k
j=0 Q

′

j ,

δ(q, a) = δ
′

0(q, a) for all q ∈ Q′
0, a ∈ A,

δ(qij , b) = δ′j(qi, pi+1) for all b ∈ p∗i+1, i = 1, 2, . . . , m − 1, j =
1, 2, . . . , k − 1,
δ(qij , a) = {qi+1,j+1, qi+1,j+2, . . . , qi+1,k}, for all i = 0, 1, . . . , m − 1,
j = 0, 1, 2, . . . , k − 1, a ∈ pk

i+1,
q0 = q00,
F =

⋃m
j=0 F

′

j .

3. Remove all states which are inaccessible from state q0. 2

The SFO∆CO automaton has m(k + 1) + 1 states.

2.2.4.2 Γ-distance Let us note that two strings x and y have Γ-distance
equal to k if the symbols on the equal positions have ∆-distance less or equal
to k and the sum of all these ∆-distances is less or equal to k. The ∆-distance
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may be equal to Γ-distance (see Def. 1.18). This type of string matching
using Γ-distance is called string Γ-matching (see Def. 1.19).

Model of algorithm for string Γ-matching (SFOΓCO problem) for string
P = p1p2p3p4 is shown in Fig. 2.13. Construction of the SFOΓCO nonde-
terministic finite automaton is based on composition of k + 1 copies of the
SFOECO automaton. The composition is done by insertion of “diagonal”
transitions having different “angles” and starting in all non-final states of
the all copies but the last one. They are leading to all next copies. The
inserted transitions represent replace operations. Algorithm 2.11 describes
the construction of the SFOΓCO automaton in detail.

Figure 2.13: Transition diagram of NFA for string Γ-matching (SFOΓCO
problem) for pattern P = p1p2p3p4, k = 3

Algorithm 2.10
Construction of SFOΓCO automaton.
Input: Pattern P = p1p2 . . . pm, k, SFOECO automaton
M

′

= (Q
′

, A, δ
′

, q
′

0, F
′

) for P .
Output: SFOΓCO automaton M .
Method:

1. Create a sequence of k + 1 instances of SFOECO automata
M

′

j = (Q
′

j , A, δ
′

j , q
′

0j , F
′

j ) for j = 0, 1, 2, . . . , k. Let states in Q
′

j are
q0j , q1j , . . . , qmj .

2. Construct SFOΓCO automaton M = (Q, A, δ, q0, F ) as follows:
Q =

⋃k
j=0 Q

′

j ,

δ(q, a) = δ
′

j(q, a) for all q ∈ Q, a ∈ A, j = 0, 1, 2, . . . , k,
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δ(qij , a) = {qi+1,j+1, qi+1,j+2, . . . , qi+1,k}, for all i = 0, 1, . . . , m − 1,
j = 0, 1, 2, . . . , k − 1, a ∈ pk

i+1,
q0 = q00,
F =

⋃m
j=0 F

′

j .

3. Remove all states which are inaccessible from state q0. 2

The SFOΓCO automaton has m(k + 1) + 1 states.

2.2.4.3 (∆, Γ)-distance Let us note that two strings x and y have Γ
distance if the symbols on the equal positions have ∆-distance less or equal
to l and the sum of these ∆-distances is less or equal to k. The ∆-distance is
strictly less than the Γ-distance (see Def. 1.18). This type of string match-
ing using (∆, Γ) distance is called string (∆, Γ) matching (see Def. 1.19).
A model of the algorithm for string (∆, Γ) matching (SFO(∆, Γ)CO prob-
lem) for the string P = p1p2p3p4 is shown in Fig. 2.14. Construction of the

Figure 2.14: Transition diagram of NFA for string (∆, Γ)-matching
(SFO(∆, Γ)CO problem) for pattern P = p1p2p3p4, l = 2, k = 3

SFO(∆, Γ)CO nondeterministic finite automaton is similar to the construc-
tion of the SFOΓCO automaton. The only difference is that the number
of “diagonal” transitions is limited by l. Algorithm 2.11 describes the con-
struction of the SFO(∆, Γ)CO automaton in detail.

Algorithm 2.11
Construction of the SFO(∆, Γ)CO automaton.
Input: Pattern P = p1p2 . . . pm, k, l, SFOECO automaton for P .
Output: SFO(∆, Γ)CO automaton M .
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Method: Let M
′

= (Q
′

, A, δ
′

, q
′

0, F
′

) be a SFOECO automaton for given
pattern P .

1. Create a sequence of k + 1 instances of SFOECO automata
M

′

j = (Q
′

j , A, δ
′

j , q
′

0j , F
′

j ) for j = 0, 1, 2, . . . , k. Let states in Q
′

j be
q0j , q1j , . . . , qmj .

2. Construct the SFO(∆, Γ)CO automaton M = (Q, A, δ, q0, F ) as fol-
lows:
Q =

⋃k
j=0 Q

′

j ,

δ(q, a) = δ
′

j(q, a) for all q ∈ Q, a ∈ A, j = 1, 2, . . . , m,
δ(qij , a) = {qi+1,j+1, qi+1,j+2, . . . , qi+1,j+l}, for all i = 0, 1, . . . , m − 1,
j = 0, 1, 2, . . . , l − 1, a ∈ pl

i+1,
q0 = q00,
F =

⋃m
j=0 F

′

j .

3. Remove all states which are inaccessible from state q0.

The SFO(∆, Γ)CO automaton has less than m(k + 1) + 1 states. 2

2.2.5 Approximate sequence matching

Figure 2.15: Transition diagram of NFA for sequence R-matching
(QFORCO automaton)
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Figure 2.16: Transition diagram of NFA for sequence DIR-matching
(QFODCO automaton)

Here we discuss six variants of approximate sequence matching in which
the following distances are used: Hamming distance, Levenshtein distance,
generalized Levenshtein distance, ∆-distance, Γ-distance, and (∆, Γ)-distance.
There are two ways of constructing nondeterministic finite automata for ap-
proximate sequence matching:

- The first way is to construct a QFO?CO nondeterministic finite au-
tomaton by the corresponding algorithms for approximate string match-
ing, to which we give the QFOECO automaton as the input.

- The second way is to transform a SFO?CO automaton to a QFO?CO
automaton by adding self loops for all symbols to all non-initial states
that have at least one outgoing transition, as shown in Algorithm 2.12.

Algorithm 2.12
Transformation of an SFO?CO automaton to a QFO?CO automaton.
Input: SFO?CO automaton M ′ = (Q′, A, δ′, q′0, F

′).
Output: QFO?CO automaton M .
Method: Construct automaton M = (Q, A, δ, q0, F ) as follows:

1. Q = Q′.

2. δ(q, a) = δ′(q′, a) for each q ∈ Q, a ∈ A ∪ {ε}.

40



Figure 2.17: Transition diagram of NFA for sequence DIR T -matching
(QFOGCO automaton)

3. δ(q, a) = δ′(q′, a)∪{q} for all such q ∈ Q that δ(q, a) 6= ∅, a ∈ pi, where
pi is the label of the outgoing transition from state q to the next state
at the same level.

4. q0 = q′0.

5. F = F ′. 2

Transition diagrams of the resulting automata are depicted in Figs. 2.15,
2.16 and 2.17 for pattern P = p1p2p3p4, k = 3.

2.2.6 Matching of finite and infinite sets of patterns

A model of the algorithm for matching a finite set of patterns is constructed
as the union of NFA for matching the individual patterns.

As an example we show the model for exact matching of the set of
patterns P = {p1p2p3, p4p5, p6p7p8} (SFFECO problem). This is shown in
Fig. 2.18. This automaton is in some contexts called dictionary matching
automaton. A dictionary is a finite set of strings.

The operation union of nondeterministic finite automata is the general
approach for the family of matching of finite set of patterns (??F??? family).
Moreover, the way of matching of each individual pattern must be defined.
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Figure 2.18: Transition diagram of the nondeterministic finite automaton
for exact matching of the finite set of strings P = {p1p2p3, p4p5, p6p7p8}
(SFFECO automaton)

The next algorithm describes this approach and assumes that the way
of matching is fixed (exact, approximate, . . . ).

Algorithm 2.13
Construction of the ??F??? automaton.
Input: A set of patterns with a specification of the way of matching
P = {P1(w1), P2(w2), . . ., Pr(wr)}, where P1, P2, . . . , Pr are patterns and
w1, w2, . . . , wr are specifications of the ways of matching them.
Output: The ??F??? automaton.
Method:

1. Construct an NFA for each pattern Pi, 1 ≤ i ≤ r, with respect to the
specification of matching wi.

2. Create the NFA for the language which is the union of all input lan-
guages of the automata constructed in step 1. The resulting automaton
is the ??F??? automaton. 2

Example 2.14
Let the input to Algorithm 2.13 be P = {abc(SFOECO), def(QFOECO),
xyz(SSOECO)}. The result of step 1 of Algorithm 2.13 is shown in Fig. 2.19.

The transition diagram of the final

{

S
Q

} {

F
S

}

OECO automaton is

shown in Fig. 2.20. 2

The model of the algorithm for matching an infinite set of patterns is
based on a finite automaton accepting this set. The infinite set of patterns
is in this case defined by a regular expression. Let us present the exact
matching of an infinite set of strings (SFIECO problem). The construction
of the SFIECO nondeterministic finite automaton is performed in two steps.
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Figure 2.19: Transition diagram of nondeterministic finite automata for
individual patterns from Example 2.14

In the first step, a finite automaton accepting the language defined by the
given regular expression is constructed. The selfloop in its initial state for
all symbols from the alphabet is added in the second step. Algorithm 2.15
describes the construction of the SFIECO automaton in detail.

Algorithm 2.15
Construction of the SFIECO automaton.
Input: Regular expression R describing a set of strings over alphabet A.
Output: SFIECO automaton M .
Method:

1. Construct finite automaton M ′ = (Q, A, δ′, q0, F ) such that L(M ′) =
h(R), where h(R) is the value of the regular expression R.

2. Construct nondeterministic finite automaton M = (Q, A, δ, q0, F ), where
δ(q, a) = δ′(q, a) for all q ∈ Q\{q0}, a ∈ A ∪ {ε},
δ(q0, a) = δ′(q0, a) ∪ {q0} for all a ∈ A. 2
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Figure 2.20: Transition diagram of the resulting finite automaton for the set
of patterns P from Example 2.14

Example 2.16
Let the regular expression R = ab∗c+bc be given over alphabet A = {a, b, c}.
The result of step 1 of Algorithm 2.15 is shown in Fig. 2.21a. The final result
of Algorithm 2.15 is shown in Fig. 2.21b. 2

The construction of the QFIECO nondeterministic finite automaton
starts, as for the SFIECO automaton, by the construction of the finite
automaton accepting the language defined by the given regular expression.
There are added selfloops for all symbols from the alphabet to the initial
state and to all states having outgoing transitions for more than one symbol.
The selfloops to all states having only one outgoing transition (for symbol
a) are added for all symbols but symbol a. Algorithm 2.17 describes the
construction of the QFIECO automaton in detail.

Algorithm 2.17
Construction of the QFIECO automaton.
Input: Regular expression R describing a set of strings over alphabet A.
Output: The QFIECO automaton.
Method:

1. Construct finite automaton M
′

= (Q, A, δ
′

, q0, F ) such that L(M ′) =
h(R), where h(R) is the value of the regular expression R.

2. Construct nondeterministic finite automaton M = (Q, A, δ, q0, F ) where
δ(q, a) = δ

′

(q, a) for all q ∈ Q, a ∈ A,
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Figure 2.21: Transition diagram of the finite automata of Example 2.16

δ(q, a) = δ
′

(q, a)∪{q} for all q ∈ Q, such that δ(q, a) 6= ∅, a ∈ A \ {a},
where there is an outgoing transition from state q for symbol a only,
δ(q, a) = δ′(q, a) ∪ {q} for all q ∈ Q and a ∈ A such that δ(q, a) 6= ∅
for more than one symbol a ∈ A. 2

Example 2.18
Let a regular expression be R = ab∗c + bc over alphabet A = {a, b, c}.
The result of Algorithm 2.17 is the automaton having transition diagram
depicted in Fig. 2.22. 2

2.2.7 Pattern matching with “don’t care” symbols

Let us recall that the “don’t care” symbol ◦ is the symbol matching any
other symbol from alphabet A including itself. The transition diagram of
the nondeterministic finite automaton for exact string matching with the
don’t care symbol (SFOEDO problem) for pattern P = p1p2 ◦ p4 is shown
in Fig. 2.23.

An interesting point of this automaton is the transition from state 2
to state 3 corresponding to the don’t care symbol. This is in fact a set of
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Figure 2.22: Transition diagram of the resulting QFIECO automaton from
Example 2.18

Figure 2.23: Transition diagram of the nondeterministic finite automaton for
exact string matching with the don’t care symbol (SFOEDO automaton)
for pattern P = p1p2 ◦ p4

transitions for all symbols of alphabet A. The rest of the automaton is the
same as for the SFOECO automaton.

The transition diagram of the nondeterministic finite automaton for ex-
act sequence matching with the don’t care symbol (QFOEDO problem) for
the pattern P = p1p2 ◦ p4 is shown in Fig. 2.24.

Figure 2.24: Transition diagram of the nondeterministic finite automaton for
exact sequence matching with don’t care symbol (QFOEDO automaton)
for pattern P = p1p2 ◦ p4
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The transition for the don’t care symbol is the same as for string match-
ing. However, the rest of the automaton is a slightly changed QFOECO
automaton. The self loop in state 2 is missing. The reason for this is that
the symbol following symbol p2 is always the third element of the given
sequence, because we “do not care” about.

The construction of automata for other problems with don’t care symbols
uses the principle of insertion of the sets of transitions for all symbols of
the alphabet to the place corresponding to the positions of the don’t care
symbols.

Example 2.19
Let pattern P = p1p2 ◦ p4 be given. We construct the SFORDO automaton
(approximate string matching of one full pattern using Hamming distance)
for Hamming distance k = 3. The transition diagram of the SFORDO
automaton is depicted in Fig. 2.25. Let us note that transitions labelled by
A refer to a transition for an empty set of symbols, and may be removed.

Figure 2.25: Transition diagram of the nondeterministic finite automaton
for the SFORDO problem for pattern P = p1p2 ◦ p4 (transitions labelled by
A may be removed)
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2.2.8 Matching a sequence of patterns

Matching a sequence of patterns is defined by Definition 1.16. The nondeter-
ministic finite automaton for matching a sequence of patterns is constructed
by making a “cascade” of automata for patterns in the given sequence. The
construction of the nondeterministic finite automaton for a sequence of pat-
terns starts by constructing finite automata for matching all elements of
the sequence. The next operation (making a “cascade”) is the insertion of
ε-transitions from all final states of the automaton in the sequence to the
initial state of the next automaton in the sequence, if it exists. The following
algorithm describes this construction.

Algorithm 2.20
Construction of the ?????S automaton.
Input: Sequence of patterns P1(w1), P2(w2), . . . , Ps(ws), where P1, P2, . . . , Ps

are patterns and w1, w2, . . . , wS are specifications of their matching.
Output: ?????S automaton.
Method:

1. Construct a NFA Mi = (Qi, Ai, δi, q0i, Fi) for each pattern Pi(wi),
1 ≤ i ≤ s, s > 1, with respect to the specification wi.

2. Create automaton M = (Q, A, δ, q0, F ) as a cascade of automata in
this way:
Q =

⋃s
i=1 Qi,

A =
⋃s

i=1 Ai,
δ(q, a) = δi(q, a) for all q ∈ Qi, a ∈ Ai ∪ {ε}, i = 1, 2, . . . , s,
δ(q, ε) = (q0,i+1), for all q ∈ Fi, 1 ≤ i ≤ s − 1,
q0 = q01,
F = Fs. 2

The main point of Algorithm 2.20 is the insertion of ε-transitions from all
final states of automaton Mi to the initial state of automaton Mi+1.

Example 2.21
Let the input to Algorithm 2.20 be the sequence abc, def, xyz. The resulting
SFOECS automaton is shown in Fig. 2.26. 2

2.3 Some deterministic pattern matching automata

In this Section we will show some deterministic finite automata obtained
by determinising the of nondeterministic finite automata of the previous
Section. A deterministic pattern matching automaton needs at most n steps
for pattern matching in the text T = t1t2 . . . tn. This means that the time
complexity of searching is linear (O(n)) for all problems in the classification
described in Section 1.2.

48



A

A

A

aSTART

d

x

b

e

y

c

f

z

q0

q4

e

e

Figure 2.26: Transition diagram of the nondeterministic finite automaton
for matching the sequence of patterns P = abc(SFOECO), def (SFOECO),
xyz(SFOECO) (SFOECS automaton)

On the other hand, the use of deterministic finite automata has two
drawbacks:

1. The size of the pattern matching automaton depends on the cardinality
of the alphabet. Therefore this approach is suitable primarily for small
alphabets.

2. The number of states of a deterministic pattern matching automaton
can be much greater than the number of states of its nondeterministic
equivalent.

These drawbacks, the time and space complexity of the construction of a
deterministic finite automaton, are the Price we have to pay for fast search-
ing. Several methods for simulating the original nondeterministic pattern
matching automata have been designed to overcome these drawbacks. They
will be discussed in the following Chapters.

2.3.1 String matching

The deterministic SFOECO finite automaton for the pattern P = p1p2 . . . pm

is the result of determinisation of the nondeterministic SFOECO automaton.

Example 2.22
Let us have pattern P = abab over alphabet A = {a, b}. A transition
diagram of the SFOECO(abab) automaton and its deterministic equivalent
are depicted in Fig. 2.27. Transition tables of both automata are shown in
Table 2.1. The deterministic SFOECO automaton is a complete automaton
and has just m + 1 states for a pattern of length m. The number of steps
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Figure 2.27: Transition diagrams of the nondeterministic and deterministic
SFOECO automata for pattern P = abab from Example 2.22

(number of transitions) made during pattern matching in a text of length n
is just n. 2

2.3.2 Matching of a finite set of patterns

The deterministic SFFECO automaton for matching a set of patterns
S = {P1, P2, . . . , Ps} is the result of the determinisation of nondetermin-
istic SFFECO automaton.

Example 2.23
Let us have set of patterns S = {ab, bb, babb} over alphabet A = {a, b}. Tran-
sition diagram of the SFFECO(S) automaton and its deterministic equiva-
lent are depicted in Fig. 2.28. Transition tables of both automata are shown
in Table 2.2. 2

The deterministic pattern matching automaton for a finite set of patterns

has less than |S| + 1 states, where |S| =
s∑

i=1

|Pi| for P = {P1, P2, . . . , Ps}.

The maximum number of states (equal to |S|+1) is reached in the case when
no two patterns have common prefix. In Example 2.23 holds that |S|+1 = 9
and patterns bb and babb have common prefix b. Therefore the number of
states is 8 which is less than 9.
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a b

0 0, 1 0

1 2

2 3

3 4

4

a) Nondeterministic SFOECO(abab)
automaton

a b

0 01 0

01 01 02

02 013 0

013 01 024

024 013 0

b) Deterministic SFOECO(abab)
automaton

Table 2.1: Transition tables of SFOECO(abab) automata from Example 2.22

a b

0 0, 1 0, 3, 7

1 2

2

3 4

4 5

5 6

6

7 8

8

a) Nondeterministic SFFECO
({ab, bb, babb}) automaton

a b

0 01 037

01 01 0237

037 014 0378

0237 014 0378

014 01 02357

0378 014 0378

02357 014 03678

03678 014 0378

b) Deterministic SFFECO
({ab, bb, babb}) automaton

Table 2.2: Transition tables of SFFECO({ab, bb, babb}) automata from Ex-
ample 2.23
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a) Nondeterministic ({                  }) automatonSFFECO ab,bb,babb
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Figure 2.28: Transition diagrams of the nondeterministic and deterministic
SFFECO automata for S = ({ab, bb, babb}) from Example 2.23

2.3.3 Regular expression matching

The deterministic finite automaton for matching an infinite set of patterns
is the result of the determinisation of SFIECO automaton.
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Example 2.24
Let us have regular expression R = ab∗c + bc over alphabet A = {a, b, c}
(see also Example 2.16). Transition diagram of the SFIECO(R) automaton
and its deterministic equivalent are shown depicted in Fig. 2.29. Transition

Figure 2.29: Transition diagrams of the nondeterministic and deterministic
SFIECO automata for R = ab∗c + bc from Example 2.24

tables of both automata are shown in Table 2.3. 2

The space complexity of matching of regular expression can vary from linear
to exponential. The example of linear space complexity is matching of reg-
ular expression describing language containing one string. The exponential
space complexity is reached for example for expression:

R = a(a + b)m−1
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a b c

0 0, 1 0, 2 0

1 1 3

2 3

3

a) Nondeterministic SFIECO
(ab∗c + bc) automaton

a b c

0 01 02 0

01 01 012 03

02 01 02 03

012 01 012 03

03 01 02 0

b) Deterministic SFIECO
(ab∗c + bc) automaton

Table 2.3: Transition tables of SFIECO(ab∗c + bc) automata from Exam-
ple 2.24

a b

0 0, 1 0

1 2 2

2 3 3

3

a) Nondeterministic SFIECO
(a(a + b)(a + b)) automaton

a b

0 01 0

01 012 02

012 0123 023

0123 0123 023

02 013 03

023 013 03

013 012 02

03 01 0

b) Deterministic SFIECO
(a(a + b)(a + b)) automaton

Table 2.4: Transition tables of SFIECO(a(a + b)(a + b)) automata from
Example 2.25

Example 2.25
Let us show example of deterministic regular expression matching automa-
ton for R = a(a + b)(a + b) over alphabet A = {a, b}. Transition diagram
of the SFIECO(a(a + b)(a + b)) automaton and its deterministic equivalent
are depicted in Fig. 2.30. Transition tables of both automata are shown in
Table 2.4. We can see that the resulting deterministic automaton has 23 = 8
states. 2
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Figure 2.30: Transition diagrams of the nondeterministic and deterministic
SFIECO automata for R = a(a + b)(a + b) from Example 2.25
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2.3.4 Approximate string matching – Hamming distance

The deterministic finite automaton for approximate string matching using
Hamming distance is the result of the determinisation of SFORCO automa-
ton.

Example 2.26
Let us have pattern P = aba over alphabet A = {a, b} and Hamming dis-
tance k = 1. Transition diagram of the SFORCO(aba, 1) automaton and its
deterministic equivalent are depicted in Fig. 2.31. Transition tables of both
automata are shown in Table 2.5. 2

Figure 2.31: Transition diagrams of the nondeterministic and deterministic
SFORCO(aba, 1) automata from Example 2.26
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a b

0 0,1 0,4

1 5 2

2 3 6

3 ∅ ∅

4 ∅ 5

5 6 ∅

6 ∅ ∅

a b

0 01 04

01 015 024

024 013 0456

013 015 024

04 01 045

015 0156 024

045 016 045

0456 016 045

0156 0156 024

016 015 024

Table 2.5: Transition tables of deterministic and nondeterministic
SFORCO(aba, 1) automata from Example 2.26

2.3.5 Approximate string matching – Levenshtein distance

The deterministic finite automaton for approximate string matching using
Levenshtein distance is the result of the determinisation of SFODCO au-
tomaton.

Example 2.27
Let us have pattern P = aba over alphabet A = {a, b} and Levenshtein
distance k = 1. Transition diagram of the SFODCO(aba, 1) automaton
and its deterministic equivalent are depicted in Fig. 2.32. Transition tables
of both automata are shown in Table 2.6. 2

2.4 The state complexity of the deterministic pattern match-

ing automata

The states of a SFFECO automaton (dictionary matching automaton, finite
set of strings automaton) correspond to the prefixes of strings in a finite
set U . To formalize this automaton, mapping hU is defined for each language
U as follows:

hU (v) = the longest suffix of v that belongs to Pref(U),

for each v ∈ A∗.
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Figure 2.32: Transition diagrams of the nondeterministic and deterministic
SFODCO(aba, 1) automata from Example 2.27

Definition 2.28
Strings v and w are denoted by uw−1 and v−1u when u = vw.

The following Theorem 2.29 adopted from [CH97b] is necessary for dic-
tionary matching automata construction.

Theorem 2.29
Let U ⊂ A∗. Then

1. for each v ∈ A∗ v ∈ A∗U iff hU (v) ∈ A∗U ,

2. hU (ε) = ε,

3. for each v ∈ A∗, a ∈ A hU (va) = hU (hU (v)a).
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a b ε

0 0,1 0,4 4

1 4,5 2,4 5

2 3,5 5,6 6

3

4 5

5 6

6

a b

0 01 045

01 01456 0245

045 016 045

01456 01456 0245

0245 01356 0456

01356 01456 0245

0456 016 045

016 01456 0245

Table 2.6: Transition tables of SFODCO(aba, 1) automata from Exam-
ple 2.27

Proof
If v ∈ A∗U , then v is in the form wu, where w ∈ A∗ and u ∈ U . By the
definition of hU , u is necessarily a suffix of hU (v); therefore hU (v) ∈ A∗U .
Conversely, if hU (v) ∈ A∗U , we have also v ∈ A∗U , because hU (v) is a suffix
of v. Which proves (1).

Property (2) clearly holds.
It remains to prove (3). Both words hU (va) and hU (v)a are suffixes of

va, and therefore one of them is a suffix of the other. Then two cases are
distinguished according to which word is a suffix of the other.

First case: hU (v)a is a proper suffix of hU (va) (hence hU (va) 6= ε).
Consider the word w defined by w = hU (va)a−1. Thus we have: hU (v)
is a proper suffix of w, w is a suffix of v, and w ∈ Pref(U). Since w is a
suffix of v that belongs to Pref (U ), but strictly longer than hU (v), there is
a contradiction in the maximality of |hU (v)|, so this case is impossible.

Second case: hU (va) is a suffix of hU (v)a. Then, hU (va) is a suffix of
hU (hU (v)a). Since hU (v)a is a suffix of va, hU (hU (v)a) is a suffix of hU (va).
Both properties imply hU (va) = hU (hU (v)a) and the expected result follows.

2

Now the dictionary matching automaton can be constructed according
to Theorem 2.30, borrowed from [CH97b].
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Theorem 2.30
Let X be a finite language. Then the automaton M = (Q, A, q0, δ, F ), where
Q = {qx | x ∈ Pref(X)}, q0 = qε, δ(qp, a) = qhX(pa), p ∈ Pref(X), a ∈ A,
F = {qx | x ∈ Pref(X)∩A∗X}, recognizes the language A∗X. This automa-
ton is deterministic and complete.

Proof
Let v ∈ A∗. It follows from properties (2) and (3) of Theorem 2.29 that
after reading v the automaton will be in the state qhX(v). If v ∈ A∗X, it
must hold hX(v) ∈ A∗X from (1) of Theorem 2.29; which shows that qhX(v)

is a final state, and finally that v is recognized by the automaton.
Conversely, if v is recognized by the automaton, we have hX(v) ∈ A∗X

by definition of the automaton. This implies that v ∈ A∗X from (1) of
Theorem 2.29 again. 2

Transition diagram of an example of dictionary matching automaton is
shown in Figure 2.33.

Figure 2.33: Transition diagram of dictionary matching automaton for lan-
guage {aba, aab, bab}

2.4.1 Construction of a dictionary matching automaton

The first method of dictionary matching automata construction follows di-
rectly from Theorem 2.30. But, as will be shown in this section, dictionary
matching automata can be build using standard algorithms. This method
is described in Algorithm 2.31.

Algorithm 2.31
Construction of a dictionary matching automaton for a given finite language.
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Input: Finite language X.
Output: Dictionary matching automaton accepting language A∗X.
Method:

1. Create a tree-like finite automaton accepting language X (using Algo-
rithm 2.32),

2. Add a self loop δ(q0, a) = δ(q0, a) ∪ {q0} for each a ∈ A to M .

3. Using the subset construction (see Algorithm 1.40) make a determin-
istic dictionary matching automaton accepting language A∗X.

2

Algorithm 2.32
Construction of a deterministic automaton accepting the set of strings.
Input: Finite language X.
Output: Deterministic finite automaton M = (Q, A, δ, q0, F ) accepting lan-
guage X.
Method:

1. Q = {qx | x ∈ Pref(X)},
2. q0 = qε,

3. δ(qp, a) =

{

qpa in case when pa ∈ Pref(X),
undefined otherwise,

4. F = {qp | p ∈ X}. 2

Example 2.33
Let us create a dictionary matching automaton for language {aba,
aab, bab} to illustrate this algorithm. The outcome from the step (2) of
Algorithm 2.31 is shown in Figure 2.34 and the result of the whole algo-
rithm is shown in Figure 2.35. 2

What is the result of this algorithm? As shown in Theorem 2.34, au-
tomata created according to Theorem 2.30 are equivalent to automata cre-
ated according to Algorithm 2.31.

Theorem 2.34
Given finite language X, finite automaton M1 = (Q1, A, δ1, {qε}, F1) accept-
ing language A∗X created by Algorithm 2.31 is equivalent to finite automa-
ton M2 = (Q2, A, δ2, qε, F2) accepting the same language but created by
Theorem 2.30.

Proof
The first step is to show that after reading a string w automaton M1 will be
in state q = δ∗1({qε}, w) = {qx | x ∈ Suff(w) ∩ Pref(X)}. Let us remind the
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Figure 2.34: Transition diagram of nondeterministic dictionary matching
automaton for the language {aba, aab, bab}

reader that deterministic automaton M1 was created from nondeterministic
automaton M ′

1 = (Q′
1, A, δ′1, qε, F

′
1) by the subset construction. As follows

from the subset construction algorithm, after reading string w automaton
M1 will be in state q = δ∗1({qε}, w) = δ′1

∗(qε, w). Thus it is enough to
show that δ′1

∗(qε, w) = {qx | x ∈ Suff(w) ∩ Pref(X)}. Given string v ∈
Suff(w)∩Pref(X), w can be written as uv, u ∈ A∗. Thus, there is a sequence

of moves (qε, uv) `|u|
M ′

1

(qε, v) `|v|
M ′

1

(qv, ε), so qv ∈ δ′1
∗(qε, w). Conversely,

consider qv ∈ δ′1
∗(qε, w). Since M ′

1 can read arbitrarily long words only
by using the selfloop for all a ∈ A in the initial state, the sequence of

moves must be as follows (qε, w) `∗
M ′

1

(qε, v) `|v|
M ′

1

(qv, ε). Consequently

v ∈ Suff(w) ∩ Pref(X).
Since the set of states Q1 ⊆ P({qx | x ∈ Pref(X)}), it is possible to

define an isomorphism f |Q1
: P({qx | x ∈ Pref(X)}) → {qx | x ∈ Pref(X)}

as follows:
f(q) = pw ∈ q, |w| is maximal.

Now it is necessary to show that

1. ∀q1, q2 ∈ Q1, q1 6= q2 ⇒ f(q1) 6= f(q2),

2. ∀p ∈ Q2 ∃q ∈ Q1, f(q) = p,

3. f(q1
0) = q2

0

4. f(δ1(q, a)) = δ2(f(q), a),

5. f(F1) = F2.

62



Figure 2.35: Transition diagram of deterministic dictionary matching au-
tomaton for language {aba, aab, bab} created from nondeterministic one by
the subset construction

Let us suppose p = δ∗1({qε}, u), q = δ∗1({qε}, v), p 6= q, and f(p) = f(q).
But from the definition of f , it must hold p = {qx| x ∈ Suff(u)∩Pref(X)} =
{qx | qy = f(p), x ∈ Suff(y)∩Pref(X)} and q = {qx | x ∈ Suff(v)∩Pref(X)} =
{qx | qy = f(q), x ∈ Suff(y) ∩ Pref(X)}, which implies p = q. This is the
contradiction, so it proves (1).

Property (2) holds because for all u ∈ Pref(X), qu ∈ δ∗1({qε}, u) =
{qx | x ∈ Suff(u) ∩ Pref(X)}. Thus f(δ∗1({ε}, u)) = qu.

Property (3) clearly holds.
It will be shown that f(δ∗1({qε}, u)) = δ∗2(qε, u) which implies the prop-

erty (4). It is known that f(δ∗1({qε}, u)) = f({qx | x ∈ Suff(u) ∩ Pref(X))}
and δ∗2(uε, u) = qhX(u). Thus, the preposition holds from the definitions of
f and hX .

Property (5) clearly holds from previous properties and thus both au-
tomata accept the same language. 2

The main consequence of the previous Theorem is that during the trans-
formation of a nondeterministic tree-like automaton with the self loop for all
a ∈ A in the initial state to the deterministic one, the number of states does
not increase.

But it is possible to show more. It is easy to see that a deterministic
dictionary matching automaton accepting language A∗X can be build from
any acyclic automaton accepting language X by the last two steps of Algo-
rithm 2.31. As can be seen in the next Theorem, the number of states of an
automaton created in such way cannot be greater than the number of states
of finite automaton accepting the same language and created by Algorithm
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2.31 from scratch.

Theorem 2.35
Given acyclic automaton M = (Q, A, δ, q0, F ) accepting language X, finite
automaton M1 = (Q1, A, δ1, q

1
0, F1) accepting language A∗X created by last

two steps of Algorithm 2.31 contains at most the same number of states as
finite automaton M2 = (Q2, A, δ2, q

2
0, F2) accepting the same language and

created by Algorithm 2.31 from scratch.

Proof
Let us remind that deterministic automaton M1 was created from nonde-
terministic automaton M ′ = (Q, A, δ′, q0, F ) by the subset construction.

The set of active states of automaton M ′ after reading u ∈ A is δ′∗(q0, u),
which is equal to δ′∗(q0, hX(u)). Let us denote the active state of automaton
M1 after reading u by q. Subset construction ensures that δ′∗(q0, u) ⊆ q.
So, in the worst case for all q ∈ Q1 it holds q = δ′∗(q0, u), u ∈ Pref(X),
which completes the proof. 2

2.4.2 Approximate string matching

In order to prove the upper bound of the state complexity of deterministic
finite automata for approximate string matching, it is necessary to limit the
number of states of the dictionary matching automata accepting language
A∗X with respect to the size of language X.

Theorem 2.36
Given acyclic finite automaton M accepting language X, the number of
states of the deterministic dictionary matching automaton created from M
is

O(
∑

w∈X

|w|).

Proof
Because of Theorem 2.35, the number of states of such way created deter-
ministic dictionary matching automaton is at most the same as the number
of states of a tree-like finite automaton accepting X, whose number of states
is in the worst case equal to 1 +

∑

w∈X |w|. 2

2.4.2.1 Hamming distance At first, it is necessary to define the finite
automaton for approximate string matching using Hamming distance. It
is the “Hamming” automaton M(A∗Hk(p)) accepting language A∗Hk(p),
where Hk(p) = {u | u ∈ A∗, DH(u, p) ≤ k} for the given pattern p ∈ A∗ and
the number of allowed errors k ≥ 1.
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Since Hk(p) is the finite language, it is possible to estimate the number
of states of the deterministic automaton M(A∗Hk(p)) using Theorem 2.36.
The only concern is to compute the size of the language Hk(p).

Theorem 2.37
The number of strings generated by at most k replace operations from the

pattern p = p1p2 . . . pm is O
(

|A|kmk
)

. 2

Proof
The set of strings created by exactly i (0 ≤ i ≤ k) operations replace are
made by replacing exactly i symbols of p by other symbols. There are

(m
i

)

possibilities for choosing i symbols from m. Each chosen symbol can be
replaced by |A| − 1 symbols, so the number of generated strings is at most

(
m

i

)

(|A| − 1)i = (|A| − 1)iO
(

mi
)

= O
(

|A|imi
)

,

because
(m

i

)
= O(mi). The set of strings created by at most k operations

replace is the union of the abovementioned sets of strings. Thus, the cardi-
nality of this set is

k∑

i=0

O
(

|A|imi
)

= O
(

|A|kmk
)

.
2

Since the number of strings generated by the replace operation is now
known, it is possible to estimate the number of states of the deterministic
Hamming automaton.

Theorem 2.38
The number of states of deterministic finite automaton M(A∗Hk(p)), p =
p1p2 . . . pm is

O
(

|A|kmk+1
)

.

Proof
As shown in Theorem 2.36 the number of states of this automaton is at most
the same as the size of language Hk(p). As for all u ∈ Hk(p) holds |u| = m,
the size of language Hk(p) is

O(
∑

u∈Hk(p)

|u|) = O
(

m|A|kmk
)

= O
(

|A|kmk+1
)

.

2
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2.4.2.2 Levenshtein distance The same approach as in Section 2.4.2.1
can be used to bound the number of states of a deterministic automa-
ton for approximate string matching using Levenshtein distance. It is the
“Levenshtein” automaton M(A∗Lk(p)) accepting language A∗Lk(p), where
Lk(p) = {u | u ∈ A∗, DL(u, p) ≤ k} for given pattern p ∈ A∗ and the number
of allowed errors k ≥ 1.

So, the number of strings generated from pattern by insert and delete
operations is to be found.

Theorem 2.39
The number of strings generated by at most k insert operations from the

pattern p = p1p2 . . . pm is O
(

|A|kmk
)

.

Proof
Imagine that all above mentioned strings are generated from empty strings
by sequential symbol addition. Then the number of strings generated by
exactly i insert operations can be transformed to the number of tours that
can be found in a chessboard like oriented graph from the position (0, 0) to
position (m, i) multiplied by Ai (it is possible to insert an arbitrary symbol
from the alphabet). Position (0, 0) represents empty string, position (m, i)
represents pattern p with i inserted symbols, and each move of the tour
represents addition of the one symbol to the generated string. Move (x, y)
→ (x+1, y) represents addition of the (x+1)-st symbol of the pattern, while
move (x, y) → (x, y + 1) represents addition of an inserted symbol to the
pattern. An example of this graph is shown in Figure 2.36. The number in
each node represents the number of tours leading to the node. The number

Figure 2.36: Chessboard like oriented graph representing strings generated
by insert operation

of tours cx,y can be defined by recursive formula

cx,0 = 1 0 ≤ x,
c0,y = 1 0 ≤ y,
cx,y = cx−1,y + cx,y−1 1 ≤ x 1 ≤ y.
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Because of the Pascal triangle method of binomial number computation, it
is clear that

cx,y =

(
x + y

min(x, y)

)

.

In order to continue, it is possible to use following equation:

(
x + z

z

)

=
(x + 1) · (x + 2) · . . . · (x + z − 1) · (x + z)

1 · 2 · . . . · (z − 1) · z =

=
x + 1

1
· x + 2

2
· . . . · x + (z − 1)

z − 1
· x + z

z
=

=

(
x

1
+ 1

)

·
(

x

2
+ 1

)

· . . . ·
(

x

z − 1
+ 1

)

·
(

x

z
+ 1

)

.

In case that x ≥ 2 all fractions but the first one are smaller than (or equal
to) x. Thus

(
x + z

z

)

≤ (x + 1) ∗ xz−1 = xz + xz−1 = O (xz) .

As the number of allowed errors is smaller than the length of pattern, i < m,

cm,i =

(
m + i

min(m, i)

)

=

(
m + i

i

)

= O
(

mi
)

.

Thus, the number of strings generated by exactly i insert operations is
O (|A|imi

)
. Since the set of strings generated by at most k insert opera-

tions is the union of the above mentioned sets of strings, the cardinality of
this set is

k∑

i=0

O
(

|A|imi
)

= O
(

|A|kmk
)

.
2

Theorem 2.40
The number of strings generated by at most k delete operations from pattern

p = p1p2 . . . pm is O
(

mk
)

.

Proof
Sets of strings generated by exactly i delete operations consist of strings that
are made by deleting exactly i symbols from p. There are

(m
i

)
possibilities for

choosing i symbols from m, so the number of such strings is at most
(m

i

)
=

O (
mi

)
. Since the set of strings generated by at most k delete operations is

the union of the above mentioned sets, the number of strings within this set
is

k∑

i=0

O
(

mi
)

= O
(

mk
)

.
2
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Now it is known the number of strings generated by each edit opera-
tion, so it is possible to estimate the number of strings generated by these
operations all at once.

Theorem 2.41
The number of strings generated by at most k replace, insert, and delete

operations from pattern p = p1p2 . . . pm is O
(

|A|kmk
)

.

Proof
The number of strings generated by at most k replace, insert, delete op-
erations can be computed as a sum of the number of strings generated by
these operations for exactly i errors allowed for 0 ≤ i ≤ k. Such strings are
generated by a combination of above mentioned operations, so the number
of generated strings is

k∑

x=0

k−x∑

y=0

k−x−y
∑

z=0

O (|A|xmx)
︸ ︷︷ ︸

replace x

symbols

O (|A|ymy)
︸ ︷︷ ︸

insert y

symbols

O (mz)
︸ ︷︷ ︸

delete z

symbols

=

=
k∑

x=0

k−x∑

y=0

k−x−y
∑

z=0

O (|A|x+ymx+y+z
)

=

= O
(

|A|kmk
)

2

The last step is to bound the number of states of the deterministic dic-
tionary matching automaton.

Theorem 2.42
The number of states of deterministic finite automaton M(A∗Lk(p)), p =
p1p2 . . . pm is

O
(

|A|kmk+1
)

.

Proof
The proof is the same as for Theorem 2.38. Since for all u ∈ Lk(p) holds
|u| ≤ m + k, the size of language Lk(p) is

O(
∑

u∈Lk(p)

|u|) = O
(

(m + k)|A|kmk
)

=
(

|A|kmk+1
)

.

2

2.4.2.3 Generalized Levenshtein distance It is clear that the con-
cepts from Sections 2.4.2.1 and 2.4.2.2 will be used also for generalized Lev-
enshtein distance.

The finite automaton for approximate string matching using generalized
Levenshtein distance M(A∗Gk(p)) will be called the finite automaton ac-
cepting language A∗Gk(p), where Gk(p) = {u | u ∈ A∗, DG(u, p) ≤ k} for
given pattern p ∈ A∗ and the number of allowed errors k ≥ 1.
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The only unexplored operation is the transpose operation.

Theorem 2.43
The number of strings generated by at most k transpose operations from

pattern p = p1p2 . . . pm is O
(

mk
)

.

Proof
The strings generated by exactly i transpose operations are made by trans-

posing exactly i pairs of symbols from p. There is less than
(

m−1
i

)

possi-

bilities for choosing i pairs from m symbols for transpose operation, when
each symbol can participate only in one pair. The number of such generated

strings is at most
(

m−1
i

)

= O (
mi

)
. Since the set of strings generated by

at most k transpose operations is the union of the above mentioned sets of
strings, its cardinality is

k∑

i=0

O
(

mi
)

= O
(

mk
)

.
2

Now, the number of strings generated by all operations defined by gen-
eralized Levenshtein distance is to be found.

Theorem 2.44
The number of strings generated by at most k replace, insert, delete, and

transpose operations from the pattern p = p1p2 . . . pm is O
(

|A|kmk
)

.

Proof
The number of strings generated by at most k replace, insert, delete, and
transpose operations can be computed as a sum of the numbers of strings
generated by these operations for exactly i errors allowed for 0 ≤ i ≤ k. Such
strings are generated by a combination of above mentioned operations. So
the number of generated strings is

k∑

w=0

k−w∑

x=0

k−w−x∑

y=0

k−w−x−y
∑

z=0

O (|A|wmw)
︸ ︷︷ ︸

replace w

symbols

O (|A|xmx)
︸ ︷︷ ︸

insert x

symbols

O (my)
︸ ︷︷ ︸

delete y

symbols

O (mz)
︸ ︷︷ ︸

transpose z

pairs

=

=
k∑

w=0

k−w∑

x=0

k−w−x∑

y=0

k−w−x−y
∑

z=0

O (|A|w+xmw+x+y+z
)

=

= O
(

|A|kmk
)

2

Finally, the number of states of the deterministic dictionary matching
automaton will be found.
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Theorem 2.45
The number of states of deterministic finite automaton M(A∗Gk(p)), p =
p1p2 . . . pm is

O
(

|A|kmk+1
)

.

Proof
The proof is the same as for Theorem 2.38. Since for all u ∈ Gk(p) holds
|u| ≤ m + k the size of language Gk(p) is

O(
∑

u∈Gk(p)

|u|) = O
(

(m + k)|A|kmk
)

= O
(

|A|kmk+1
)

.
2

2.4.2.4 Γ distance The finite automaton for approximate string match-
ing using Γ distance M(A∗Γk(p)) will be called the finite automaton accept-
ing language A∗Γk(p), where A is an ordered alphabet, Γk(p) = {u | u ∈
A∗, DΓ(u, p) ≤ k} for the given pattern p ∈ A∗ and the number of allowed
errors k ≥ 1.

Since it will be used the same approach as in previous sections, it is
necessary to compute cardinality of the set Γk(p). In order to do that, it is
necessary to prove two auxiliary lemmas.

Theorem 2.46
For all i ≥ 1, j ≥ 1, (j − 1)i+1 + (j − 1)i + ji ≤ ji+1.

Proof
It will be shown by induction on i. It holds for i = 1:

(j − 1)2 + (j − 1) + j = j2 − 2j + 1 + j − 1 + j = j2 ≤ j2.

Consider the assumption is fulfilled for i ≥ 1. Then for i + 1

(j − 1)i+2 + (j − 1)i+1 + ji+1 =

= (j − 1)(j − 1)i+1 + (j − 1)(j − 1)i + j ji ≤

as j ≥ 1

≤ j(j − 1)i+1 + j(j − 1)i + j ji =

= j
(

(j − 1)i+1 + (j − 1)i + ji
)

≤

from induction assumption

≤ j ji+1 = ji+2

which completes the proof. 2

70



Theorem 2.47
For all i ≥ 3, j ≥ 2,

∑i
x=0(j − 1)x +

∑i−1
x=0(j − 1)x ≤ ji.

Proof
It will be shown by induction on i. It is satisfied for i = 3:

3∑

x=0

(j − 1)x +
2∑

x=0

(j − 1)x

= 2(j − 1)0 + 2(j − 1)1 + 2(j − 1)2 + (j − 1)3 =

= 2 + 2j − 2 + 2j2 − 4j + 2 + j3 − 2j2 + j − j2 + 2j − 1 =

= j3 − j2 + j + 1 ≤

since j ≥ 2

≤ j3

Consider the assumption is satisfied for i ≥ 3. Than for i + 1

i+1∑

x=0

(j − 1)x +
i∑

x=0

(j − 1)x =

= (j − 1)i+1 + (j − 1)i +
i∑

x=0

(j − 1)x +
i−1∑

x=0

(j − 1)x ≤

from induction assumption

≤ (j − 1)i+1 + (j − 1)i + ji ≤

from Lemma 2.46

≤ ji+1 (3)

which completes the proof. 2

Theorem 2.48
The number of strings generated by from the pattern p = p1p2 . . . pm with

at most k allowed errors in Γ distance is O
(

mk
)

.

Proof
The number of strings generated from the pattern p of the length m for
exactly k errors can be computed as the number of different paths in the
transition diagram of an automaton M(Γk(p)) from the initial state q0,0 to
the final state qk,m, where the transition diagram of the automaton M(Γk(p))
is the same as the transition diagram of the automaton M(A∗Γk(p)) (shown
in Figure REF) without the self loop for the whole alphabet in the initial
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state q0,0 ∈ δ(q0,0, a), ∀a ∈ A. The number of these paths can be computed
by following recurrent formula:

ci,j =







1 i = 0, j = 0
0 i > 0, j = 0

ci,j−1 + 2
∑i−1

x=0 cx,j−1 otherwise

.

Let us show in several steps, that ci,j ≤ 2ji.

• i = 0, j > 0: c0,j = c0,j−1 = c0,j−2 = . . . = 1 ≤ 2 j0

• i = 1, j > 0: By induction on j. It is satisfied for j = 1 because
c1,1 = 2 ≤ 2 11. Consider the assumption holds for j > 0. Than for
j + 1

c1,j+1 = c1,j + 2 · c0,j ≤

from induction assumption and the fact that c0,j = 1

≤ 2j + 2 = 2(j + 1) ≤ 2(j + 1)1

• i = 2, j > 0: By induction on j. It is satisfied for j = 1 because
c2,1 = 2 ≤ 2 12. Consider the assumption holds for j ≥ 1. Than for
j + 1

c2,j+1 = c2,j + 2 · c1,j + 2 · c0,j ≤

from induction assumption

≤ 2j2 + 2 · 2j + 2 · 1 = 2(j2 + 2j + 1) ≤
≤ 2(j + 1)1 = 2(j + 1)2

• i ≥ 3, j = 1: ci,1 = ci,0 + 2 · ci−1,0 + 2 · ci−2,0 + . . . + 2 · c0,0 = 2.

• i ≥ 3, j ≥ 2: By induction on j. It was shown in previous step that
the assumption holds for j − 1 ≥ 1. Then for j

ci,j = ci,j−1 + 2
i−1∑

x=0

cx,j−1 ≤

(4)

from induction assumption

≤ 2(j − 1)i + 2
i−1∑

x=0

2(j − 1)x ≤
i∑

x=0

2(j − 1)x +
i−1∑

x=0

2(j − 1)x ≤

from Lemma 2.47

≤ 2ji
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Thus the number of string generated from pattern of the length m with
exactly i allowed errors in Γ distance is O (

mi
)
.

Since the set of strings generated from pattern of the length m with at
most k allowed errors is the union of the above mentioned sets of strings,
its cardinality is

k∑

i=0

O
(

mi
)

= O
(

mk
)

.
2

Finally, the number of states of the deterministic dictionary matching
automaton will be found.

Theorem 2.49
The number of states of the deterministic finite automaton M(A∗Γk(p)),
p = p1p2 . . . pm is

O
(

mk+1
)

.

Proof
The proof is the same as for Lemma 2.38. Since for all u ∈ Γk(p), it holds
|u| = m the size of the language Γk(p) is

O(
∑

u∈Γk(p)

|u|) = O
(

m mk
)

= O
(

mk+1
)

.
2

2.5 (∆, Γ) distance

The finite automaton for approximate string matching using (∆Γ) distance
M(A∗(∆lΓk)(p)) will be called the finite automaton accepting language
A∗(∆lΓk)(p), where A is an ordered alphabet, (∆lΓk)(p) = {u | u ∈ A∗,
D∆(u, p) ≤ l, DΓ(u, p) ≤ k} for the given pattern p ∈ A∗ and the number of
allowed errors k, l ∈ N.

It is obvious that it will be used the same approach as in previous sec-
tions. Thus it is necessary to compute cardinality of the set (∆lΓk)(p).

Let us start by special case when l = 1. In order to do that, it is necessary
to prove one auxiliary lemma.

Theorem 2.50
For all i ≥ 2, j ≥ 1, (j − 1)i + 2(j − 1)i−1 ≤ ji.

Proof
It will be shown by induction on i. It holds for i = 2:

(j − 1)2 + 2(j − 1) = j2 − 2j + 1 + 2j − 2 = j2 − 1 ≤ j2.

Consider the assumption is fulfilled for i ≥ 2. Than for i + 1

(j − 1)i+1 + 2(j − 1)i = (j − 1)
(

(j − 1)i + 2(j − 1)i−1
)

≤
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from induction assumption

≤ (j − 1)ji = ji+1 − ji ≤ ji+1

which completes the proof. 2

Theorem 2.51
The number of strings generated from pattern p of the length m with at
most k allowed errors in Γ distance and at most 1 allowed error in ∆ dis-
tance is O

(

mk
)

.

Proof
The number of strings generated from the pattern p of the length m for
exactly k errors can be computed as the number of different paths in the
transition diagram of an automaton M((∆lΓk)(p)) from the initial state
q0,0 to the final state qk,m, where the transition diagram of the automa-
ton M((∆lΓk)(p)) is the same as the transition diagram of the automaton
M(A∗(∆lΓk)(p)) (shown in Figure REF) without the self loop for the whole
alphabet in the initial state q0,0 ∈ δ(q0,0, a), ∀a ∈ A. The number of these
paths can be computed by following recurrent formula:

ci,j =







1 i = 0, j = 0
ci,j−1 + 2ci−1,j−1 0 ≤ i ≤ j, 0 < j
0 otherwise

.

Let us show in several steps that ci,j ≤ 2ji.

• i = 0, j > 0: c0,j = c0,j−1 = . . . = c0,0 = 1 ≤ 2j0

• i = 1, j > 0: By induction on j. It is satisfied for j = 1 because
c1,1 = c1,0 + 2c0,0 = 2 ≤ 2. Consider the assumption holds for j > 0.
Than for j + 1

c1,j+1 = c1,j + 2c0,j ≤
from induction assumption and the fact that c0,j = 1

2j + 2 = 2(j + 1) ≤ 2(j + 1)1.

• i ≥ 2, j ≥ 1; By induction on j. It is satisfied for j = 1 because
ci,1 = ci,0 + 2ci−1,0 = 0. Consider the condition holds for j − 1 ≥ 1.
Than for j

ci,j = ci,j−1 + 2ci−1,j−1 ≤
from induction assumption

≤ 2(j − 1)i + 2 · 2(j − 1)j−1

from Lemma 2.50
≤ 2ji.
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Thus the number of string generated from pattern of the length m with
exactly i allowed errors in Γ distance and 1 error in ∆ distance is O (

mi
)
.

Since the set of strings generated from pattern of the length m with at
most k allowed errors in Γ distance and 1 error in ∆ distance is the union
of the above mentioned sets of strings, its cardinality is

k∑

i=0

O
(

mi
)

= O
(

mk
)

.
2

The other special case is that l ≥ k. It is quite easy to see, that this is the
same case as when just Γ distance is used. The number of strings generated

in this case, which was given by Lemma 2.48, is O
(

mk
)

.

Since the asymptotic number of strings generated by combined (∆Γ)
distance is the same in both cases (l = 1 and l ≥ k), the number of allowed
errors in ∆ distance does not affect the asymptotic number of generated
strings.

Now it is possible to estimate the number of states of the deterministic
dictionary matching automaton.

Theorem 2.52
The number of states of the deterministic finite automaton M(A∗(∆lΓk)(p)),
p = p1p2 . . . pm is

O
(

mk+1
)

.

Proof
The proof is the same as for Lemma 2.38. Since for all u ∈ (∆lΓk)(p), it
holds |u| = m the size of the language (∆lΓk)(p) is

O(
∑

u∈(∆kΓk)(p)

|u|) = O
(

m mk
)

= O
(

mk+1
)

.

2

2.6 ∆ distance

The finite automaton for approximate string matching using ∆ distance
M(A∗∆k(p)) will be called the finite automaton accepting language A∗∆k(p),
where A is an ordered alphabet, ∆k(p) = {u | u ∈ A∗, D∆(u, p) ≤ k} for the
given pattern p ∈ A∗ and the number of allowed errors k ∈ N.

Since it will be used the same approach as in previous sections, it is
necessary to compute cardinality of the set ∆k(p).

Theorem 2.53
The number of strings generated by from the pattern p = p1p2 . . . pm with
at most k allowed errors in ∆ distance is O ((2k + 1)m).
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Proof
Since ∆ distance is computed as a maximum of distances of individual sym-
bols at corresponding positions, each symbol can be replaced by at most 2k
different symbols (k symbols that are smaller and k symbols that are bigger
in the alphabet ordering). Therefore, at each position can be at most 2k +1
different symbols. As, the length of the pattern is m, ∆ distance generates
at most (2k + 1)m different strings. 2

Finally, let us compute the number of states of the deterministic dictio-
nary matching automaton.

Theorem 2.54
The number of states of the deterministic finite automaton M(A∗∆k(p)),

p = p1p2 . . . pm is
O (m(2k + 1)m) .

Proof
The proof is the same as for Lemma 2.38. Since for all u ∈ ∆k(p), it holds
|u| = m the size of the language ∆k(p) is

O(
∑

u∈∆k(p)

|u|) = O (m(2k + 1)m) = O (m(2k + 1)m) .

2
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3 Finite automata accepting parts of a string

In this Chapter we explain how to construct finite automata accepting all
prefixes, suffixes, factors, and subsequences of a given string. At the end we
show the construction of factor oracle automaton accepting all factors of a
given string and moreover some of its subsequences.

3.1 Prefix automaton

Having string x = a1a2 . . . an we can express set Pref(x) (see Def. 1.1) using
the following two forms of regular expressions:

RPref = ε + a1 + a1a2 + . . . + a1a2 . . . an

= ε + a1(ε + a2(ε + . . . + an−1(ε + an) . . .)).
Using the first form of regular expression RPref, we can construct the finite

automaton accepting set Pref(x) using Algorithm 3.1.

Algorithm 3.1
Construction of the prefix automaton I (union of prefixes).
Input: String x = a1a2 . . . an.
Output: Finite automaton M accepting language Pref(x).
Method: We use description of language Pref(x) by regular expression:

RPref = ε + a1 + a1a2 + . . . + a1a2 . . . an.

1. Construct n finite automata Mi accepting strings a1a2 . . . ai for all
i = 0, 1, . . . , n.

2. Construct automaton M accepting union of languages L(Mi),
i = 0, 1, . . . , n.

L(M) = L(M0) ∪ L(M1) ∪ L(M2) ∪ . . . ∪ L(Mn). 2

Transition diagram of the prefix automaton constructed by Algorithm 3.1 is
depicted in Fig. 3.1.

If we use the second form of regular expression:
RPref = ε + a1(ε + a2(ε + . . . + an−1(ε + an) . . .)),

we can construct the finite automaton using Algorithm 3.2.

Algorithm 3.2
Construction of prefix automaton II (set of neighbours).
Input: String x = a1a2 . . . an.
Output: Finite automaton M accepting language Pref(x).
Method: We use description of language Pref(x) by regular expression:

RPref = ε + a1(ε + a2(ε + . . . + an−1(ε + an) . . .)).

1. We will use the method of neighbours.

(a) The set of initial symbols: IS = {a1}.
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Figure 3.1: Transition diagram of the finite automaton accepting language
Pref(a1a2 . . . an) constructed for regular expression RPref = ε + a1 + a1a2 +
. . . + a1a2 . . . an from Algorithm 3.1

(b) The set of neighbours: NS = {a1a2, a2a3, . . . , an−1an}.
(c) The set of final symbols: FS = {a1, a2, . . . , an}.

2. Construct automaton
M = ({q0, q1, q2, . . . , qn}, A, δ, q0, F )
where δ(q0, a1) = q1 because IS = {a1},

δ(qi, ai+1) = qi+1 for all i = 1, 2, . . . , n − 1,
because a) each state qi, i = 1, 2, . . . , n−1, coresponds to the

prefix a1a2 . . . ai,
b) aiai+1 ∈ NS,

F = {q0, q1, . . . , qn} because the set of final symbols is
FS = {a1, a2, . . . , an} and ε ∈ h(RPref ). 2

Transition diagram of the resulting prefix is automaton M depicted in
Fig. 3.2.

a2 a3 ana1START
q0 q1 q2 qn

Figure 3.2: Transition diagram of the finite automaton accepting language
Pref(a1a2 . . . an) constructed for regular expression RPref = ε+a1(ε+a2(ε+

. . . + an−1(ε + an) . . .)) from Algorithm 3.2

Example 3.3
Let us have string x = abab. Construct automata accepting Pref(x) us-
ing both methods of their construction. Using Algorithm 3.1, we obtain
prefix automaton M1 having the transition diagram depicted in Fig. 3.3.
Algorithm 3.2 yields prefix automaton M2 having transition diagram de-
picted in Fig. 3.4. Both automata M1 and M2 are accepting language
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Figure 3.3: Transition diagram of prefix automaton M1 accepting Pref(abab)
from Example 3.3

START
0

a b a b
1 2 3 4

Figure 3.4: Transition diagram of prefix automaton M2 accepting Pref(abab)
from Example 3.3

Pref(abab) and therefore they should be equivalent. Let us show it:
As prefix automaton M1 is nondeterministic, let us construct its determin-
istic equivalent M ′

1. Its transition diagram is depicted in Fig. 3.5 and it is
obvious that both automata M ′

1 and M2 are equivalent. 2

Figure 3.5: Transition diagram of deterministic automaton M ′
1 from Exam-

ple 3.3

The second variant of the construction of the prefix automaton is more
straightforward than the first one. Therefore we will simplify it for the
practical use in the following algorithm. As the states in this automaton
correspond to the length of respective prefixes, we will use integer numbers
as labels of states.

Algorithm 3.4
The construction of a finite automaton accepting set Pref(x).
Input: String x = a1a2 . . . an.
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Output: Deterministic finite automaton M = (Q, A, δ, q0, F ) accepting set
Pref(x).
Method:

Q = {0, 1, 2, . . . , n},
A is the set of all different symbols in x,
δ(i − 1, ai) = i, i = 1, 2, . . . , n,
q0 = 0,
F = {0, 1, 2, . . . , n}. 2

Example 3.5
Let us construct the deterministic finite automaton accepting Pref(abba) =
{ε, a, ab, abb, abba} using Algorithm 3.4. The resulting automaton M =
({0, 1, 2, 3, 4}, {a, b}, δ, 0, {0, 1, 2, 3, 4}). Its transition diagram is depicted in
Fig 3.6. 2

0 1 2 3 4
a b b aSTART

Figure 3.6: Transition diagram of finite automaton M accepting set
Pref(abba) from Example 3.5

3.2 Suffix automaton

Having string x = a1a2 . . . an, we can express set Suff(x) (see Def. 1.2) using
the following two forms of regular expressions:

RSuff(x) = a1a2 . . . an + a2a3 . . . an + . . . + an + ε

=(. . . ((a1 + ε)a2 + ε)a3 + . . . + ε)an + ε.
Using the first form of regular expression RSuff we can construct the finite

automaton accepting set Suff(x) using Algorithm 3.6. Let us call it the suffix
automaton for string x.

Algorithm 3.6
Construction of the suffix automaton I (union of suffixes).
Input: String x = a1a2 . . . an.
Output: Finite automaton M accepting language Suff(x).
Method: We use description of language Suff(x) by regular expression:

RSuff = a1a2 . . . an + a2 . . . an + . . . + an + ε.

1. Construct n finite automata Mi accepting strings aiai+1 . . . an for
i = 1, 2, . . . , n. Construct automaton M0 accepting empty string.

2. Construct automaton MN accepting union of languages L(Mi),
i = 0, 1, 2, . . . , n, i.e. L(MN ) = L(M0)∪L(M1)∪L(M2)∪ . . .∪L(Mn).
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3. Construct deterministic automaton M equivalent to automaton MN .
2

Transition diagram of the suffix automaton constructed by Algorithm 3.6 is
depicted in Fig. 3.7.

Figure 3.7: Transition diagram of finite automaton accepting language
Suff(a1a2 . . . an) constructed for regular expression RSuff = a1a2 . . . an +
a2 . . . an + . . . + an + ε

If we use the second form of the regular expression:
RSuff(x) = (. . . (a1 + ε)a2 + ε)a3 + . . . + ε)an + ε,

we can construct the finite automaton using Algorithm 3.7.

Algorithm 3.7
Construction of the suffix automaton II (use of ε–transitions).
Input: String x = a1a2 . . . an.
Output: Finite automaton M accepting language Suff(x).
Method: We use description of language Suff(x) by regular expression

RSuff(x) = (. . . ((a1 + ε)a2 + ε)a3 + . . . + ε)an + ε.

1. Construct finite automaton M1 accepting string x = a1a2 . . . an.
M1 = ({q0, q1, . . . , qn}, A, δ, q0, {qn}),
where δ(qi, ai+1) = qi+1 for all i = 0, 1, . . . , n − 1.

2. Construct finite automaton M2 = ({q0, q1, . . . , qn}, A, δ′, q0, {qn}) from
the automaton M1 by inserting ε–transitions:
δ(q0, ε) = {q1, q2, . . . , qn−1, qn}.

3. Replace all ε–transitions in M2 by non–ε–transitions. The resulting
automaton is M3.

4. Construct deterministic finite automaton M equivalent to automaton
M3. 2

Suffix automaton M2 constructed by Algorithm 3.7 has, after step 2., tran-
sition diagram depicted in Fig. 3.8. Suffix automaton M3 has, after step
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Figure 3.8: Transition diagram of suffix automaton M2 with ε–transitions
constructed in step 2. of Algorithm 3.7

3. of Algorithm 3.7, its transition diagram depicted in Fig. 3.9.

Figure 3.9: Transition diagram of suffix automaton M3 after the removal of
ε–transitions in the step 3. of Algorithm 3.7

We can use an alternative method for the construction of the suffix au-
tomaton described by the second form of regular expression:

RSuff(x) = (. . . (a1 + ε)a2 + ε)a3 + . . . + ε)an + ε.
Algorithm 3.8 uses this method.

Algorithm 3.8
Construction of the suffix automaton III (using more initial states).
Input: String x = a1a2 . . . an.
Output: Finite automaton M accepting language Suff(x).
Method: We use description of language Suff(x) by regular expression

RSuff(x) = (. . . ((a1 + ε)a2 + ε)a3 + . . . + ε)an + ε.

1. Construct finite automaton M1 accepting string x = a1a2 . . . an.
M1 = ({q0, q1, q2, . . . , qn}, A, δ, q0, {qn}),
where δ(qi, ai+1) = qi+1 for all i = 0, 1, . . . , n − 1.

2. Construct finite automaton M2 = ({q0, q1, q2, . . . , qn}, A, δ, I, {qn})
from automaton M1 having this set of initial states:
I = {q0, q1, . . . , qn−1, qn}.

3. Construct deterministic automaton M equivalent to automaton M2.
We use following steps for the construction:

(a) Using Algorithm 1.39 construct automaton M3 equivalent to au-
tomaton M2 having just one initial state and ε-transitions from
the initial state to all other states.
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(b) Using Algorithm 1.38 construct automaton M4 without ε-transitions
equivalent to automaton M3.

(c) Using Algorithm 1.40 construct deterministic automaton M equiv-
alent to automaton M4. 2

Transition diagram of suffix automaton M2 constructed in step 2. of Algo-
rithm 3.8 is depicted in Fig. 3.10.

Figure 3.10: Transition diagram of suffix automaton M2 accepting language
Suff(a1a2 . . . an) constructed in step 2. of Algorithm 3.8

Example 3.9
Let us have string x = abab. Construct automata accepting Suff(x) using all
three methods of their construction. Using Algorithm 3.6 we obtain (after
the step 2.) suffix automaton M1 having the transition diagram depicted
in Fig. 3.11. Algorithm 3.7 yields, after step 2., suffix automaton M2 with

a b

b

a

a

a

b

b

b

b

START
0 1 2

2’

3

3’

3’’

4

4’

4’’

4’’’

Figure 3.11: Transition diagram of suffix automaton M1 accepting Suff(abab)
from Example 3.9

the transition diagram depicted in Fig. 3.12. Algorithm 3.8 yields, after
the step 2., suffix automaton M3 with the transition diagram depicted in
Fig. 3.13. All automata M1, M2 and M3 accepts language Suff(abab) and
therefore they should be equivalent. Let us show it.

As suffix automaton M1 is nondeterministic, let us construct equivalent
deterministic automaton M ′

1. Transition table and transition diagram of
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0 1 2 3 4
a b a bSTART

b a b

Figure 3.12: Transition diagram of suffix automaton M2 accepting Suff(abab)
from Example 3.9

Figure 3.13: Transition diagram of nondeterministic suffix automaton M3

accepting Suff(abab) from Example 3.9

suffix automaton M ′
1 are depicted in Fig. 3.14. Automaton M ′

1 can be min-

a b

0 1′3′′ 2′4′′

13′′ 24′′

2′4′′ 3′

24′′ 3

3 4

3′ 4′

Figure 3.14: Transition table and transition diagram of deterministic suffix
automaton M ′

1 from Example 3.9

imized as the states in pairs {(2, 4′′), (2′, 4′′′)}, {3, 3′}, and {4, 4′} are equiv-
alent. Transition diagram of minimized suffix automaton M ′

1 is depicted in
Fig. 3.15.
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0 1 2 3 4
a b a bSTART

b

Figure 3.15: Transition diagram of deterministic suffix automaton M ′
1 after

minimization from Example 3.9

Suffix automaton M2 is also nondeterministic and after the determiniza-
tion we obtain automaton M ′

2 having transition diagram depicted in Fig. 3.16.

Figure 3.16: Transition diagram of deterministic suffix automaton M ′
2 from

Example 3.9

Suffix automaton M3 has five initial states. Construction of equivalent
automaton M3 is shown step by step in Fig. 3.17.

Suffix automata M ′
1, M

′
2, and M ′

3 (see Figs 3.15, 3.16, 3.17) are obviously
equivalent. 2

We can use the experience from the possible constructions of the suffix
automaton in the practical algorithm.

Algorithm 3.10
Construction of a finite automaton accepting set Suff(x).
Input: String x = a1a2 . . . an.
Output: Deterministic finite automaton M = (Q, A, δ, q0, F ) accepting set
Suff(x).
Method:

1. Construct finite automaton M1 = (Q1, A, δ1, q0, F1) accepting string x
and empty string:
Q1 = {0, 1, 2, . . . , n},
A is the set of all different symbols in x,
δ1(i − 1, ai) = i, i = 1, 2, . . . , n,
q0 = 0,
F1 = {0, n}.

2. Insert additional transitions into automaton M1 leading from initial
state 0 to states 2, 3, . . . , n:
δ(0, a) = i if δ(i − 1, a) = i for all a ∈ A, i = 2, 3, . . . , n.
The resulting automaton is M2.
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a) Transition diagram of suffix automaton with one initial state and
ε-transitions

b) Transition diagram of suffix automaton after removal of ε-transitions

c) Transition diagram of deterministic suffix automaton M ′
3

Figure 3.17: Three steps of construction of deterministic suffix automaton
M ′

3 from Example 3.9

3. Construct deterministic finite automaton M equivalent to automaton
M2. 2

Definition 3.11 (Terminal state of the suffix automaton)
The final state of the suffix automaton having no outgoing transition is
called terminal state. 2

Definition 3.12 (Backbone of the suffix automaton)
The backbone of suffix automaton M for string x is the longest continuous
sequence of states and transitions leading from the initial state to terminal
state of M . 2

Example 3.13
Let us construct the deterministic finite automaton accepting Suff(abba) =
{abba, bba, ba, a, ε} using Algorithm 3.10. Automaton M1 = ({0, 1, 2, 3, 4},
{a, b}, δ1, 0, {0, 4}) accepting strings {ε, abba} has the transition diagram
depicted in Fig. 3.18. Finite automaton M2 = ({0, 1, 2, 3, 4}, {a, b}, δ2, 0,
{0, 4}) with additional transitions has the transition diagram depicted in
Fig. 3.19. The final result of this construction is deterministic finite au-
tomaton M = ({0, 14, 2, 23, 3, 4}, {a, b}, δ, {0, 4}) which transition table is
shown in Table 3.1. d–subsets of automaton M are: 0, 14, 2, 23, 3, 4. Tran-
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0 1 2 3 4
a b b aSTART

Figure 3.18: Transition diagram of finite automaton M1 accepting string
abba from Example 3.13

0 1 2 3 4
a b b aSTART

b b a

Figure 3.19: Transition diagram of nondeterministic finite automaton M2

with additional transitions from Example 3.13

sition diagram of automaton M is depicted in Fig. 3.20. 2

0 14 2

23

3 4
a b b aSTART

b
b a

Figure 3.20: Transition diagram of deterministic finite automaton M ac-
cepting set Suff(abba) = {abba, bba, ba, a, ε} from Example 3.13

3.3 Factor automaton

Factor automaton is in some sources called Directed Acyclic Word Graph
(DAWG).

Having string x = a1a2 . . . an, we can express set Fact(x) (see Def. 1.3)
using regular expressions:

1. RFac1(x) = (. . . (( a1 + ε)a2 + ε)a3 + . . . + ε)an + ε
+ (. . . (( a1 + ε)a2 + ε)a3 + . . . + ε)an

+ (. . . (( a1 + ε)a2 + ε)a3 + . . . + ε)an−1

+ . . .
+ a1,

2. RFac2(x) = ε+ a1(ε+ a2(ε + . . . + an−1(ε+ an) . . .))
+ a1(ε+ a2(ε + . . . + an−1(ε+ an) . . .))
+ a2(ε + . . . + an−1(ε+ an) . . .)
+ . . .
+ an.
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a b

0 14 23

14 2

2 3

23 4 3

3 4

4

Table 3.1: Transition table of deterministic finite automaton M from Ex-
ample 3.13

The first variant of the regular expression corresponds to that set Fact(x)
is exactly the set of all suffixes of all prefixes of x. The second variant cor-
responds to the fact that set Fact(x) is exactly the set of all prefixes of all
suffixes of x. It follows from these possibilities of understanding of both reg-
ular expressions that the combination of methods of constructing the prefix
and suffix automata can be used for the construction of factor automata.
For the first variant of the regular expression we can use Algorithms 3.6,
3.7, 3.8 and 3.10 as a base for the construction of suffix automata and to
modify them in order to accept all prefixes of all suffixes accepted by suffix
automata. Algorithm 3.14 makes this modification by setting all states final.

Algorithm 3.14
Construction of the factor automaton.
Input: String x = a1a2 . . . an.
Output: Finite automaton M accepting language Fact(x).
Method:

1. Construct suffix automaton M1 for string x = a1a2 . . . an using any of
Algorithms 3.6, 3.7, 3.8 or 3.10.

2. Construct automaton M2 by setting all states of automaton M1 final
states.

3. Perform minimization of automaton M2. The resulting automaton is
automaton M . 2

The resulting deterministic automaton need not be minimal and therefore
the minimization takes place as the final operation.

Example 3.15
Let us have string x = abbbc. We construct the factor automaton accept-
ing set Fact(x) using all four possible ways of its construction. The first
method is based on Algorithm 3.6. Factor automaton M1 has after step 2.
of Algorithm 3.6 transition diagram depicted in Fig. 3.21.
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a b
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b c

c

c

c

c

b

b

b

START
0 1 2

2’

3

3’

3’’

4 5

5’

5’’

5’’’

5’’’’

4’

4’’

4’’’

Figure 3.21: Transition diagram of factor automaton M1 accepting set
Fact(abbbc) from Example 3.15

As factor automaton M1 is nondeterministic, we do its determinisation.
Transition table and transition diagram of deterministic factor automaton
M ′

1 are depicted in Fig. 3.22. This automaton is not minimal because sets
of states {4, 4′}, {5, 5′, 5′′, 5′′′, 5′′′′} are equivalent. The transition diagram of
minimal factor automaton M ′′

1 is depicted in Fig. 3.23. 2

The second method of the construction of the factor automaton is based
on Algorithm 3.7. Factor automaton M2 after step 2 of Algorithm 3.7 has
the transition diagram depicted in Fig. 3.24. Factor automaton M2 is nonde-
terministic and therefore we do its determinisation. The resulting determin-
istic factor automaton M ′

2 is minimal and its transition table and transition
diagram are depicted in Fig. 3.25.

89



a b c

0 1 2′3′′4′′′ 5′′′′

1 2

2 3

3 4

4 5

5

2′3′′4′′′ 3′4′′ 5′′′

3′4′′ 4′ 5′′

4′ 5′

5′

5′′

5′′′

5′′′′

Figure 3.22: Transition table and transition diagram of deterministic factor
automaton M ′

1 accepting set Fact(abbbc) from Example 3.15
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b

a b

b

b

b

b c

c

c

c

START
0 1 2

2’3’’4’’’

3

3’4’’

4 5

Figure 3.23: Transition diagram of minimal factor automaton M ′′
1 accepting

set Fact(abbbc) from Example 3.15

Figure 3.24: Transition diagram of nondeterministic factor automaton M2

accepting set Fact(abbbc) from Example 3.15

a b c

0 1 234 5

1 2

2 3

3 4

4 5

234 34 5

34 4 5

5

a b

b

b

b

b

b c

c

c

c

START
0 1 2

234

3

34

4 5

Figure 3.25: Transition table and transition diagram of deterministic factor
automaton M ′

2 accepting set Fact(abbbc) from Example 3.15

91



The third method of the construction of the factor automaton is based
on Algorithm 3.8. Factor automaton M3 has after step 2. of Algorithm 3.8
transition diagram depicted in Fig. 3.26. Automaton M3 has more than

Figure 3.26: Transition diagram of factor automaton M3 accepting set
Fact(abbbc) from Example 3.15

one initial state, therefore we transform it to automaton M ′
3 having just

one initial state. Its transition table and transition diagram is depicted in
Fig. 3.27. 2

a b c

012345 1 234 5

1 2

2 3

3 4

4 5

234 34 5

34 4

5

Figure 3.27: Transition table and transition diagram of factor automaton
M ′

3 with just one initial state accepting set Fact(abbbc) from Example 3.15

Note: We keep notions of terminal state and the backbone (see Defs. 3.11
and 3.12) also for factor automaton.

3.4 Parts of suffix and factor automata

We will need to use in some applications only some parts of suffix and factor
automata instead of their complete forms. We identified three cases of useful
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parts of both automata:

1. Backbone of suffix or factor automaton.

2. Front end of suffix or factor automaton.

3. Multiple front end of suffix or factor automaton.

3.4.1 Backbone of suffix and factor automata

The backbone of suffix or automaton for string x is such part of the automa-
ton where all states and transitions which does not correspond to prefixes
of x are removed. A general method of extraction of the backbone of suffix
or factor automaton is the operation intersection.

Algorithm 3.16
Construction of the backbone of suffix (factor) automaton.
Input: String x = a1a2 . . . an, deterministic suffix (factor) automaton M1 =
(Q1, A, δ1, q01, F1) for x, deterministic prefix automaton M2 = (Q2, A, δ2,
q02, F2) for x.
Output: Backbone M = (Q, A, δ, q0, F ) of suffix (factor) automaton M1 =
(Q1, A, δ1, q01, F1).
Method: Construct automaton M accepting intersection Suff (x)∩Pref(x)
(Fact(x) ∩ Pref(x)) using Algorithm 1.44. 2

Example 3.17
Let us construct backbone of the suffix automaton for string x = abab. Tran-
sition diagrams of input automata M1 and M2 and output automaton M
are depicted in Fig. 3.28. 2

The resulting backbone is similar to input suffix automaton M1. The only
change is that transition from state 0S to state 2S4S for input symbol b
is removed. Moreover, we can see that the resulting backbone in Example
3.17 is equivalent to the input prefix automaton M2. The important point
of this construction is that d-subsets of suffix automaton M1 are preserved
in the resulting automaton M . This fact will be useful in some applications
described in next Chapters.
The algorithm for extraction of the backbone of the suffix or factor au-
tomaton is very simple and straightforward. Nevertheless it can be used for
extraction of backbones of suffix and factor automata for set of strings and
for approximate suffix and factor automata as well.

3.4.2 Front end of suffix or factor automata

A front end of a suffix or factor automaton for string x is a finite automaton
accepting prefixes of factors of string x having limited length which is strictly
less than the length of string x.
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Figure 3.28: Construction of the backbone of suffix automaton M1 from
Example 3.17

For the construction of a front end part of factor automaton we adapt
Algorithm 1.40 for transformation of nondeterministic finite automaton to
a deterministic finite automaton. The adaptation consists of two points:

1. To append information on the minimal distance of a state of an au-
tomaton from its initial state. The minimal distance is, in this case,
the minimal number of transitions, which are necessary to reach the
state in question from the initial state.

2. To stop construction of deterministic automaton as soon as all states
having desired limited distance from the initial state are constructed.

Definition 3.18
Let M = (Q, A, δ, q0, F ) be an acyclic finite automaton accepting language
L(M). Front end of automaton M for given limit h is a minimal deter-
ministic finite automaton Mh accepting at least all prefixes of strings from
language L(M) having length less or equal to h. This language will be de-
noted by Lh. 2

Algorithm 3.19
Transformation of an acyclic nondeterministic finite automaton to a deter-
ministic finite automaton with states having distance from the initial state
less or equal to given limit.
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Input: Nondeterministic acyclic finite automaton M = (Q, A, δ, q0, F ),
limit h of maximal distance.
Output: Deterministic finite automaton Mh = (Qh, A, δh, q0h, Fh) such that
Lh(M) = Lh(Mh).
Method:

1. Set Qh = {{(q0, 0)}} will be defined, state {q0, 0} will be treated as
unmarked.

2. If each state in Qh is marked then continue with step 5.

3. If there is no unmarked state (q, l) in Qh, where l is less than h then
continue with step 5.

4. An unmarked state (q, l) will be choosen from Qh and the following
operations will be executed:

(a) δh((q, l), a) = (q′, l + 1) for all a ∈ A, where q′ = ∪ δ(p, a) for all
a ∈ A, p ∈ q,

(b) if (q′, l′) ∈ Qh then Qh = Qh∪(q′, min(l+1, l′)) and δh((q, l), a) =
(q′, min(l + 1, l′),

(c) state (q, l) will be marked,

(d) continue with step 2.

5. q0h = {q0, 0}.
6. Fh = {(q, l) : (q, l) ∈ Qh, q ∩ F 6= ∅}. 2

Example 3.20
Let us have string x = abab. Construct front end of the factor automaton
for string x of length h = 2. Transition diagram of nondeterministic factor
automaton M for string x is depicted in Fig. 3.29. Transition diagram of

Figure 3.29: Transition diagram of nondeterministic factor automaton M
for string x = abab from Example 3.20

the front end of deterministic factor automaton Mh for h = 2 is depicted in
Fig. 3.30. 2
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Figure 3.30: Transition diagram of the front end of deterministic factor
automaton M2 from Example 3.20

3.4.3 Multiple front end of suffix and factor automata

Let us recall definition of multiple state of deterministic finite automaton
(see Def. 1.42). Multiple front end of a suffix or factor automaton is the part
of them containing multiple states only. For the construction of such part of
suffix or factor automaton we again adapt Algorithm 1.40 for transformation
of nondeterministic finite automaton to a deterministic finite automaton.
The adaption is very simple:
If some state constructed during determinisation is simple state then we
omit it.

Algorithm 3.21
Construction of multiple states part of suffix or factor automaton.
Input: Nondeterministic suffix or factor automaton M = (Q, A, δ, q0, F ).
Output: Part M ′ = (Q′, A, δ′, q′0, F

′) of the deterministic factor automaton
for M containing only multiple states (with exception of the initial state).
Method:

1. Set Q′ = {{q0}} will be defined, state {q0} will be treated as unmarked.

2. If all states in Q′ are marked then continue with step 4.

3. An unmarked state q will be choosen from Q′ and the following oper-
ations will be executed:

(a) δ′(q, a) = ∪ δ(p, a) for all p ∈ q and for all a ∈ A,

(b) if δ′(q, a) is a multiple state then Q′ = Q′ ∪ δ′(q, a),

(c) the state q ∈ Q′ will be marked,

(d) continue with step 2.

4. q′0 = {q0}.
5. F ′ = {q : q ∈ Q′, q ∩ F 6= ∅}. 2

Example 3.22
Let us have string x = abab as in Example 3.20. Construct multiple front end
of the factor automaton for string x. Transition diagram of nondeterministic
factor automaton M for string x is depicted in Fig. 3.29. Transition diagram
of multiple front end M ′ of factor automaton M is depicted in Fig. 3.31. 2
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Figure 3.31: Transition diagram of the multiple states part of deterministic
factor automaton M ′ from Example 3.22

3.5 Subsequence automata

The set of subsequences of string x = a1a2 . . . an (see Def. 1.4) can be
described by the following regular expression:

RSub(x) = (a1 + ε)(a2 + ε) . . . (an + ε).
Therefore the next algorithm is based on the insertion of ε–transition.

Algorithm 3.23
The construction of a subsequence automaton accepting set Sub(x).
Input: String x = a1a2 . . . an.
Output: Deterministic subsequence automaton M = (Q, A, δ, q0, F ) ac-
cepting set Sub(x).
Method:

1. Construct finite automaton M1 = (Q1, A, δ1, q0, F1) accepting all pre-
fixes of string x:
Q1 = {0, 1, 2, . . . , n},
A is the set of all different symbols in x,
δ1(i − 1, ai) = i, i = 1, 2, . . . , n,
q0 = 0, F1 = {0, 1, 2, . . . , n}.

2. Insert ε–transitions into automaton M1 leading from each state to
its next state. Resulting automaton M2 = (Q, A, δ2, q0, F1), where
δ2 = δ1 ∪ δ′, where δ′(i − 1, ε) = i, i = 1, 2, . . . , n.

3. Replace all ε–transitions by non–ε–transitions. The resulting automa-
ton is M3.

4. Construct deterministic finite automaton M equivalent to automaton
M3. All its states will be final states. 2

Example 3.24
Let us construct the deterministic finite automaton accepting set
Sub(abba) = {ε, a, b, ab, ba, aa, bb, aba, bba, abb, abba}. Let us mention, that
strings aa, aba are subsequences of x = abba but not its factors. Us-
ing Algorithm 3.23 we construct the subsequence automaton. Automaton
M1 = ({0, 1, 2, 3, 4}, {a, b}, δ1, 0, {0, 1, 2, 3, 4}) accepting all prefixes of string
abba has transition diagram depicted in Fig. 3.35.
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Finite automaton M2 with inserted ε–transitions has transition diagram
depicted in Fig 3.32. Nondeterministic finite automaton M3 after the elim-

0 1 2 3 4
a b b aSTART

Figure 3.32: Transition diagram of automaton M2 with ε–transitions ac-
cepting all subsequences of string abba from Example 3.24

ination of ε–transitions has transition diagram depicted in Fig. 3.33. The

0 1 2 3 4
a b b aSTART

b

b

a

a

b
a

Figure 3.33: Transition diagram of nondeterministic finite automaton M3

accepting set Sub(abba) after elimination of the ε–transitions from Exam-
ple 3.24

final result of this construction is deterministic finite automaton (subse-
quence automaton) M . Its transition table is shown in Table 3.2. Transition

a b

0 14 23

14 4 23

23 4 3

3 4

4

Table 3.2: Transition table of automaton M from Example 3.24

diagram of automaton M is depicted in Fig. 3.34. 2
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0 14 23 3 4
a b b aSTART

b

a

a

Figure 3.34: Transition diagram of deterministic subsequence automaton M
accepting set Sub(abba) from Example 3.24

3.6 Factor oracle automata

The factor oracle automaton for given string x accepts all factors of x and
possibly some subsequences of x.

Factor oracle automaton is similar to the factor automaton, but it has
always n + 1 states, where n = |x|. It is possible to construct factor oracle
automaton from factor automaton. This construction is based on the notion
of corresponding states in a factor automaton.

Definition 3.25
Let M be the factor automaton for string x and q1, q2 be different states of
M . Let there exist two sequences of transitions in M :

(q0, x1) `∗ (q1, ε), and
(q0, x2) `∗ (q2, ε).

If x1 is a suffix of x2 and x2 is a prefix of x then q1 and q2 are corresponding
states. 2

The factor oracle automaton can be constructed by merging the correspond-
ing states.

Example 3.26
Let us construct the deterministic finite automaton accepting set
Fact(abba) = {ε, a, b, ab, bb, ba, abb, bba, abba} using Algorithm 3.7. Automa-
ton M1 = ({0, 1, 2, 3, 4}, {a, b}, δ1, 0, {0, 1, 2, 3, 4}) accepting all prefixes of
the string abba has the transition diagram depicted in Fig. 3.35. Finite au-

0 1 2 3 4
a b b aSTART

Figure 3.35: Transition diagram of finite automaton M1 accepting set of all
prefixes of the string abba from Example 3.26

tomaton M2 with inserted ε–transitions has the transition diagram depicted
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in Fig. 3.36. Nondeterministic finite automaton M3 after the elimination of
ε–transitions has the transition diagram depicted in Fig. 3.37.

Figure 3.36: The transition diagram of automaton M2 with ε–transitions
accepting all factors of string abba from Example 3.26

0 1 2 3 4
a b b aSTART

b b a

Figure 3.37: Transition diagram of nondeterministic factor automaton M3

after the elimination of ε–transitions from Example 3.26

The final result of this construction is deterministic factor automaton
M . Its transition table is shown in Table 3.3. The transition diagram of

a b

0 14 23

14 2

2 3

23 4 3

3 4

4

Table 3.3: The transition table of the automaton M from Example 3.26

automaton M is depicted in Fig. 3.38. The corresponding states in this
automaton are: 2 and 23. If we make this two states equivalent, then we
obtain factor oracle automaton Oracle(abba) with the transition diagram
depicted in Fig. 3.39. The language accepted by the automaton is:

L(Oracle(abba)) = {ε, a, b, ab, bb, ba, abb, bba, abba, aba}
= Fact(abba) ∪ {aba}.

String aba is not factor of abba but it is its subsequence. 2

The approach used in Example 3.26 has this drawback: the intermediate
result is a factor automaton and its number of states is limited by 2n − 2
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0 14 2

23

3 4
a b b aSTART

b
b a

Figure 3.38: Transition diagram of factor automaton M accepting set
Fact(abba) from Example 3.26

0 14 2,23 3 4
a b b aSTART

b a

Figure 3.39: Transition diagram of the Oracle(abba) from Example 3.27

while the number of states of factor oracle automaton is always equal to n+1,
where n is the length of string x. Fortunately, a factor oracle automaton
can be constructed directly during the determinization of nondeterministic
factor automaton. In this case, it is necessary to fix the identification of
corresponding states.
Interpretation A of Definition 3.25: Using our style of the numbering of
states, the identification of corresponding states can be done as follows:

Two states
p = {i1, i2, . . . , in1}, q = {j1, j2, . . . , jn2}

are corresponding states provided that set of states of nondeterministic fac-
tor automaton is ordered and the lowest states are equal which means that
i1 = j1.

Example 3.27
During the determinisation of nondeterministic factor automaton M3 (see
Fig. 3.37) we will identify states 2 and 23 as corresponding states and the
factor oracle automaton having transition diagram depicted in Fig. 3.39 can
be constructed directly. 2

A problem can appear during the construction of factor oracle automaton
by merging of corresponding states of the respective factor automaton. The
problem is that the resulting factor oracle automaton can be nondetermin-
istic. Let us show this problem in next Example.

Example 3.28
Let us have text T = abbcabcd. The construction of factor oracle automaton
using merging of states of the respective factor automaton is shown step by
step in Fig. 3.40.

We can see, in Fig. 3.40 d), that the factor oracle automaton resulting
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by merging of corresponding states {236, 26} and {47, 4} of the factor au-
tomaton having transition diagram depicted in Fig. 3.40 c) is nondetermin-
istic. The nondeterminism is caused by transition δ(236, c) = {47, 7}. The
transition table of the nondeterministic factor oracle automaton depicted in
Fig. 3.40 d) is Table 3.4. The result of the determinization of this factor

a b c d

0 15 236 47 8

15 236

236 3 47, 7

3 47

47 5 8

5 6

6 7

7 8

8

Table 3.4: Transition table of the nondeterministic factor oracle automaton
having transition diagram depicted in Fig. 3.40 d) (see Example 3.28)

oracle automaton is the deterministic factor oracle automaton having the
transition diagram depicted in Fig. 3.40 e) and Table 3.5 as the transition
table. We can see in this table, that states {47} and {47, 7} are equivalent.
This fact is expresed in Fig. 3.40 e). 2

a b c d

0 15 236 47 8

15 236

236 3 47, 7

3 47

47 5 8

47, 7 5 8

5 6

6 7

7 8

8

Table 3.5: Transition table of the deterministic factor oracle automaton from
Example 3.28; let us note, that states {47} and {47, 7} are equivalent

Let us discuss the problem of the nondeterminism of factor oracle au-
tomaton after merging of states.
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0 1 2 3 4 5 6 7 8
a

e e e e e e e e

b b c a b c d
START

a) transition diagram of the nondeterministic factor automaton with ε-
transitions

0 1 2 3 4 5 6 7 8
a b

b

b

b

c

c

a

a

b

b

c

c

d

a
START

b) transition diagram of the nondeterministic factor automaton after re-
moval of ε-transitions

c) transition diagram of the deterministic factor automaton

0 15 236 3 47 5 6 7 8
a b b

b c

c c

d

d

c a b c d
START

d) transition diagram of the nondeterministic factor oracle automaton

0 15 236 3 47,7 5 6 7 8
a b b

b c

c

d

d

c a b c d
START

e) transition diagram of the deterministic factor oracle automaton

Figure 3.40: Construction of factor oracle automaton from Example 3.28
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Let δ(q, a) = {q1, q2}, for some a ∈ A, be the “nondeterministic” part
of the transition function. State q2 has greater depth than state q1. The
factor oracle automaton is homogenous automaton and due to its construc-
tion the d-subset (see Def. 1.41) of q2 is a subset of d-subset of q1. If it
holds that d-subset(q1) = d-subset(q1) ∪ d-subset(q2). It follows from this,
that

δ({q1}, a) = δ({q1, q2}, a) for all a ∈ A.
The practical consequence of this reasoning is, that in the case of nonde-
terminism shown above, it is enough to remove “longer” transition. More
precisely: δ(q, a) = {q1}.

There is possible for some texts to construct factor oracle automaton hav-
ing less transitions than the factor oracle automaton constructed by merging
corresponding states according to Definition 3.25. Let us show the possibil-
ity using an example.

Example 3.29
Let text the be T = abcacdace. The construction of factor oracle automaton
using merging of states according to Definition 3.25 is shown step by step in
Fig. 3.41. Moreover another principle of merging states of respective factor
automaton (see Fig. 3.41c) can be used. This is merging of states (3,58,358).

2

The principle used in Example 3.29 is based on the following interpretation
B of Definition 3.25:
States having d-subsets:
p = {i1, i2, . . . , in1}, q = {j1, j2, . . . , jn2} are corresponding states for |p| >
|q| when q ⊂ p.

From this follows that states 358 and 58 are corresponding states and
states 3 and 358 are corresponding states according to the interpretation A
of Definition 3.25.

Factor oracle accepts language L(Oracle(x)) for string x. Language L
contains set Fact(x) and moreover some subsequences. Let us do character-
isation of the language accepted by factor oracles.

The main idea behind the method of this characterisation is an operation
called contraction. The contraction consists in removal of some string from x
starting with a repeating factor a continuing by gap to some of its repetition.
Let us show this principle using an example.

Example 3.30
Let text be T = gaccattctc. We start by construction of factor automa-
ton for text T . Transition diagram of nondeterministic factor automa-
ton MN is depicted in Fig. 3.42a. Transition table of deterministic factor
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a) transition diagram of the nondeterministic factor automaton with ε-
transitions

b) transition diagram of the nondeterministic factor automaton after re-
moval of ε-transitions

c) transition diagram of the deterministic factor automaton

d) transition diagram of the factor oracle automaton after merging pair of
states (3,358) and (5,58) has 8 external transition

e) transition diagram of deterministic factor oracle automaton after merg-
ing states (3,58,358) has 7 external transitions

Figure 3.41: Construction of factor oracle automaton and its “optimised”
variant from Example 3.29
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automaton MD is shown in Table 3.6. Transition diagram of determinis-
tic factor automaton MD is depicted in Fig. 3.42b. The corresponding states
are these pairs of states:

(2, 25), (3, 348A), (6, 679), (8, 8A).
On the base of this correspondence we can construct factor oracle automaton
MO having transition diagram depicted in Fig. 3.42c.

a) transition diagram of nondeterministic factor automaton MN

b) transition diagram of deterministic factor automaton MD

c) transition diagram of factor oracle automaton MO

Figure 3.42: Transition diagrams of automata MN , MD and MO for text
T = gaccattctc from Example 3.30

Using factor automaton MD we can construct repetition table R shown in
Table 3.7. 2

Using the repetition table we can construct a set of contractions. Set Contr
of contractions is a set of pairs (i, j) where

i is the starting position of contraction,
j is the first position behind the contraction.

The contractions are closely related to the repetition of factors in text T .
The contraction consists in removing the first occurrence of some repeating
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a c g t

0 25 348A 1 679

1 2

25 3 6

2 3

3 4

348A 5 4 9

4 5

5 6

6 7

679 8A 7

7 8

8 9

8A 9

9 A

A

Table 3.6: Transition table of deterministic factor automaton MD for text
T = gaccattctc from Example 3.30

d-subset Factor Repetitions

25 a (2, F ), (5, G)

348A c (3, F ), (4, S), (8, G), (A, G)

679 t (6, F ), (7, S), (9, G)

8A tc (8, F ), (A, S)

Table 3.7: Repetition table R for text T = gaccattctc from Example 3.30

factor and the gap starting behind it and ending just before some next oc-
currence of it. The contraction can be combined provided that the repetition
of some factor is a repetition with gap. It cannot be combined in case of its
overlapping and if one contraction contains another as a substring.

Using contractions described above, we obtain set of pairs Contr(T ) for
text T .

Example 3.31
Let text be T = gaccattctc as in Example 3.30. The set of contractions
based on repetition table R is:

Contr(T ) = {(2, 5), (3, 4), (3, 8), (3, A), (6, 7), (6, 9), (7, 9)}.
Let us list set SC(T ) of all strings created from T using this contractions
and containing also string T .
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T = g a c c a t t c t c = g a c c a t t c t c (∗)
C{(7, 9)} = g a c c a t �t �c t c = g a c c a t t c
C{(3, 4)} = g a �c c a t t c t c = g a c a t t c t c (∗)
C{(3, 4), (7, 9)} = g a �c c a t �t �c t c = g a c a t t c
C{(3, 10)} = g a �c �c �a �t �t �c �t c = g a c
C{(6, 7)} = g a c c a �t t c t c = g a c c a t c t c (∗)
C{(6, 9)} = g a c c a �t �t �c t c = g a c c a t c
C{(3, 4), (6, 7)} = g a �c c a �t t c t c = g a c a t c t c (∗)
C{(3, 4), (6, 9)} = g a �c c a �t �t �c t c = g a c a t c
C{(2, 5)} = g �a �c �c a t t c t c = g a t t c t c (∗)
C{(2, 5), (7, 9)} = g �a �c �c a t �t �c t c = g a t t c
C{(2, 5), (6, 7)} = g �a �c �c a �t t c t c = g a t c t c (∗)
C{(2, 5), (6, 9)} = g �a �c �c a �t �t �c t c = g a t c
C{(3, 8)}) = g a �c �c �a �t �t c t c = g a c t c (∗)

2

The set of strings SC(T ) created by contractions can contain some string
which are substring of other elements of set SC. Such strings can be from
SC removed because they are redundant.

Example 3.32
The set SCO(T ) for text T = gaccattctc from Example 3.30 contains after
optimisation these strings (marked in Example 3.31 by *):
SCO(T ) = {gaccattctc, gacattctc, gaccatctc, gacatctc, gattctc, gatctc, gactc}.
Language accepted by factor oracle M0 for T is:

L(M0) = Fact(SCO(T )). 2

3.7 The complexity of automata for parts of strings

The maximum state and transition complexities of prefix, suffix, factor,
subsequence, and factor oracle automata are summarized in Table 3.8. The
length of the string is always equal to n. |A| is the size of alphabet A.
The factor automaton having maximal state and transition complexities is
depicted in Fig. 3.23. This complexity is reached for strings abn−2c. The
complexity of the suffix automaton is in many cases the same as of the
factor automaton. But in some cases the factor automaton can have less
states than the suffix automaton for the same string. The reason for thisis
fact that some factor automata may be minimized because they have all
states final.

Example 3.33
Let us have text T = abb. We will construct the suffix automaton accepting
Suff(abb) and the factor automaton accepting Fact(abb). The nondetermin-
istic and deterministic suffix automata have transition diagrams depicted
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Type of automaton No. of states No. of transitions

Prefix automaton n + 1 n

Suffix automaton 2n − 2 3n − 4

Factor automaton 2n − 2 3n − 4

Subsequence automaton n + 1 |A|.n
Factor oracle automaton n + 1 2n − 1

Table 3.8: Maximum state and transition complexities of automata accept-
ing parts of string

in Fig. 3.43. The nondeterministic and deterministic factor automata have

Figure 3.43: Transition diagrams of the suffix automata for string x = abb
from Example 3.33

transition diagrams depicted in Fig. 3.44. The deterministic factor automa-
ton can be minimized as states 2 and 23 are equivalent. This is not true
for the deterministic suffix automaton as 23 is a final state and 2 is not a
final state. Therefore the minimal factor automaton accepting Fact(abb)
has transition diagram depicted in Fig. 3.45. 2

The reader can verify, that for string x = abn, n > 1, the factor automaton
has less states than the suffix automaton.

3.8 Automata for parts of more than one string

All finite automata constructed above in this Chapter can be used as a
base for the construction of the same types of automata for a finite set
of strings. Construction of a finite automaton accepting set Pref (S) (see
Def. 1.6) where S is a finite set of strings from A+ we will do in the similar
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0 1 2 3
a b

b

b

b

START

0 1 2

23

3
a b

b

b

b

START

Figure 3.44: Transition diagrams of the factor automata for string x = abb
from Example 3.33

0 1 2,23 3
a b

b

bSTART

Figure 3.45: Transition diagram of the minimal factor automaton accepting
Fact(abb) from Example 3.33

way as for one string in Algorithm 3.4.

Algorithm 3.34
Construction of a finite automaton accepting set Pref S, S ⊂ A+.
Input: A finite set of strings S = {x1, x2, . . . , x|s|}.
Output: Prefix automaton M = (Q, A, δ, q0, F ) accepting set Pref (S).
Method:

1. Construct finite automata Mi = (Qi, Ai, δi, q0i, Fi) accepting set
Pref (xi) for i = 1, 2, . . . , |S| using Algorithm alg@ktis3-01.

2. Construct deterministic finite automaton M = (Q, A, δ, q0, F ) accept-
ing set Pref(S) = Pref(x1) ∪ Pref(x2) ∪ . . . ∪ Pref(x|S|). 2

Example 3.35
Let us construct the prefix automaton for set of strings S = {abab, abba}.
Finite automata M1 and M2 have transition diagrams depicted in Fig. 3.46.
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Figure 3.46: Transition diagrams of automata M1 and M2 from Exam-
ple 3.35

Prefix automaton M accepting set Pref(abab, abba) has transition diagram
depicted in Fig. 3.47. 2

Figure 3.47: Transition diagram of prefix automaton accepting set
Pref(abab, abba) from Example 3.35

Construction of suffix and factor automata for a finite set of strings we will
do in the similar way as for one string (see Sections 3.2 and 3.3). One of
principles of their construction is formalized in the following Algorithm for
suffix and factor automata. An X–automaton, in the next Algorithm, means
suffix or factor automaton.

Algorithm 3.36
Construction of X–automaton for a finite set of strings.
Input: Finite set of strings S = {x1, x2, . . . , x|S|}.
Output: Deterministic X–automaton M = (Q, A, δ, q0, F ) for set S.
Method:

1. Construct X–automata M1, M2, . . . , M|S| with ε–transitions (see
Fig. 3.8) for all strings x1, x2, . . . , x|S|.

2. Construct automaton Mε accepting language
L(Mε) = L(M1) ∪ L(M2) ∪ . . . ∪ L(M|S|).
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3. Construct automaton MN by removing ε–transitions.

4. Construct deterministic finite automaton M equivalent to automaton
MN . 2

Example 3.37
Let us construct the factor automaton for set of strings S = {abab, abba}.
First, we construct factor automata M1 and M2 for both strings in S. Their
transition diagrams are depicted in Figs 3.48 and 3.49, respectively.

Figure 3.48: Transition diagram of factor automaton M1 accepting
Fact(abab) from Example 3.37

Figure 3.49: Transition diagram of factor automaton M2 accepting
Fact(abba) from Example 3.37

In the second step we construct automaton Mε accepting language L(M) =
Fact(abab) ∪ Fact(abba). Its transition diagram is depicted in Fig. 3.50.

In the third step we construct automaton MN by removing ε–transitions.
Its transition diagram is depicted in Fig. 3.51.

The last step is the construction of deterministic factor automaton M .
Its transition table is shown in Table 3.9.
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Figure 3.50: Transition diagram of factor automaton Mε accepting set
Fact(abab) ∪ Fact(abba) from Example 3.37

a b

0 11123142 21223241

11123142 212241

21223241 3142 32

212241 31 32

3142 41

31 41

32 42

41

42

Table 3.9: Transition table of automaton M from Example 3.37
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b

b

b

b

b

a

a

b

a

b

b

a

a

a

START
0

12 22 32 42

11 21 31 41

Figure 3.51: Transition diagram of factor automaton MN accepting set
Fact(abab) ∪ Fact(abba) from Example 3.37
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Transition diagram of resulting deterministic factor automaton M is de-
picted in Fig. 3.52. 2

b

b

ba

a

b

b

b

a

aSTART

multilpe front end

0 1 1 3 4
1    2    1    2

2 2 4
1    2    1

2 2 3 4
1    2    2    1

3 4
1    2

3
2

3
1

4
2

4
1

Figure 3.52: Transition diagram of deterministic factor automaton M ac-
cepting set Fact(abab) ∪ Fact(abba) from Example 3.37

3.9 Automata accepting approximate parts of a string

Finite automata constructed above in this Chapter are accepting exact parts
of string (prefixes, suffixes, factors, subsequences). It is possible to use the
lessons learned from their constructions for the construction of automata
accepting approximate parts of string. The main principle of algorithms
accepting approximate parts of string x is:

1. Construct finite automaton accepting set:
Approx (x) = {y : D(x, y) ≤ k}.

2. Construct finite automaton accepting approximate parts of string us-
ing principles similar to that for the construction of automata accept-
ing the exact parts of string.

We show this principle using Hamming distance in the next example.

Definition 3.38
Set Hk(P ) of all strings similar to string P is:

Hk(P ) = {X : X ∈ A∗, DH(X, P ) ≤ k}.
where DH(X, P ) is the Hamming distance. 2

Example 3.39
Let string be x = abba. We construct approximate prefix automaton for
Hamming distance k = 1. For this purpose we use a modification of Algo-
rithm 2.5. The modification consists in removing the selfloop in the initial
state q0. After that we make all state final states. Transition diagram of
resulting “Hamming” prefix automaton is depicted in Fig. 3.53.
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Figure 3.53: Transition diagram of the “Hamming” prefix automaton ac-
cepting APref(abba) for Hamming distance k = 1 from Example 3.39

Example 3.40
Let string be x = abba. We construct approximate factor automaton using
Hamming distance k = 1.

1. We use Algorithm 3.10 modified for factor automaton (see Algo-
rithm 3.14). For the construction of finite automaton accepting string
x and all strings with Hamming distance equal to 1, we use a modi-
fication of Algorithm 2.5. The modification consists in removing the
self loop in initial state q0. Resulting finite automaton has transition
diagram depicted in Fig. 3.54.

b

ba

b

b

a

a

b a a b

START

1’ 2’ 3’ 4’

10 2 3 4

Figure 3.54: Transition diagram of the “Hamming” automaton accepting
H1(abba) with Hamming distance k = 1 from Example 3.40

2. We use the principle of inserting the ε–transitions from state 0 to states
1,2,3 and 4. Moreover, all states are fixed as final states. Transition
diagram with inserted ε–transition is depicted in Fig. 3.55.

3. We replace ε–transitions by non–ε–transitions. The resulting automa-
ton has transition diagram depicted in Fig. 3.56.

4. The final operation is the construction of the equivalent deterministic
finite automaton. Its transition table is shown in Table 3.10.

The transition diagram of the resulting deterministic approximate factor
automaton is depicted in Fig. 3.57. All states of it are final states. 2

Example 3.41
Let us construct backbone of the Hamming factor automaton from Exam-
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e e e

b

ba

b

b

a

a

b a a b

START

1' 2' 3' 4'

10 2 3 4

e

Figure 3.55: Transition diagram of the “Hamming” factor automaton with
ε–transitions inserted and final states fixed from Example 3.40

b

b

b

a

b

b

b

a

a

a

b a

a

a

a

b

b

START

1' 2' 3' 4'

10 2 3 4

Figure 3.56: Transition diagram of the “Hamming” factor automaton after
removal of ε–transitions from Example 3.40

ple 3.40. The construction of the backbone consists in intersection of Ham-
ming factor automaton having transition diagram depicted in Fig. 3.57 and
Hamming prefix automaton having transition diagram depicted in Fig. 3.53.
The result of this intersection is shown in Fig. 3.58. In this automaton pairs
of states:

((2′4′, 2
′P ), (32′4′, 2

′P )) and
((3′4′, 3

′P ), (3′, 3
′P ))

are equivalent.
The backbone equivalent to one depicted in Fig. 3.58 we obtain using

the following approach. We can recognize, that set of states of the Hamming
factor automaton (see Fig. 3.57):

(2’4’,32’4’) and (3’4,3’,3’4’)
are equivalent. After minimization we obtain Hamming factor automaton
depicted in Fig. 3.59. The backbone of the automaton we obtain by removal
of transition drawn by the dashed line. 2
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a b

0 142′3′ 231′4′

142′3′ 2′4′ 23′

231′4′ 3′4′ 32′4′

2′4′ 3′

23′ 3′4′ 3

3′4′ 4′

32′4′ 4 3′4′

3′ 4′

3 4 4′

4′

4

Table 3.10: Transition table of the deterministic “Hamming” factor automa-
ton from Example 3.40

Figure 3.57: Transition diagram of the deterministic “Hamming” approxi-
mate factor automaton for x = abba, Hamming distance k = 1 from Exam-
ple 3.40
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a b

(0, 0P ) (142′3′, 1P ) (231′4′, 1
′P )

(142′3′, 1P ) (2′4′, 2
′P ) (23′, 2P )

(231′4′, 1
′P ) (32′4′, 2

′P )

(23′, 2P ) (3′4′, 3
′P ) (3, 3P )

(2′4′, 2
′P ) (3′, 3

′P )

(32′4′, 2
′P ) (3′4′, 3

′P )

(3′4′, 3
′P ) (4′, 4

′P )

(3, 3P ) (4, 4P ) (4′, 4
′P )

(3′, 3
′P ) (4′, 4

′P )

Table 3.11: Transition table of the backbone of Hamming factor automaton
for string x = abba

Figure 3.58: Transition diagram of the backbone of Hamming factor au-
tomaton for string x = abba, from Example 3.41

START a b

b

b a a b

b

b

a

a

a

0 142 3'  '

231'4'

23'

2'4'

'  '32 4

3'4

3'

3'4'

3 4

4'

Figure 3.59: Minimized Hamming factor automaton for string x = abba
from Example 3.41
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4 Borders, repetitions and periods

4.1 Basic notions

Definition 4.1 (Proper prefix)
The proper prefix is any element of Pref(x) not equal to x. 2

Definition 4.2 (Border)
Border of string x ∈ A+ is any proper prefix of x, which is simultaneously its
suffix. The set of all borders of string x is bord(x) = (Pref(x)\{x})∩Suff(x).
The longest border of x is Border(x). 2

Definition 4.3 (Border of a finite set of string)
Border of set of strings S = {x1, x2, . . . , x|S|} is any proper prefix of some
xi ∈ S which is the suffix of some xj ∈ S, i, j ∈< 1, |S| >. The set of all
borders of the set S is

mbord(S) =

|S|
⋃

i=1

|S|
⋃

j=1

(Pref(xi) \ {xi}) ∩ Suff(xj).

The longest border which is the suffix of xi, i ∈< 1, |S| > belongs to the set
mBorder(S).

mBorder(S) = {ui : ui ∈ mbord(S), ui is the longest suffix of xi,
i ∈< 1, |S| >}. 2

Definition 4.4 (Period)
Every string x ∈ A+ can be written in the form:

x = urv,
where u ∈ A+ and v ∈ Pref(u). The length of the string u, p = |u| is a
period of the string x, r is an exponent of the string x and u is a generator
of x. The shortest period of string x is Per(x). The set of all periods of x is
periods (x). String x is pure periodic if v = ε. 2

Definition 4.5 (Normal form)
Every string x ∈ A+ can be written in the normal form:

x = urv,
where p = |u| is the shortest period Per(x), therefore r is the highest expo-
nent and v ∈ Pref(u). 2

Definition 4.6 (Primitive string)
If string x ∈ A+ has the shortest period equal to its length, then we call it
the primitive string. 2

Let us mention that for primitive string x holds that Border(x) = {ε}.
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Definition 4.7 (Border array)
The border array β[1..n] of string x ∈ A+ is a vector of the lengths of the
longest borders of all prefixes of x:

β[i] = |Border(x[1..i])| for i = 1, 2, . . . , n. 2

Definition 4.8 (Border array of a finite set of strings)
The mborder array mβ[1..n] of a set of strings S = {x1, x2, . . . , x|S|} is a
vector of the longest borders of all prefixes of strings from S:

mβ[h] = |mBorder({x1, x2, . . . , xi−1, xi[1..j], xi+1, . . . x|S|})| for

i ∈ 〈1, |S|〉, j ∈ 〈1, |xi|〉.
The values of variable h are used for the labelling of states of finite

automaton accepting set S.

h ≤
|S|
∑

l=1

|xl|.
2

Definition 4.9 (Exact repetition in one string)
Let T be a string, T = a1a2 . . . an and ai = aj , ai+1 = aj+1, . . . , ai+m =
aj+m, i < j, m ≥ 0. String x2 = ajaj+1 . . . aj+m is an exact repetition of
string x1 = aiai+1 . . . am. x1 or x2 are called repeating factors in text T .

2

Definition 4.10 (Exact repetition in a set of strings)
Let S be a set of strings, S = {x1, x2, . . . , x|S|} and xpi = xqj , xpi+1 =
xqj+1, . . . , xpm = xqm, k 6= l or k = l and i < j, m ≥ 0.
String xqjxqj+1 . . . xqm is an exact repetition of string xpixpi+1 . . . xpm.

2

Definition 4.11 (Aproximate repetition in one string)
Let T be a string, T = a1a2 . . . an and D(aiai+1 . . . ai+m, ajaj+1 . . . aj+m′) ≤
k, where m, m′ ≥ 0, D is a distance, 0 < k < n. String ajaj+1 . . . aj+m′ is
an approximate repetition of string aiai+1 . . . ai+m. 2

The approximate repetition in the set of strings can be defined in the similar
way.

Definition 4.12 (Type of repetition)
Let x2 = ajaj+1 . . . aj+m be an exact or approximate repetition of x1 =
aiai+1 . . . ai+m′ , i < j, in one string.
Then if j − i < m then the repetition is with an overlapping (O),

if j − i = m then the repetition is a square (S),
if j − i > m then the repetition is with a gap (G). 2

4.2 Borders and periods

The Algorithms in this Section show, how to find borders of a string and its
periods.
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The main topic of our interest is pattern matching. The main goal is to
find all occurences of a given pattern in a text. This is very simple when
the pattern is a primitive string. There are no possible two occurences of
the primitive pattern with an overlapping. This is not true for patterns
having nonempty Border. In this situation there are possible two or more
occurences of a pattern with an overlapping. Such situation for pattern p
is visualised in Fig. 4.1. Fig. 4.2 shows “cluster” of occurences of “highly”

Figure 4.1: Visualisation of two possible occurences of pattern p with an
overlapping

periodic pattern p = ababa. For pattern p holds:
bord(p) = {ε, a, aba},
Border(p) = aba,
periods (p) = {2, 4},
Per (p) = 2,
p = (ab)2a is the normal form of p, r = 2.

Figure 4.2: Visualisation of a “cluster” of occurences of “highly” periodic
pattern p = ababa

The distance of two consecutive occurences in the depicted “cluster” is given
by Per(p) = 2. The maximum number of occurences with overlapping in
such cluster is given by the exponent and is equal to 3 in our case. It is
equal to the exponent for pure periodic patterns.
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4.2.1 Computation of borders

We use a deterministic suffix automaton and analysis of its backbone for the
computation of borders for given string.

Algorithm 4.13
Computation of borders.
Input: String x ∈ A+.
Output: bord(x),Border(x).
Method:

1. Construct deterministic suffix automaton M for the string x.

2. Do analysis of the automaton M :

(a) set bord := {ε},
(b) find all sequences of transitions on the backbone of the suffix

automaton M leading from the initial state to some final state
but the terminal one,

(c) if the labelling of some sequence of transitions is xi then bord(x) :=
bord(x)∪ {xi} for all i = 1, 2, . . . , h, where h is the number of se-
quences of transitions found in step b)

3. Select the longest element y of the set bord(x) and set Border(x) := y.
2

Note: The dashed lines will be used for the parts of suffix and factor au-
tomata which are out of the backbone.

Example 4.14
Let us compute bord(x) and Border(x) for string x = ababab using Algo-
rithm 4.13. Suffix automaton M has the transition diagram depicted in
Fig. 4.3.

a b

b

a b a bSTART
0 135 246 35 46 5 6

Figure 4.3: Transition diagram of the suffix automaton for string x = ababab
from Example 4.14

There are three sequences of transitions in M in question:
0

ε−→ 0

0
a−→ 135

b−→ 246

0
a−→ 135

b−→ 246
a−→ 35

b−→ 46
Then bord(x) = {ε, ab, abab} and Border(x) = abab. 2
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Example 4.15
Let us compute bord(x) and Border(x) for string x = abaaba using Algo-
rithm 4.13. Suffix automaton M has the transition diagram depicted in
Fig. 4.4.

a b

b

a

a a b aSTART
0 251346 36 4 5 6

Figure 4.4: Transition diagram of the suffix automaton for string x = abaaba
from Example 4.15

There are three sequences of transitions in M in question:
0

ε−→ 0

0
a−→ 1346,

0
a−→ 1346

b−→ 25
a−→ 36.

Then bord(x) = {ε, a, aba},Border(x) = aba. 2

4.2.2 Computation of periods

The computation of periods for a given string can be based on the relation
between borders and periods. Such relation is expressed in the following
Lemma.

Lemma 4.16
Let x ∈ A+ be a string having border v then p = |x| − |v| is a period of
string x. 2

Proof:
We can display string x in the form:

Therefore we can write x in the form x = uv, where v ∈ Pref(u) and thus
p = |u| is a period of x. 2

Algorithm 4.17
Computation of periods.
Input: String x ∈ A+.
Output: Set periods (x) = {p1, p2, . . . , ph} h ≥ 0, the shortest period
Per(x).
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Method:

1. Compute bord(x) = {x1, x2, . . . , xh} and Border(x) using Algorithm 4.13.

2. Compute periods(x) = {p1, p2, . . . , ph}, where pi = |x| − |xi|, 1 ≤ i ≤
h, xi ∈ bord(x).

3. Compute Per(x) = |x| − |Border(x)|. 2

Example 4.18
Let us compute set of periods and the longest period Per(x) for string x =
ababab. The set of borders bord(x) and Border(x) computed in Example 4.14
are:

bord(ababab) = {ε, ab, abab},
Border(ababab) = abab.

The resulting set periods(x) = {6, 4, 2}.
The shortest period Per(x) = 2.
The normal form of string x = (ab)3. 2

4.3 Border arrays

Let us remind the definition of the border array (see Def. 4.7). Borders and
periods are related to situtations when a pattern is found. Border arrays are
related to a situation when some prefix of the pattern is found. Figure 4.5
shows a situation when prefix u of pattern p is found. After that a mismatch
occurs. There is possible that next occurence of prefix u of pattern p may
occur again and it depends on the length of Border(u).

Figure 4.5: Visualisation of two possible occurences of prefix u of pattern p

The next Algorithm is devoted to the computation of a border array of
one string.

Algorithm 4.19
Computing of border array.
Input: String x ∈ A+.
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Output: Border array β[1..n], where n = |x|.

Method:

1. Construct nondeterministic factor automaton M1 for x.

2. Construct equivalent deterministic factor automaton M2 and preserve
d–subsets.

3. Initialize all elements of border array β[1..n] by the value zero.

4. Do analysis of multiple d–subsets of the deterministic factor automaton
for states on the backbone from left to right:
If the d–subset has the form i1, i2, . . . , ih (this sequence is ordered),
then set β[j] := i1 for j = i2, i3, . . . , ih. 2

Example 4.20
Let us construct the border array for string x = abaababa (Fibonacci string
f5) using Algorithm 4.19. Nondeterministic factor automaton M1 has transi-
tion diagram depicted in Fig. 4.6. Equivalent deterministic factor automaton

0 1 2 3 4 5 6 7 8
a b a a b a b a

b a a b a b a

START

Figure 4.6: Transition diagram of nondeterministic factor automaton M1

for string x = abaababa from Example 4.20

M2 with preserved d–subsets has the transition diagram depicted in Fig. 4.7.
Now we do analysis of d–subsets starting with the d–subset {1, 3, 4, 6, 8} and

0 13468 257 368 4 5 6 7 8
a b a a b a b a

a

b b

START

Figure 4.7: Transition diagram of deterministic factor automaton M2 for
string x = abaababa from Example 4.20

continuing to the right. The result of this analysis is shown in the next table:
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Analyzed state Values of border array elements

13468 β[3] = 1, β[4] = 1, β[6] = 1, β[8] = 1

257 β[5] = 2, β[7] = 2

368 β[6] = 3, β[8] = 3

Resulting border array β(abaababa) is summed up in the next table:

i 1 2 3 4 5 6 7 8

symbol a b a a b a b a

β[i] 0 0 1 1 2 3 2 3
2

Definition 4.21
The backbone of factor automaton M of a set of strings S = {x1, x2, . . . ,
x|S|} is a part of factor automaton M enabling sequences of transitions for
all strings from the set S starting in the initial state and nothing else. 2

Definition 4.22
The depth of state q of the factor automaton on its backbone is the number
of the backbone transitions which are necessary to reach state q from the
initial state. 2

Algorithm 4.23

Input: Set of strings S = {x1, x2, . . . , x|S|}, xi ∈ A+, i ∈< 1, |S| >.
Output: mborder array mβ[1..n],

n ≤
|S|
∑

i=1

|xi|.

Method:

1. Construct nondeterministic factor automaton M1 for S.

2. Construct equivalent deterministic factor automaton M2 and preserve
d–subsets.

3. Extract the backbone of M2 creating automaton M3 = (Q, A, δ, q0, F ).

4. Set n := |Q| − 1.

5. Initialize all elements of mborder array mβ[1..n] by the value zero.

6. Do analysis of multiple d–subsets of automaton M3 from left to right
(starting with states having minimal depth):
If the d–subset has the form i1, i2, . . . , ih (this sequence is ordered
according to the depth of each state), then set mβ[j] := i1 for j =
i2, i3, . . . , ih. 2

127



a b

0 13142 23241

13142 241

23241 3142 32

241 31 32

3142 41

31 41

32 42

41

42

Table 4.1: Transition table of deterministic factor automaton M2 from Ex-
ample 4.24

Note: We will use the labelling of states reflecting the depth of them instead
of the running numbering as in Definition 4.8.

Example 4.24
Let us construct the mborder array for set of strings S = {abab, abba}. In the
first step, we construct nondeterministic factor automaton M1 for set S. Its
transition diagram is depicted in Fig. 4.8. Table 4.1 is the transition table

START b

b

a

a

b

a

b

b
a

b
a

0

32 42

1 2

31 41

Figure 4.8: Transition diagram of nondeterministic factor automaton M1

for set x = {abab, abba} from Example 4.24

of deterministic factor automaton M2. Its transition diagram is depicted in
Fig. 4.9. The dashed lines and circles show the part of the automaton out of
the backbone. Therefore the backbone of M3 is drawn by solid lines. Now
we do analysis of d–subsets. Result is in the next table:

Analyzed state Values of mborder array elements

13142 mβ(42) = mβ(31) = 1

241 mβ(41) = 2
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START b

b

a

a

b

a

bb

a b

0

3
2

3 4
1    2

4
2

13 4
1    2

24
1

23 4
2    1

3
1

4
1

Figure 4.9: Transition diagram of deterministic factor automaton M2 for
the x = {abab, abba} from Example 4.24

Resulting mborder array mβ(S) is shown in the next table:

state 1 2 31 32 41 42

symbol a b a b b a

mβ[state] 0 0 1 0 2 1
2

4.4 Repetitions

4.4.1 Classification of repetitions

Problems of repetitions of factors in a string over a finite size alphabet can
be classified according to various criteria. We will use five criteria for clas-
sification of repetition problems leading to five-dimensional space in which
each point corresponds to the particular problem of repetition of a factor
in a string. Let us make a list of all dimensions including possible “values”
in each dimension:

1. Number of strings:

- one,

- finite number greater than one,

- infinite number.

2. Repetition of factors (see Definition 4.12):

- with overlapping,

- square,

- with gap.

3. Specification of the factor:

- repeated factor is given,

- repeated factor is not given,
- length l of the repeated factor is given exactly,
- length of the repeated factor is less than given l,
- length of the repeated factor is greater than given l,
- finding the longest repeated factor.

4. The way of finding repetitions:
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- exact repetition,

- approximate repetition with Hamming distance (R-repetition),

- approximate repetition with Levenshtein distance (DIR-repeti-
tion),

- approximate repetition with generalized Levenshtein distance
(DIR T -repetition),

- ∆-approximate repetition,

- Γ-approximate repetition,

- (∆, Γ)-approximate repetition.
5. Importance of symbols in factor:

- take care of all symbols,

- don’t care of some symbols.

The above classification is visualised in Figure 4.10. If we count the
number of possible problems of finding repetitions in a string, we obtain
N = 3 ∗ 3 ∗ 2 ∗ 7 ∗ 2 = 272.

Approximate repetition (dimension 4):

5

Specification

ImportanceNumber

3

Factor is
given

No factor
is given

2Repetition
Square

Overlapping

Gaps

1

Finite

Infinite

One

4 Distance

Exact

Care

Don't care

Approximate

R-matching DIRT-matching G-matching

DIR-matching D-matching ( )-matchingD,G

Figure 4.10: Classification of repetition problems

In order to facilitate references to a particular problem of repetition
in a string, we will use abbreviations for all problems. These abbreviations
are summarized in Table 4.2.
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Dimension 1 2 3 4 5

O O F E C
F S N R D
I G D

T
∆
Γ

(∆, Γ)

Table 4.2: Abbreviations of repetition problems

Using this method, we can, for example, refer to the overlapping exact
repetition in one string of a given factor where all symbols are considered
as the OOFEC problem.

Instead of the single repetition problem we will use the notion of a family
of repetitions in string problems. In this case we will use symbol ? instead
of a particular symbol. For example ?S??? is the family of all problems
concerning square repetitions.

Each repetition problem can have several instances:

1. verify whether some factor is repeated in the text or not,

2. find the first repetition of some factor,

3. find the number of all repetitions of some factor,

4. find all repetitions of some factor and where they are.

If we take into account all possible instances, the number of repetitions
in string problems grows further.

4.4.2 Exact repetitions in one string

In this section we will introduce how to use a factor automaton for finding
exact repetitions in one string (O?NEC problem). The main idea is based on
the construction of the deterministic factor automaton. First, we construct
a nondeterministic factor automaton for a given string. The next step is
to construct the equivalent deterministic factor automaton. During this
construction, we memorize d-subsets. The repetitions that we are looking
for are obtained by analyzing these d-subsets. The next algorithm describes
the computation of d-subsets of a deterministic factor automaton.

Algorithm 4.25
Computation of repetitions in one string.
Input: String T = a1a2 . . . an.
Output: Deterministic factor automaton MD accepting Fact(T ) and
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d–subsets for all states of MD.
Method:

1. Construct nondeterministic factor automaton MN accepting Fact(T ):

(a) Construct finite automaton M accepting string T = a1a2 . . . an

and all its prefixes.
M = ({q0, q1, q2, . . . , qn}, A, δ, q0, {q0, q1, . . . , qn}),
where δ(qi, ai+1) = qi+1 for all i ∈ 〈0, n − 1〉.

(b) Construct finite automaton Mε from the automaton M by insert-
ing ε–transitions:
δ(q0, ε) = {q1, q2, . . . , qn−1, qn}.

(c) Replace all ε–transitions by non–ε–transitions. The resulting au-
tomaton is MN .

2. Construct deterministic factor automaton MD equivalent to automa-
ton MN and memorize the d–subsets during this construction.

3. Analyze d–subsets to compute repetitions. 2

Factor automaton Mε constructed by Algorithm 4.25 has, after step 1.b, the
transition diagram depicted in Fig. 4.11. Factor automaton MN has, after

Figure 4.11: Transition diagram of factor automaton Mε with ε–transitions
constructed in step 1.b of Algorithm 4.25

step 1.c of Algorithm 4.25, the transition diagram depicted in Fig. 4.12.

Figure 4.12: Transition diagram of factor automaton MN after the removal
of ε–transitions in step 1.c of Algorithm 4.25

The next example shows the construction of the deterministic factor
automaton and the analysis of the d–subsets.
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Let us make a note concerning labelling: Labels used as the names of
states are selected in order to indicate positions in the string. This labelling
will be useful later.

Example 4.26
Let us use text T = ababa. At first, we construct nondeterministic factor
automaton Mε(ababa) = (Qε, A, δε, 0, Qε) with ε-transitions. Its transition
diagram is depicted in Figure 4.13.

Figure 4.13: Transition diagram of factor automaton Mε(ababa) from Ex-
ample 4.26

Then we remove ε-transitions and resulting nondeterministic factor au-
tomaton MN (ababa) = (QN , A, δN , 0, QN ) is depicted in Figure 4.14 and its
transition table is Table 4.3. 2

a b

b a b a

a b aSTART
0 1 2 3 4 5

Figure 4.14: Transition diagram of nondeterministic factor automaton
MN (ababa) from Example 4.26

State a b

0 1, 3, 5 2, 4

1 2

2 3

3 4

4 5

5

Table 4.3: Transition table of nondeterministic factor automaton MN (ababa)
from Example 4.26

As next step, we construct equivalent deterministic factor automaton
MD(ababa) = (QD, A, δD, 0, QD). During this operation we memorize the
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created d-subsets. We suppose, taking into account the labelling of the
states of the nondeterministic factor automaton, that d-subsets are ordered
in the natural way. The extended transition table (with ordered d-subsets) of
deterministic factor automaton MD(ababa) is shown in Table 4.4. Transition
diagram of MD is depicted in Figure 4.15.

State d-subset a b

D0 0 1, 3, 5 2, 4

D1 1, 3, 5 2, 4

D2 2, 4 3, 5

D3 3, 5 4

D4 4 5

D5 5

Table 4.4: Transition table of automaton MD(ababa) from Example 4.26

a b

b

a b aSTART
0 1,3,5 2,4 3,5 4 5

Figure 4.15: Transition diagram of deterministic factor automaton
MD(ababa) from Example 4.26

Now we start the analysis of the resulting d-subsets:
d-subset d(D1) = {1, 3, 5} shows that factor a repeats at positions 1, 3 and 5
of the given string, and its length is one. d-subset d(D2) = {2, 4} shows that
factor ab repeats, and its occurrence in the string ends at positions 2 and 4
and its length is two. Moreover, suffix b of this factor also repeats at the same
positions as factor ab. d-subset d(D3) = {3, 5} shows that factor aba repeats,
and its occurrence in the string ends at positions 3 and 5 and its length is
three. Moreover, its suffix ba also repeats at the same positions. Suffix a of
factor aba also repeats at positions 3 and 5, but we have already obtained
this information during analysis of the d-subset d(D1) = {1, 3, 5}. Analysis
of the d-subsets having only single states brings no further information on
repeating factors.

A summary of these observations we collect in a repetition table. The
repetition table contains one row for each d-subset. It contains d-subset,
repeating factor, and a list of repetitions. The list of repetitions indicates
position of the repeating factor and the type of repetition. 2

Definition 4.27
Let T be a string. The repetition table for T contains the following items:

1. d-subset,
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2. corresponding factor,

3. list of repetitions of the factor containing elements of the form (i, xi),
where i is the position of the factor in string T ,

Xi is the type of repetition:
F - the first occurrence of the factor,
O - repetition with overlapping,
S - repetition as a square,
G - repetition with a gap. 2

Repetition table for string T = ababa from Example 4.26 is shown in Ta-
ble 4.5.

d-subset Factor List of repetitions

1, 3, 5 a (1, F ) (3, G), (5, G)

2, 4 ab (2, F ) (4, S)

2, 4 b (2, F ) (4, G)

3, 5 aba (3, F ) (5, O)

3, 5 ba (3, F ) (5, S)

Table 4.5: Repetition table of ababa

Construction of the repetition table is based on the following observa-
tions illustrated in Figure 4.16 and Lemmata 4.28 and 4.29 show its correct-
ness.

Lemma 4.28
Let T be a string and MD(T ) be the deterministic factor automaton for T
with states labelled by corresponding d-subsets. If factor u = a1a2 . . . am,
m ≥ 1, repeats in string T and its occurrences start at positions x + 1 and
y + 1, x 6= y then there exists a d-subset in MD(T ) containing the pair
{x + m, y + m}.

Proof
Let MN (T ) = (QN , A, δN , q0, QN ) be the nondeterministic factor automaton
for T and let u = a1a2 . . . am be the factor starting at positions x + 1 and
y + 1 in T , x 6= y. Then there are transitions in MN (T ) from state 0 to
states x + 1 and y + 1 for symbol a1, (δN (0, a1) contains x + 1 and y + 1).
It follows from the construction of MN (T ) that:
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Figure 4.16: Repeated factor u = a1a2 . . . am in MN (T )
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δN (x + 1, a2) = {x + 2}, δN (y + 1, a2) = {y + 2},
δN (x + 2, a3) = {x + 3}, δN (y + 2, a3) = {y + 3},
...

...
δN (x + m − 1, am) = {x + m}, δN (y + m − 1, am) = {y + m}.

Deterministic factor automaton MD(T ) = (QD, A, δD, D0, QD) then con-
tains states D0, D1, D2, . . .Dm having this property:

δD(D0, a1) = D1, {x + 1, y + 1} ⊂ D1,
δD(D1, a2) = D2, {x + 2, y + 2} ⊂ D2,
...

...
δD(Dm−1, am) = Dm, {x + m, y + m} ⊂ Dm.

We can conclude that the d-subset Dm contains the pair {x+m, y +m}.
2

Lemma 4.29
Let T be a string and let MD(T ) be the deterministic factor automaton for
T with states labelled by corresponding d-subsets. If a d-subset Dm contains
two elements x + m and y + m then there exists factor u = a1a2 . . . am,
m ≥ 1, starting at both positions x and y in string T .
Proof
Let MN (T ) be the nondeterministic factor automaton for T . If a d-subset
Dm contains elements from {x + m, y + m} then it holds for δN of MN (T ):
{x + m, y + m} ⊂ δN (0, am), and
δN (x + m − 1, am) = {x + m},
δN (y + m − 1, am) = {y + m} for some am ∈ A.
Then d-subset Dm−1 such that δD(Dm−1, am) = Dm must contain
x + m − 1, y + m − 1 such that {x + m − 1, y + m − 1} ⊂ δN (0, am−1),
δN (x + m − 2, am−1) = {x + m − 1},
δN (y + m − 2, am−1) = {y + m − 1}
and for the same reason D-subset D1 must contain x + 1, y + 1 such that
{x + 1, y + 1} ⊂ δN (0, a1) and δN (x, a1) = {x + 1}, δN (y, a1) = {y + 1}.
Then there exists the sequence of transitions in MD(T ) :

a
1

a
2

a
3

a
n

START
D

0
D

1
D

2
D

n

Figure 4.17: Repeated factor u = a1a2 . . . am in MD(T )

(D0, a1a2 . . . am) ` (D1, a2 . . . am)
` (D2, a3 . . . am)
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...
` (Dm−1, am)
` (Dm, ε),

where
{x + 1, y + 1} ⊂ D1,
...
{x + m, y + m} ⊂ Dm.

This sequence of transitions corresponds to two different sequences of
transitions in MN (T ) going through state x + 1:

(0, a1a2 . . . am) ` (x + 1, a2 . . . am)
` (x + 2, a3 . . . am)
...
` (x + m − 1, am)
` (x + m, ε),

(x, a1a2 . . . am) ` (x + 1, a2 . . . am)
` (x + 2, a3 . . . am)
...
` (x + m − 1, am)
` (x + m, ε).

Similarly two sequences of transitions go through state y + 1:

(0, a1a2 . . . am) ` (y + 1, a2 . . . am)
` (y + 2, a3 . . . am)
...
` (y + m − 1, am)
` (y + m, ε),

(y, a1a2 . . . am) ` (y + 1, a2 . . . am)
` (y + 2, a3 . . . am)
...
` (y + m − 1, am)
` (y + m, ε).

It follows from this that the factor u = a1a2 . . . am is present twice in
string T in different positions x + 1, y + 1. 2

The following Lemma is a simple consequence of Lemma 4.29.
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Lemma 4.30
Let u be a repeating factor in string T . Then all factors of u are also re-
peating factors in T . 2

Definition 4.31
If u is a repeating factor in text T and there is no longer factor of the form
vuw, v or w 6= ε but not both, which is also a repeating factor, then we will
call u the maximal repeating factor. 2

Definition 4.32
Let MD(T ) be a deterministic factor automaton. The depth of each state D
of MD is the length of the longest sequence of transitions leading from the
initial state to state D. 2

If there exists a sequence of transitions from the initial state to state
D which is shorter than the depth of D, it corresponds to the suffix of the
maximal repeating factor.

Lemma 4.33
Let u be a maximal repeating factor in string T . The length of this factor
is equal to the depth of the state in MD(T ) indicating the repetition of u.

2

Proof
The path for maximal repeating factor u = a1a2 . . . am starts in the initial
state, because states x + 1 and y + 1 of nondeterministic factor automaton
MN (T ) are direct successors of its initial state and therefore δD(D0, a1) = D1

and {x + 1, y + 1} ⊂ D1. Therefore there exists a sequence of transitions in
deterministic factor automaton MD(T ):

(D0, a1a2 . . . am) ` (D1, a2 . . . am)
` (D2, a3 . . . am)
...
` (Dm−1, am)
` (Dm, ε) 2

There follows one more observation from Example 4.26.

Lemma 4.34
If some state in MD(T ) has a corresponding d-subset containing one element
only, then its successor also has a corresponding d-subset containing one
element.
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Proof
This follows from the construction of the deterministic factor automaton.
The transition table of nondeterministic factor automaton MN (T ) has more
than one state in the row for the initial state only. All other states have at
most one successor for a particular input symbol. Therefore in the equiv-
alent deterministic factor automaton MD(T ) the state corresponding to a
d-subset having one element may have only one successor for one symbol,
and this state has a corresponding d-subset containing just one element. 2

We can use this observation during the construction of deterministic
factor automaton MD(T ) in order to find some repetition. It is enough to
construct only the part of MD(T ) containing d-subsets with at least two
elements. The rest of MD(T ) gives no information on repetitions.

Algorithm 4.35
Constructing a repetition table containing exact repetitions in a given string.
Input: String T = a1a2 . . . an.
Output: Repetition table R for string T .
Method:

1. Construct deterministic factor automaton
MD(T ) = (QD, A, δD, 0, QD) for given string T .
Memorize for each state q ∈ QD :

(a) d-subset D(q) = {r1, r2, . . . , rp},
(b) d = depth(q),

(c) maximal repeating factor for state q maxfactor(q) = x, |x| = d.

2. Create rows in repetition table R for each state q having D(q) with
more than one element:

(a) the row for maximal repeating factor x of state q has the form:
({r1, r2, . . . , rp}, x, {(r1, F ), (r2, X2), (r3, X3), . . . , (rp, Xp)},
where Xi, 2 ≤ i ≤ p, is equal to

i. O, if ri − ri−1 < d,
ii. S, if ri − ri−1 = d,
iii. G, if ri − ri−1 > d,

(b) for each suffix y of x (such that the row for y was not created
before) create the row of the form:
({r1, r2 . . . , rp}, y, {(r1, F ), (r2, X2), (r3, X3), . . . , (rp, Xp)},
where Xi, 2 ≤ i ≤ p, is deduced in the same manner. 2

An example of the repetition table is shown in Example 4.26 for string
T = ababa.
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4.4.3 Complexity of computation of exact repetitions

The time and space complexity of the computation of exact repetitions in
string is treated in this Chapter.
The time complexity is composed of two parts:

1. The complexity of the construction of the deterministic factor automa-
ton. If we take the number of states and transitions of the resulting
factor automaton then the complexity is linear. More exactly the
number of its states is

NS ≤ 2n − 2,
and the number of transitions is

NT ≤ 3n − 4.

2. The second part of the overall complexity is the construction of repeti-
tion table. The number of rows of this table is the number of different
multiple d-subsets. The highest number of multiple d-subsets has the
factor automaton for text T = an. Repeating factors of this text are
a, a2, . . . , an−1.

There is necessary, for the computation of repetitions using factor automata
approach, to construct the part of deterministic factor automaton containing
only all multiple states. It is the matter of fact, that a simple state has
at most one next state and it is simple one, too. Therefore, during the
construction of deterministic factor automaton, we can stop construction of
the next part of this automaton as soon as we reach a simple state.

Example 4.36
Let us have text T = an, n > 0. Let us construct deterministic factor
automaton MD(an) for text T . Transition diagram of this automaton is
depicted in Fig. 4.18. Automaton MD(an) has n+1 states and n transitions.

Figure 4.18: Transition diagram of deterministic factor automaton MD(an)
for text T = an from Example 4.36

Number of multiple states is n − 1.
To construct this automaton in order to find all repetitions, we must

construct the whole automaton including the initial state and the state n
(terminal state). Repetition table R has the form shown in Table 4.6. 2

The opposite case to the previous one is the text composed of symbols
which are all different. The length of such text is limited by the size of
alphabet.
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d-subset Factor List of repetitions

1, 2, . . . , n a (1, F ), (2, S), (3, S), . . . , (n, S)

2, . . . , n aa (2, F ), (3, O), (4, O), . . . , (n, O)
...

n − 1, n an−1 (n − 1, F ), (n, O)

Table 4.6: Repetition table R for text T = an from Example 4.36

Example 4.37
Let the alphabet be A = {a, b, c, d} and text T = abcd. Deterministic factor
automaton MD(abcd) for text T has transition diagram depicted in Fig. 4.19.
Automaton MD(abcd) has n+1 states and 2n−1 transitions. All respective

Figure 4.19: Transition diagram of deterministic factor automaton
MD(abcd) for text T = abcd from Example 4.36

d-subsets are simple. To construct this automaton in order to find all repe-
titions, we must construct all next states of the initial state for all symbols
of the text. The number of these states is just n. The repetition table is
empty. 2

Now, after the presentation both limit cases, we will try to find some case
inbetween with the maximal complexity. We guess, that the next example
is showing it. The text selected in such way, that all proper suffixes of the
prefix of the text appear in it and therefore they are repeating.

Example 4.38
Let the text be T = abcdbcdcdd. Deterministic factor automaton MD(T ) has
the transition diagram depicted in Fig. 4.20. Automaton MD has 17 states
and 25 transitions while text T has 10 symbols. The number of multiple
d-subsets is 6. To construct this automaton in order to find all repetitions,
we must construct all multiple states and moreover the states corresponding
to single d-subsets: 0, 1, 5, 8, A.

The results is, that we must construct 11 states from the total number
of 17 states. Repetition table R is shown in Table 4.7. 2

It is known, that the maximal state and transition complexity of the
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Figure 4.20: Transition diagram of deterministic factor automaton MD(T )
for text T = abcdbcdcdd from Example 4.38

d-subset Factor List of repetitions

25 b (2, F ), (5, G)

36 bc (3, F ), (6, G)

47 bcd (4, F ), (7, S)

368 c (3, F ), (6, G), (8, G)

479 cd (4, F ), (7, G), (9, G)

479A d (4, F ), (7, G), (9, G), (10, S)

Table 4.7: Repetition table R for text T = abcdbcdcdd from Example 4.38

factor automaton is reached for text T = abn−2c. Let us show such factor
automaton in this context.

Example 4.39
Let the text be T = ab4c. Deterministic factor automaton MD(T ) has tran-
sition diagram depicted in Fig. 4.21. Automaton MD(T ) has 10 (2 ∗ 6 − 2)

Figure 4.21: Transition diagram of deterministic factor automaton MD(T )
for text T = ab4c from Example 4.39

states and 14 (3 ∗ 6− 4) transitions while the text has 6 symbols. The num-
ber of multiple states is 3 (6 − 3). To construct this automaton in order to
find all repetitions, we must construct the 3 multiple states and moreover 3

143



simple states. Therefore we must construct 6 states from the total number
of 10 states. Repetition table R is shown in Table 4.8. 2

d-subset List of repetitions

2345 (b, F )(2, F ), (3, S), (4, S), (5, S)

345 (bb, F )(3, F ), (4, O), (5, O)

45 (bbb, F )(4, F ), (5, O)

Table 4.8: Repetition table R for text T = ab4c from Example 4.39

We have used, in the previous examples, three measures of complexity:

1. The number of multiple states of the deterministic factor automaton.
This number is equal to the number of rows in the resulting repetition
table, because each row of the repetition table corresponds to one
multiple d-subset. Moreover, it corresponds to the number of repeating
factors.

2. The number of states which are necessary to construct in order to
get all information on repetitions. We must reach the simple state on
all pathes starting in the initial state. We already know that there
is at most one successor of a simple state and it is a simple state,
too (Lemma 4.34). The number of such states which is necessary to
construct is therefore greater than the number of multiple states.

3. The total number of repetitions (occurrences) of all repeating factors
in text. This number corresponds to the number of items in the last
column of the repetition table headed by “List of repetitions”.

The results concerning the measures of complexity from previous examples
are summarized in the Table 4.9.

No. of No. of
Text multiple necessary No. of repetitions

states states

an n − 1 n + 1 (n2 + n − 2)/2

a1a2 . . . an 0 n + 1 0
(all symbols unique)

a1a2 . . . ama2 . . . am . . . (m2 − m)/2 (m2 + m)/2
∑m−1

i=1 i(m − i + 1)

am−1amam

abn−2c n − 3 n (n2 − 3n)/2

Table 4.9: Measures of complexity from Examples 4.36, 4.37, 4.38, 4.39
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Let us show how the complexity measures from Table 4.9 have been
computed.

Example 4.40
Text T = an has been used in Example 4.36. The number of multiple
states is n − 1 which is the number of repeating factors. The number of
necessary states is n + 1 because the initial and the terminal states must be
constructed. The number of repetitions is given by the sum:

n + (n − 1) + (n − 2) + . . . + 2 =
n2 + n − 2

2
.

2

Example 4.41
Text T = abcd has been used in Example 4.37. This automaton has no
multiple state. The number of necessary states is n + 1. It means, that in
order to recognize that no repetition exists in such text all states of this
automaton must be constructed. 2

Example 4.42
Text T = abcdbcdcdd used in Example 4.38 has very special form. It consists
of prefix abcd followed by all its proper suffixes. It is possible to construct
such text only for some n. Length n of the text must satisfy condition:

n =
m∑

i=1

i =
m2 + m

2
,

where m is the length of the prefix in question. It follows that

m =
−1 ±

√
1 + 8n

2

and therefore m = O(
√

n).
The number of multiple states is

(m − 1) + (m − 2) + . . . + 1 =
m2 − m

2
.

The number of necessary states we must increase by m which is the
number of simple states being next states of the multiple states and the
initial state. Therefore the number of necessary states is (m2 + m)/2. The
number of repetitions is

m + 2(m + 1) + 3(m − 2) + . . . + (m − 1)2 =
m−1∑

i=1

i(m − i + 1).

Therefore this number is O(m2) = O(n). 2

Example 4.43
Text T = abn−2c used in Example 4.39 leads to the factor automaton having
maximal number of states and transitions. The number of multiple states is
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equal to n−3 and the number of necessary states is equal to n. The number
of repetitions is

(n − 2) + (n − 3) + . . . + 2 =
n2 − 3n

2
.

2

It follows from the described experiments that the complexity of determin-
istic factor automata and therefore the complexity of computation of repe-
titions for a text of length n has these results:

1. The number of multiple states is linear. It means that the repetition
table has O(n) rows. It is the space complexity of the computation all
repeated factors.

2. The number of necessary states is again linear. It means that time
complexity of the computation all repeated factors is O(n).

3. The number of repetitions is O(n2) which is the time and space com-
plexity of the computation of all occurrences of repeated factors.

4.4.4 Exact repetitions in a finite set of strings

The idea of the use of a factor automaton for finding exact repetitions in one
string can also be used for finding exact repetitions in a finite set of strings
(F?NEC problem). Next algorithm is an extension of Algorithm 4.25 for a
finite set of strings.

Algorithm 4.44
Computation of repetitions in a finite set of strings.
Input: Set of strings S = {x1, x2, . . . , x|S|}, xi ∈ A+, i = 1, 2, . . . , |S|.
Output: Multiple front end MFE(MD) of deterministic factor automaton
MD accepting Fact(S) and d-subsets for all states of MFE(MD).
Method:

1. Construct nondeterministic factor automata Miε for all strings xi, i =
1, 2, . . . , |S|:

(a) Construct finite automaton Mi accepting string xi and all its
prefixes for all i = 1, 2, . . . , |S|.

(b) Construct finite automaton Miε from automaton Mi by inserting
ε-transitions from the initial state to all other states for all i =
1, 2, . . . , |S|.

2. Construct automaton Mε by merging of initial states of automata Miε

for i − 1, 2, . . . , |S|.
3. Replace all ε-transitions by non-ε-transitions. The resulting automa-

ton is MN .
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4. Construct the multiple front end of deterministic MFE(MD) factor
automaton MD equivalent to automaton MN using Algorithm 3.21
and save the d-subset during this construction. 2

We show in the next example the construction of a factor automaton and the
analysis of d–subsets created during the construction of factor automaton
for a finite set of strings.

Example 4.45
Let us construct the factor automaton for the set of strings S = {abab, abba}.
First, we construct factor automata M1ε and M2ε for both strings in S. Their
transition diagrams are depicted in Figs 4.22 and 4.23, respectively.

Figure 4.22: Transition diagram of factor automaton M1ε accepting
Fact(abab) from Example 4.45

Figure 4.23: Transition diagram of factor automaton M2ε accepting
Fact(abba) from Example 4.45

In the second step we construct automaton Mε accepting language L(Mε) =
Fact(abab) ∪ Fact(abba). Its transition diagram is depicted in Fig. 4.24.

In the third step we construct automaton MN by removing ε–transitions
from automaton Mε. Its transition diagram is depicted in Fig. 4.25.
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Figure 4.24: Transition diagram of factor automaton Mε accepting set
Fact(abab) ∪ Fact(abba) from Example 4.45

b

b

b

b

b

a

a

b

a

b

b

a

a

a

START
0

12 22 32 42

11 21 31 41

Figure 4.25: Transition diagram of nondeterministic factor automaton MN

accepting set Fact(abab) ∪ Fact(abba) from Example 4.45
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a b

0 11123142 21223241

11123142 212241

21223241 3142 32

212241 31 32

3142 41

31 41

32 42

41

42

Table 4.10: Transition table of deterministic factor automaton MD from
Example 4.45

The last step is to construct deterministic factor automaton MD. Its
transition table is shown in Table 4.10. The transition diagram of the re-
sulting deterministic factor automaton MD is depicted in Fig. 4.26. Now we

b

b

ba

a

b

b

b

a

aSTART

multilpe front end

0 1 1 3 4
1    2    1    2

2 2 4
1    2    1

2 2 3 4
1    2    2    1

3 4
1    2

3
2

3
1

4
2

4
1

Figure 4.26: Transition diagram of deterministic factor automaton MD ac-
cepting set Fact(abab) ∪ Fact(abba) from Example 4.45

do the analysis of d–subsets of resulting automaton MD. The result of this
analysis is the repetition table shown in Table 4.11 for set S = {abab, abba}.

2

Definition 4.46
Let S be a set of strings S = {x1, x2, . . . , x|S|}. The repetition table for S
contains the following items:

1. d–subset,

2. corresponding factor,
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d–subset Factor List of repetitions

11123142 a (1, 1, F ), (2, 1, F ), (1, 3, G), (2, 4, G)

212241 ab (1, 2, F ), (2, 2, F ), (1, 4, S)

21223241 b (1, 2, F ), (2, 2, F ), (2, 3, S), (1, 4, G)

3142 ba (1, 3, F ), (2, 4, F )

Table 4.11: Repetition table for set S = {abab, abba} from Example 4.45

3. list of repetitions of the factor containing elements of the form (i, j, Xij),
where i is the index of the string in S,

j is the position in string xi,
Xij is the type of repetition:

F - the first occurrence of the factor in string xi,
O - repetition of the factor in xi with overlapping,
S - repetition as a square in xi,
G - repetition with a gap in xi. 2

Let us suppose that each element of d-subset constructed by Algorithm 4.44
keeps two kind of information:

- index of the string in S to which it belongs,

- depth (position) in this string.

Moreover we suppose, that it is possible to identify the longest factor (max-
imal repeating factor) to which the d-subset belongs.

Algorithm 4.47
Constructing a repetition table containing exact repetitions in a finite set of
strings.
Input: Multiple front end of factor automaton for set of strings S =
{x1, x2, . . . , x|S|}, xi ∈ A+, i = 1, 2, . . . , |S|.
Output: Repetition table R for set S.
Method: Let us suppose, that d-subset of multiple state q has form
{r1, r2, . . . , rp}. Create rows in repetition table R for each multiple state q:
the row for maximal repeating factor x of state q has the form:

({r1, r2, . . . , rp}, x, {(i1, j1, F ), (i2, j2, Xi2,j2), . . . , (ip, jp, Xip,jp),
where il is the index of the string in S, l = 1, 2, . . . , |S|,

jl is the position in string xi, l = 1, 2, . . . , |S|,
Xij is the type of repetition:

i: O, if jl − jl−1 < |x|,
ii: S, if jl − jl−1 = |x|,

iii: G, if jl − jl−1 > |x|. 2
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4.4.5 Computation of approximate repetitions

We have used the factor automata for finding exact repetitions in either
one string or in a finite set of strings. A similar approach can be used for
finding approximate repetitions as well. We will use approximate factor
automata for this purpose. As before, a part of deterministic approximate
factor automaton will be useful for the repetition finding. This part we will
call mixed multiple front end.
Let us suppose that finite automaton M is accepting set

Approx(x) = {y : D(x, y) ≤ k},
where D is a metrics and k is the maximum distance. We can divide au-
tomaton M into two parts:

- “exact part” which is used for accepting string x,

- “approximate part” which is used when other strings in Approx(x) are
accepting.

For the next algorithm we need to distinquish states either in exact part
or in approximate part. Let us do this distinction by labelling of states in
question.

Definition 4.48
A mixed multiple front end of deterministic approximate factor automaton
is a part of this automaton containing only multiple states with:

a) d-subsets containing only states from exact part of nondeterministic
automaton,

b) d-subset containing mix of states from exact part and approximate part
of nondeterministic automaton with at least one state from exact part.

Let us call such states mixed multiple states. 2

We can construct the mixed multiple front end by a little modified of Algo-
rithm 3.21. The modification consists in modification of point 3(b) in this
way:
(b) if δ′(q, a) is a mixed multiple state then Q′ = Q′ ∪ δ′(q, a).

4.4.6 Approximate repetitions – Hamming distance

In this Section, we show how to find approximate repetitions using the
Hamming distance (O?NRC problem).

Example 4.49
Let string x = abba. We construct an approximate factor automaton using
Hamming distance k = 1.

1. We construct a finite automaton accepting string x and all strings
with Hamming distance equal to 1. The set of these strings is denoted
H1(abba). The resulting finite automaton has the transition diagram
depicted in Fig. 4.27.
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b

ba

b

b

a

a

b a a b

START

1’ 2’ 3’ 4’

10 2 3 4

Figure 4.27: Transition diagram of the “Hamming” automaton accepting
H1(abba) with Hamming distance k = 1 from Example 4.49

2. We use the principle of inserting the ε–transitions from state 0 to
states 1, 2, 3 and 4 and we fix all states as final states. The transition
diagram with inserted ε–transition and fixed final states is depicted in
Fig. 4.28.

e e e

b

ba

b

b

a

a

b a a b

START

1' 2' 3' 4'

10 2 3 4

e

Figure 4.28: Transition diagram of the “Hamming” factor automaton with
fixed final states and inserted ε–transitions from Example 4.49

3. We replace ε–transitions by non–ε–transitions. The resulting automa-
ton has the transition diagram depicted in Fig. 4.29.

4. The final operation is the construction of the equivalent deterministic
finite automaton. Its transition table is Table 4.12

The transition diagram of the resulting deterministic approximate factor
automaton is depicted in Fig. 4.30.
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b
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START

1' 2' 3' 4'
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Figure 4.29: Transition diagram of the nondeterministic “Hamming” factor
automaton after removal of ε–transitions from Example 4.49

a b

0 142′3′ 231′4′

142′3′ 2′4′ 23′

231′4′ 3′4 32′4′

2′4′ 3′

23′ 3′4′ 3

3′4 4′

32′4′ 4 3′4′

3′ 4′

3′4′ 4′

3 4 4′

4′

4

Table 4.12: Transition table of the deterministic “Hamming” factor automa-
ton from Example 4.49

153



Figure 4.30: Transition diagram of the deterministic “Hamming” factor au-
tomaton for x = abba, Hamming distance k = 1 from Example 4.49

Construction of repetition table is based on the following observation con-
cerning mixed multiple states:

1. If only exact states are in the respective d-subset then exact repetitions
take place.

2. Let us suppose that a mixed multiple state corresponding to factor x
has d-subset containing pair (r1, r2), where r1 is an exact state and r2

is an approximate state. It means that state r1 corresponds to exact
factor x. There is a sequence of transitions for factor x also to the
state r2. Therefore in the exact part must be a factor y such that
the distance of x and y less than k. It means that factor y is an
approximate repetition of x.

Now we construct the approximate repetition table. We take into account
the repetition of factors which are longer than k. In this case k = 1 and
therefore we select repetitions of factors having length greater or equal to
two. The next table contains information on the approximate repetition of
factors of the string x = abba.

d–subset Factor Approximate repetitions

23′ ab (2, ab, F ), (3, bb, O)

32′4′ bb (3, bb, F ), (2, ab, O), (4, ba, O)

3′4 ba (4, ba, F ), (3, bb, O)
2
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As we can see, the approximate repetition table is similar to the repetition
table expressing the exact repetitions (see Definition 4.27). But there are
two important differences:

1. There are no all multiple d-subsets in the first column. The only d-
subsets used are such having at least one state corresponding to the
“exact” part of the nondeterministic approximate factor automaton.

2. There are, in the last column, triples containing repeating factors.
This is motivated by the fact, that approximate factor can be different
from original factor. Triple (i, x, F ) always corresponds to the first
“exact” factor.

Let us go back to the approximate repetition table in Example 4.49. The
first row contains d-subset 23’. It means, that factor ab at position 2 has
approximate repetition bb at position 3.

4.4.7 Approximate repetitions – Levenshtein distance

Let us note that Levenshtein distance between strings x and y is defined
as the minimum number of editing operations delete, insert and replace
which are necessary to convert string x into string y. In this section we
show solution of O?NDC problem.

Example 4.50
Let string x = abba and Levenshtein distance k = 1. Find all approximate
repetitions in this string.
We construct an approximate factor automaton using Levenshtein distance
k = 1.

1. We construct a finite automaton accepting string x and all strings with
Levenshtein distance equal to 1. The set of these strings is denoted
L1(abba). The resulting finite automaton has the transition diagram
depicted in Fig. 4.31.

b

ba

b

b

aa

a

b

e e e e

b,a a,b a,b b,a a,ba a b

START

1'0' 2' 3' 4'

10 2 3 4

Figure 4.31: Transition diagram of the “Levenshtein” automaton accepting
L1(abba), with Levenshtein distance k = 1 from Example 4.50
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2. We use the principle of inserting the ε–transitions from state 0 to
states 1,2,3, and 4 and we fix all states as final states. The transition
diagram with inserted ε–transitions and fixed final states is depicted
in Fig. 4.32.

Figure 4.32: Transition diagram of the “Levenshtein” factor automaton with
final states fixed and ε–transitions inserted from Example 4.50

3. We replace all ε–transitions by non–ε–transitions. The resulting au-
tomaton has the transition diagram depicted in Fig. 4.33. Its transition
table is shown in Tab. 4.13

Figure 4.33: Transition diagram of the nondeterministic “Levenshtein” fac-
tor automaton after removal of ε–transitions from Example 4.50

4. The final operation is to construct the equivalent deterministic finite
automaton. Its transition table is shown in Table 4.14.
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a b

0 140′1′2′3′4′ 230′1′2′3′4′

1 1′2′ 21′3′

2 2′3′4′ 32′

3 43′ 3′4′

4 4′ 4′

0′ 1′

1′ 2′

2′ 3′

3′ 4′

4′

Table 4.13: Transition table of the nondeterministic “Levenshtein” factor
automaton from Example 4.50

a b

0 140′1′2′3′4′ 230′1′2′3′4′

140′1′2′3′4′ 1′2′4′ 21′2′3′4′

230′1′2′3′4′ 41′2′3′4′ 32′3′4′

1′2′4′ 2′3′

21′2′3′4′ 2′3′4′ 32′3′

32′3′ 43′4′ 3′4′

41′2′3′4′ 4′ 4′2′3′

32′3′4′ 43′4′ 3′4′

43′4′ 4′ 4′

2′3′ 4′ 3′

2′3′4′ 4′ 3′

3′4′ 4′

3′ 4′

4′

Table 4.14: Transition table of the deterministic “Levenshtein” factor au-
tomaton from Example 4.50
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The transition diagram of the resulting deterministic “Levenshtein” fac-
tor automaton is depicted in Fig. 4.34.

ba b

b

a

aa a b a,b

a

START
140 1 2 3'  '  '  '4'

1 2 4'  '  '

0 21 2'  '3'4'

230'1'2'3'4'

2'3'4'

2'3'

32'3'

32'3'4'

3'  '4

3'

43'4'

4'

4  '2'3'4'1

b

a

a

a

b

a

b b

b

a

b

mixed multiple front end

Figure 4.34: Transition diagram of the deterministic “Levenshtein” factor
automaton for the string x = abba from Example 4.50

Now we construct the repetition table. We take into account the repeti-
tion of factors longer than k (the number of allowed errors). Approximate
repetition table R is shown in Table 4.15.

4.4.8 Approximate repetitions – ∆ distance

Let us note that the ∆ distance is defined by Def. 1.18. This distance is
defined as the local distance for each position of the string. The number
of errors is not cumulated as in the previous (and following) cases of find-
ing approximate repetitions. In this section we show solution of O?N∆C
problem.

Example 4.51
Let string x = abbc over ordered alphabet A = {a, b, c}. We construct an
approximate factor automaton using ∆-distance equal to one.

1. We construct a finite automaton accepting string x and all strings
having ∆-distance equal to one. The set of all these strings is denoted
∆1(abbc). This finite automaton has the transition diagram depicted
in Fig. 4.35.

158



d–subset Factor Approximate repetitions

21’2’3’4’ ab (2, ab, F )(3, abb, O)

32’3’ abb (3, abb, F )(2, ab, O), (3, bb, O)

43’4’ abba (4, abba, F )(3, abb, O), (4, bba, O)

32’3’4’ bb (3, bb, F )(2, ab, O), (3, abb, O), (4, ba, O), (4, bba, O)

41’2’3’4’ ba (4, ba, F )(3, bb, S), (4, bba, O)

43’4’ bba (4, bba, F )(3, bb, O), (4, ba, O)

Table 4.15: Approximate repetition table R for string x = abba with Leven-
shtein distance k = 1 from Example 4.50

a b

b a,c a,c b

a,b,c

b

a,b,c

c

b,c

START
0 1

1'

2

2'

3

3'

4

4'

Figure 4.35: Transition diagram of the “∆” automaton accepting ∆1(abbc)
with ∆-distance k = 1 from Example 4.51

2. We use the principle of inserting ε–transitions from state 0 to states 1,
2, 3, and 4 and making all states final states. The transition diagram
of the automaton with inserted ε–transitions and fixed final states is
depicted in Fig. 4.36.

3. We replace ε–transitions by non–ε–transitions. The resulting automa-
ton has the transition diagram depicted in Fig. 4.37.
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Figure 4.36: Transition diagram of the “∆” factor automaton with final
states fixed and ε–transitions inserted from Example 4.51

a

b b c

a,c a,c b

b

b a,c a,c b

a,b,c

b

a,b,c

c

b,c

START
0 1

1'

2

2'

3

3'

4

4'

Figure 4.37: Transition diagram of the nondeterministic “∆” factor automa-
ton after the removal of ε–transitions from Example 4.51
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4. The final operation is to construct the equivalent deterministic factor
automaton. Table 4.16 is its transition table and its transition diagram
is depicted in Fig. 4.38.

ba b

b,c

b,c

a

a

a
b

b

c

c

a

b

a a

a

c

c

b,c

b,c b,c

b,c b

c

c

START
12 3'  '0 23'4'

2'3'4'

2'3'

231'4'

34'

3 4'  '

3'

3 42'  '

4

4'

43'

42'3'

mixed multiple front end

Figure 4.38: Transition diagram of the deterministic “∆” factor automaton
for x = abbc, ∆-distance=1, from Example 4.51

Now we construct the repetition table. We take into account the repetitions
of factors longer than the allowed distance. In this case, the distance is equal
to 1 and therefore we select repetitions of factors having the length greater
or equal to two. Table 4.17 contains information on the ∆–approximate
repetitions of factors of the string x = abbc. 2

4.4.9 Approximate repetitions – Γ distance

Γ-distance is defined by Def. 1.18. This distance is defined as a global
distance, which means that the local errors are cumulated. In this section
we show solution of O?NΓC problem.

Example 4.52
Let string x = abbc over ordered alphabet A = {a, b, c}. We construct an
approximate factor automaton using Γ-distance equal to two.

1. We construct a finite automaton accepting string x and all strings
having Γ-distance equal to two. The set of all these strings is denoted
Γ2(abbc). This finite automaton has the transition diagram depicted
in Fig. 4.39.
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a b c

0 12′3′ 231′4′ 42′3′

12′3′ 2′3′ 23′4′ 2′3′4′

23′4′ 3′ 34′ 3′4′

231′4′ 2′3′ 32′4′ 42′3′

32′4′ 3′ 3′4′ 43′

34′ 4′ 4

43′ 4′ 4′

4

42′3′ 3′ 3′4′ 3′4′

2′3′4′ 3′ 3′4′ 3′4′

2′3′ 3′ 3′4′ 3′4′

3′4′ 4′ 4′

3′ 4′ 4′

4′

Table 4.16: Transition table of the deterministic “∆” factor automaton from
Example 4.51

d–subset Factor Approximate repetitions

23’4’ ab (2, ab, F ), (3, bb, O), (4, bc, S)

34’ abb (3, abb, F ), (4, bbc, O)

32’4’ bb (3, bb, F ), (2, ab, O), (4, bc, O)

42’3’ bc (4, bc, F ), (2, ab, S), (3, bb, O)

43’ bbc (4, bbc, F ), (3, abb, O)

Table 4.17: Approximate repetition table for string x = abbc from Exam-
ple 4.51
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a b

b

c

a,c

a,c

a,c

a,c

b

b

b

b

b

b

b

c

c

c

a

START
0 1

1'

1''

2

2'

2''

3

3'

3''

4

4'

4''

Figure 4.39: Transition diagram of the “Γ” automaton accepting Γ2(abbc)
with Γ-distance k = 2 from Example 4.52

2. Now we insert ε–transitions from state 0 to states 1, 2, 3, and 4 and we
make all states final. The transition diagram of the automaton with
inserted ε–transitions and fixed final states is depicted in Fig. 4.40

Figure 4.40: Transition diagram of the “Γ” factor automaton with final
states fixed and ε–transitions inserted from Example 4.52

3. We replace the ε–transitions by non–ε–transitions. The resulting non-
deterministic factor automaton has the transition diagram depicted
in Fig. 4.41.

4. The final operation is to construct the equivalent deterministic finite
automaton.
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a

b b c

b

b

c

a,c

a,c

a,c

a,c

a,c

a,c

b

b

b

b

b

b

b

b

c

c

c

a

a

START
0 1

1'

1''

2

2'

2''

3

3'

3''

4

4'

4''

Figure 4.41: Transition diagram of the nondeterministic “Γ” factor automa-
ton after the removal of ε–transitions from Example 4.52

Analyzing Table 4.18 we can recognize that the following sets are sets of
equivalent states:

{2′4′3′′, 2′3′′}, {3′4′, 3′, 3′4′′}, {43′′, 4′3′′, 3′′4′′, 3′′}, {43′2′′, 3′2′′4′′}.
Only states 43′′ and 43′2′′ have an impact on the repetition table. Let us
replace all equivalent states by the respective sets. Then we obtain the tran-
sition diagram of the optimized deterministic “Γ” factor automaton depicted
in Fig. 4.42. Now we construct the repetition table. We take into account
the repetitions of factors longer than two (allowed distance). The Table 4.19
contains information on approximate repetition of one factor. The repeti-
tion of factor bc indicated by d-subset 43’2” is not included in the repetition
table because the length of this factor is |bc| = 2 2

4.4.10 Approximate repetitions – (∆, Γ) distance

(∆, Γ)-distance is defined by Def. 1.18. This distance is defined as a global
distance, which means that the local errors are cumulated. In this section
we show solution of O?N(∆, Γ)C problem.

Example 4.53
Let string x = abbc over ordered alphabet A = {a, b, c}. We construct an
approximate factor automaton using (∆, Γ)-distance equal to (1,2).
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a b c

0 12′3′4′′ 231′4′ 42′3′1′′

12′3′4′′ 2′3′′ 23′4′′ 2′4′3′′

231′4′ 3′2′′4′′ 32′4′ 43′2′′

23′4′′ 3′ 34′′ 3′4′

32′4′ 3′′4′′ 3′4′ 43′′

34′′ 4′′ 4′ 4

42′3′1′′ 3′′ 3′2′′4′′ 4′3′′

43′2′′ 3′′4′′ 4′

43′′ 4′′

4

2′4′3′′ 3′′ 3′ 3′′4′′

2′3′′ 3′′ 3′ 3′′4′′

3′2′′4′′ 3′′4′′ 4′

3′4′ 4′′ 4′

3′ 4′′ 4′

4′3′′ 4′′

4′

3′′4′′ 4′′

3′4′′ 4′′ 4′

3′′ 4′′

4′′

Table 4.18: Transition table of the deterministic “Γ” factor automaton for
the string x = abbc from Example 4.52

1. We construct a finite automaton accepting string x and all strings
having (∆, Γ)-distance equal to (1,2). The set of all these strings
is denoted (∆, Γ)1,2(abbc). This finite automaton has the transition
diagram depicted in Fig. 4.43.

2. Now we insert ε–transitions from state 0 to states 1, 2, 3, and 4 and we
make all states final. The transition diagram of the automaton with
inserted ε–transitions and fixed final states is depicted in Fig. 4.44.

3. We replace ε–transitions by non–ε–transitions. The resulting nonde-
terministic factor automaton has the transition diagram depicted in
Fig. 4.45.
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b

b

a b

b

b

b

c
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c

b b

a,c a,ca,cc

b

a,ca,c

c

a

START
12 3'  '4''

231'4'

4  '  '1''2 3

0 23'4''

32'4'

3'2''4'',43'2''

2'3''2'4'3''

34''

3 4',3'  ',3'4''

4  '',4'3'',3''  '',3''3 4

4

4'

4''

mixed multiple front end

Figure 4.42: Transition diagram of the optimized deterministic “Γ” factor
automaton for string x = abbc from Example 4.52

d–subset Factor Approximate repetitions

34” abb (3, abb, F ), (4, bbc, O)

43” bbc (4, bbc, F ), (3, abb, O)

Table 4.19: Approximate repetition table for string x = abbc, Γ distance
equal to two, from Example 4.52

a b

b a,c

a,c

a,c

a,c

b

b

b

b

b

b

c

c

c

START
0 1

1'

2

2'

2''

3

3'

3''

4

4'

4''

Figure 4.43: Transition diagram of the “(∆, Γ)” automaton accepting
(∆, Γ)1,2(abbc) with (∆, Γ)-distance (k, l) = (1, 2) from Example 4.53
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Figure 4.44: Transition diagram of the “(∆, Γ)” factor automaton with final
states fixed and ε–transitions inserted from Example 4.53

a b

b

b a,c

a,c

a,c

a,c

a,c

a,c

b

b

b

b

b

b

b

b

c

c

c

c
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1'

2

2'

2''

3

3'

3''

4

4'

4''

Figure 4.45: Transition diagram of the nondeterministic “(∆, Γ)” factor
automaton after the removal of ε–transitions from Example 4.53
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4. The final operation is to construct the equivalent deterministic finite
automaton. Table 4.20 is its transition table.

a b c

0 12′3′ 231′4′ 42′3′

12′3′ 2′3′′ 23′ 2′3′′

231′4′ 3′2′′ 32′4′ 43′2′′

23′ 3′ 34′′ 3′4′

32′4′ 3′′ 3′4′ 43′′

34′′ 4′ 4

42′3′ 3′′ 3′4′′ 4′3′′

43′2′′ 3′′4′′ 4′

43′′ 4′′

4

2′3′′ 3′′ 3′ 3′′4′′

3′2′′ 3′′4′′ 4′

3′4′ 4′′ 4′

3′4′′ 4′′ 4′

3′ 4′′ 4′

4′3′′ 4′′

4′

3′′4′′ 4′′

3′′ 4′′

4′′

Table 4.20: Transition table of the deterministic “(Γ, ∆)” factor automaton
from Example 4.53

Analyzing Table 4.20 we can recognize that the following sets are sets of
equivalent states:

{3′4′, 3′, 3′4′′}, {3′′4′′, 3′′, 43′′, 4′3′′}, {43′2′′, 3′2′′}.
We replace all equivalent states by the respective sets. Then we obtain the
transition diagram of the optimized deterministic “(∆, Γ)” factor automaton
depicted in Fig. 4.46. Now we construct the repetition table. We take
into account the repetitions of factors longer than two (allowed distance).
Table 4.21 contains information on approximate repetition of one factor. 2

4.4.11 Exact repetitions in one string with don’t care symbols

The “don’t care” symbol (◦) is defined by Def. 1.14. Next example shows
principle of finding repetitions in the case of presence of don’t care symbols
(O?NED problem).
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Figure 4.46: Transition diagram of the optimized deterministic “(∆, Γ)”
factor automaton for the string x = abbc from Example 4.53

d–subset Factor Approximate repetitions

34” abb (3, abb, F ), (4, bbc, O)

43” bbc (4, bbc, F ), (3, abb, O)

Table 4.21: Approximate repetition table for string x = abbc, (Γ, ∆) distance
equal to (1,2), from Example 4.53

Example 4.54
Let string x = a◦aab over alphabet A = {a, b, c}. Symbol ◦ is the don’t care
symbol. We construct a don’t care factor automaton.

1. We construct a finite automaton accepting set of strings described by
string x with don’t care symbol. This set is DC(x) = {aaaab, abaab,
acaab}. This finite automaton has the transition diagram depicted in
Fig. 4.47.

Figure 4.47: Transition diagram of the DC automaton accepting DC(x)
from Example 4.54

2. We insert ε-transitions from state 0 to states 1,2,3,4, and 5 and we
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make all states final. Transition diagram of DCε(a◦aab) factor au-
tomaton with inserted ε-transitions and fixed final states is depicted
in Fig. 4.48.

Figure 4.48: Transition diagram of the DCε(a ◦ aab) factor automaton with
inserted ε-transitions and fixed final states from Example 4.54

3. We replace ε-transitions by non ε-transitions. Resulting nondeter-
ministic factor automaton DCN (a◦aab) has the transition diagram
depicted in Fig. 4.49.

Figure 4.49: Transition diagram of nondeterministic factor automaton
DCN (a◦aab) after the removal of ε-transitions from Example 4.54

4. The final operation is construction of equivalent deterministic factor
automaton DCD(a◦aab). Table 4.22 is transition table of the non-
deterministic factor automaton having transition diagram depicted in
Fig. 4.49. Table 4.23 is transition table of deterministic factor automa-
ton DCD(a◦aab). Transition diagram of deterministic factor automa-
ton DCD(a◦aab) is depicted in Fig. 4.50.
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a b c

0 1, 2, 3, 4 2, 5 2

1 2 2 2

2 3

3 4

4 5

5

Table 4.22: Transition table of nondeterministic factor automaton
DCN (a◦aab) from Example 4.54

a b c

0 1234 25 2

1234 234 25 2

2 3

25 3

234 34 5

3 4

34 4 5

4 5

5

Table 4.23: Transition table of deterministic factor automaton DCD(a◦aab)
from Example 4.54
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0 1234

234

2

25

34

3 4 5
a c

a

c

b

b

a

a

a

a a b

bb

START

multiple front end

Figure 4.50: Transition diagram of deterministic factor automaton
DCD(a◦aab) from Example 4.54

The last step is the construction of the repetition table. It is shown in
Table 4.24.

d–subset Factor Repetitions

1234 a (1, F ), (2, S), (3, S), (4, S)

25 ab (2, F ), (5, G)

234 aa (2, F ), (3, O), (4, O)

34 aaa (3, F ), (4, O)

Table 4.24: Repetition table for string x = a◦aab from Example 4.54

4.5 Computation of periods revisited

Let us remind the definition of a period (see Def. 4.4). We have seen in
Section 4.2.2 the principle of computation of periods in the framework of
computation of borders. Now we show the computation of periods without
regard to the computation of borders. For the computation of periods of
given string we can use the backbone of a factor automaton and we will
construct the repetition table. Such repetition table is a prefix repetition
table. The next Algorithm shows, how to find periods of a string.

Algorithm 4.55

Input: String x ∈ A+.
Output: Sequence of periods p1, p2, . . . , ph, h ≥ 0, and the shortest period
Per(x).
Method:

1. Construct factor automaton M for string x.
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2. Compute the prefix repetition table using the backbone of the deter-
ministic factor automaton for string x.

3. Do inspection of the prefix repetition table in order to find all rows,
where squares are indicated. If these squares covers the prefix of x
long enough, then the lengths of repeated strings are the periods of x.
More precisely:
If the prefix of length m is repeating as squares
(m, F ), (2 ∗ m, S), (3 ∗ m, S), . . . , (j ∗ m, S),
|x| − j ∗ m ≤ m, and x[j ∗ m + 1..|x|] ∈ Pref (x[1..m]), then m is the
period of x.

4. Do inspection of the prefix repetition table in order to find all rows
where are repetitions of prefixes longer than one half of string x with
overlapping. If such prefix has length m > |x|/2 and the suffix of x
x[m + 1..|x|] ∈ Pref(x[1..m]), then m is the period of x.

5. |x| is also the period of x.

6. The shortest period is Per(x). 2

Note: If Per(x) = |x| then x is primitive string.

Example 4.56
Let us compute periods of string x = abababababa. The nondetermin-
istic factor automaton has the transition diagram depicted in Fig. 4.51.
Transition table of the deterministic factor automaton is shown in Ta-

0 1 2 3 4 5 6 7 8 9 A B
a b

b

a

a

b

b

a

a

b

b

a

a

b

b

a

a

b

b

a

a

Figure 4.51: The nondeterministic factor automaton for string x =
abababababa from Example 4.56, A and B represent numbers 10 and 11,
respectively

ble 4.25. The backbone of the deterministic factor automaton has the transi-
tion diagram depicted in Fig. 4.52. The prefix repetition table is Table 4.26.

1. During inspection of this table we find two rows with squares: row 2
and row 4. In the row 2 we see, that the prefix ab is repeated four
times: (4, S), (6, S), (8, S), and (A, S). The rest of the string is a which
is the prefix of ab. Therefore the first period is 2. In row 4 we see,
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a b

0 13579B 2468A

13579B 2468A

2468A 3579B

3579B 468A

468A 579B

579B 68A

68A 79B

79B 8A

8A 9B

9B A

A B

B

Table 4.25: Transition table of the deterministic factor automaton from
Example 4.56

d–subset Prefix Repetitions of prefixes

13579B a (1, F ), (3, G), (5, G), (7, G), (9, G), (B, G)

2468A ab (2, F ), (4, S), (6, S), (8, S), (A, S)

3579B aba (3, F ), (5, O), (7, O), (9, O), (B, O)

468A abab (4, F ), (6, O), (8, S), (A, O)

579B ababa (5, F ), (7, O), (9, O), (B, O)

68A ababab (6, F ), (8, O), (A, O)

79B abababa (7, F ), (9, O), (B, O)

8A abababab (8, F ), (A, O)

9B ababababa (9, F ), (B, O)

Table 4.26: The prefix repetition table from Example 4.56
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0 13579B 3579B 579B

8A9BAB

2468A 468A 68A

79B

a b b b

baba

a a a

Figure 4.52: Transition diagram of the backbone of the deterministic factor
automaton for string x = abababababa from Example 4.56

that the prefix abab is repeated once: (8, S). The rest of the string is
aba which is the prefix of abab. Therefore the second period is 4.

2. Moreover, there are four cases with overlapping of prefixes longer
than 5:

(6) ababab, ababa
(7) abababa, baba
(8) abababab, aba
(9) ababababa, ba

(10) ababababab, a

Suffixes of cases 6, 8, 10 are prefixes of x : ababa, aba, a. It means that
6, 8 and 10 are periods of x, too.

3. The last period of x is |x|.

The set of all periods is {2, 4, 6, 8, 10, 11}. Per(x) = 2. 2

Example 4.57
Let us compute periods of string x = a4. Ttransition diagram of the non-
deterministic factor automaton is depicted in Fig. 4.53. Transition diagram

a a

a

a a

a a

START
0 1 2 3 4

Figure 4.53: Transition diagram of nondeterministic factor automaton for
string x = a4 from Example 4.57

of the backbone of deterministic factor automaton is depicted in Fig. 4.54.

a a a aSTART
0 1234 234 34 4

Figure 4.54: Transition diagram of the backbone of deterministic factor
automaton for string x = a4 from Example 4.57
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The prefix repetition table has the form:

d–subset Prefix Repetitions of prefixes

1234 a (1, F ), (2, S), (3, S), (4, S)

234 aa (2, F ), (3, O), (4, S)

34 aaa (3, F ), (4, O)

We see that there are four periods: 1, 2, 3, 4. Per(a4) = 1.
Transition table of the deterministic factor automaton is shown in Ta-
ble 4.27.

a

0 1234

1234 234

234 34

34 4

Table 4.27: Transition table of the deterministic factor automaton from
Example 4.57

Example 4.58
Let us compute periods of string x = abcd. Transition diagram of the factor
automaton is depicted in Fig. 4.55. This factor automaton is deterministic.

Figure 4.55: Transition diagram of the factor automaton for string x = abcd

It means, that nothing is repeated and the shortest period is equal to the
length of string and therefore string x = abcd is the primitive string (see
Def. 4.6).
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5 Simulation of nondeterministic pattern match-

ing automata – fail function

Deterministic pattern matching automata have in some cases large space
complexity. This is especially true for automata for approximate pattern
matching. This situation led to the construction of algorithms for the sim-
ulation of nondeterministic pattern matching automata. These simulation
algorithms have an acceptable space complexity but theirs time complexity
is, in some cases, greater than linear. We can divide methods used for simu-
lation of nondeterministic pattern matching automata into three categories:

1. using fail function,

2. dynamic programming,

3. bit parallelism.

The use of the fail function we will discuss in this Chapter. The dynamic
programming and bit parallelism will be covered in the next Chapter.

5.1 Searching automata

The group of methods which use fail function is based on the following
principle:

The nondeterministic pattern matching automaton is used but the min-
imum number of its self loops in the initial state are removed in order to
obtain deterministic finite automaton. If this operation succeed and the
resulting finite automaton is deterministic, then it can be used. Afterwards
some transitions called backward transitions are added. No input symbol is
read during such transitions. They are used in case when the forward transi-
tions cannot be used. Well known Morris–Pratt (MP), Knuth–Morris–Pratt
(KMP) and Aho–Corasick (AC ) algorithms belong to this category.

The base of algorithms of this category is a notion of searching automaton
which is an extended deterministic finite automaton.

Definition 5.1
Searching automaton is sixtuple SA = (Q, A, δ, ϕ, q0, F ), where

Q is a finite set of states,
A is a finite input alphabet,
δ : Q × A → Q ∪ {fail} is the forward transition function,
ϕ : (Q − {q0}) × A∗ → Q is the backward transition function,
q0 is the initial state,
F ⊂ Q is the set of final states.

A configuration of searching automaton SA is pair (q, w), where q ∈ Q, w ∈
A∗. The initial configuration is (q0, w), where w is the complete input text.
The final configuration is (q, w), where q ∈ F and w ∈ A∗ is an unread part
of the text. This configuration means that the pattern was found and its
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position is in the text just before w. The searching automaton performs
forward and backward transitions. Transition relation

`⊂ (Q × A∗) × (Q × A∗)
is defined in this way:

1. if δ(q, a) = p, then (q, aw) ` (p, w) is a forward transition,

2. if ϕ(q, x) = p, then (q, w) ` (p, w) is a backward transition, where x is
the suffix of the part of the text read before reaching state q. 2

Just one input symbol is read during forward transition. If δ(q, a) = fail
then backward transition is performed and no symbol is read. Forward and
backward transition functions δ and ϕ have the following properties:

1. δ(q0, a) 6= fail for all a ∈ A,

2. If ϕ(q, x) = p then the depth of p is strictly less than the depth of q,
where the depth of state q is the length of the shortest sequence of
forward transitions from state q0 to state q.

The first condition ensures that no backward transition is performed in
the initial state. The second condition ensures that the total number of
backward transitions is less than the number of forward transitions. It
follows that the total number of performed transitions is less than 2n, where
n is the length of the text.

5.2 MP and KMP algorithms

MP and KMP algorithms are the simulators of the SFOECO automaton
(see Section 2.2.1) for exact matching of one pattern. We will show both
algorithms in the following example. Let us mention, that the backward
transition function is simplified and

ϕ : (Q − {q0}) → Q.

Example 5.2
Let us construct MP and KMP searching automata for pattern P = ababb
and compare it with pattern matching automaton for P . The construction
of both, deterministic pattern matching automaton and MP searching au-
tomaton is shown in Fig. 5.1. We can construct, for the resulting MP and
KMP searching automata, the following Table 5.1 containing forward tran-
sition function δ, backward transition function ϕ for MP algorithm, and
optimized backward transition function ϕopt for KMP algorithm. The rea-
son for the introduction of the optimized backward transition function ϕopt

will follow from the next example. 2

Example 5.3
The MP searching automaton for pattern P = ababb and text T = abaababbb
performs the following sequence of transitions (backward transition function
ϕ is used):
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δ a b ϕ ϕopt

0 1 0

1 fail 2 0 0

2 3 fail 0 0

3 fail 4 1 0

4 fail 5 2 2

4 fail fail 0 0

Table 5.1: Forward transition function δ, backward transition functions ϕ
and ϕopt from Example 5.2

(0, abaababbb) ` (1,baababbb)
` (2, aababbb)
` (3, ababbb) fail
` (1, ababbb) fail
` (0, ababbb)
` (1, babbb)
` (2, abbb)
` (3, bbb)
` (4, bb)
` (5, b)

The pattern is found in state 5 at position 8. 2

Let us mention one important observation. We can see, that there are
performed two subsequent backward transitions from state 3 for the input
symbol a leading to states 1 and 0. The reason is that δ(3, a) = δ(1, a) =
fail. This variant of searching automaton is called MP (Morris–Pratt) au-
tomaton and the related algorithm shown below is called MP algorithm.
There is possible to compute optimized backward transition function ϕopt

having in this situation value ϕopt(3) = 0. The result is, that each such
sequence of backward transitions is replaced by just one backward transi-
tion. The algorithm using optimized backward transition function ϕopt is
KMP (Knuth–Morris–Pratt) algorithm. After this informal explanation, we
show the direct construction of MP searching automaton, computation of
backward and optimized backward transition functions. We start with MP
searching algorithm.
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Figure 5.1: SFOECO and MP searching automata for pattern P = ababb
from Example 5.2
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var TEXT:array[1..N] of char;

PATTERN:array[1..M] of char;

I,J: integer;

FOUND: boolean;

...

I:=1; J:=1;

while (I <= N) and (J <= M) do

begin

while (TEXT[I] <> PATTERN[J]) and (J > 0) do J:=PHI[J];

J := J + 1;

I := I + 1

FOUND := J > M;

end;

...

Variables used in MP searching algorithm are shown in Figure 5.2. The com-

Figure 5.2: Variables used in MP searching algorithm, pos = I − J + 1

putation of backward transition function is based on the notion of repetitions
of prefixes of the pattern in the pattern itself. The situation is depicted in
Fig. 5.3. If prefix u = u1u2 . . . uj−1 of the pattern matches the substring of

pattern

pattern

period

period

a

ab

u

vv

Figure 5.3: Repetition of prefix v in prefix u of the pattern

the text u = ti−j+1ti−j . . . ti−1 and uj 6= ti then it is not necessary to com-
pare prefix v of the pattern with substring ti−j+2ti−j+3 . . . of text string at
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the next position. Instead of this comparison we can do shift of the pattern
to the right. The length of this shift is the length of Border(u).

Example 5.4
Let us show repetitions and periods of prefixes of pattern P = ababb in
Fig. 5.4. The shift is represented by the value of backward transition function

Figure 5.4: Repetitions and periods of P = ababb

ϕ for position j in the pattern is
ϕ(j) = |Border(p1p2 . . . pj)|.

If there is no repetition of the prefix of the pattern in itself, then the shift
is equal to j, because the period is equal to zero. 2

For the computation of the function ϕ for the pattern P we will use the fact,
that the value of ϕ(j) is equal to the element of the border array β[j] for
the pattern P .

Example 5.5
Let us compute the border array for pattern P = ababb. Transition diagram
of the nondeterministic factor automaton is depicted in Fig. 5.5. Table 5.2 is

a b

b

a

a

b

b

b

b

START
0 1 2 3 4 5

Figure 5.5: Transition diagram of the nondeterministic factor automaton for
pattern P = ababb from Example 5.5

transition table of the equivalent deterministic factor automaton. Transition
diagram of the deterministic factor automaton is depicted in Fig. 5.6.
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a b

0 13 245

13 24

24 3 5

245 3 5

3 4

4 5

5

Table 5.2: Transition table of the deterministic factor automaton from Ex-
ample 5.5.

Figure 5.6: Transition diagram of the deterministic factor automaton for
pattern P = ababb from Example 5.2

The analysis od d–subsets on the backbone of deterministic factor automaton
is shown in this table:

Analyzed state Value of border array element

13 β[3] = 1

24 β[4] = 2

Values of elements of border array are shown in this table:

j 1 2 3 4 5

symbol a b a b a

β[j] 0 0 1 2 0

Let us recall, that ϕ(j) = β[j]. 2

The next algorithm constructs MP searching automaton.

Algorithm 5.6
Construction of MP searching automaton.
Input: Pattern P = p1p2 . . . pm.
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Output: MP searching automaton.
Method:

1. The initial state is q0.

2. Each state q of MP searching automaton corresponds to prefix
p1p2 . . . pj of the pattern. δ(q, pj+1) = q′, where q′ corresponds to
prefix p1p2 . . . pjpj+1.

3. The state corresponding to complete pattern p1p2 . . . pm is the final
state.

4. Define δ(q0, a) = q0 for all a for which no transitions was defined in
step 2.

5. δ(q, a) = fail for all a ∈ A and q ∈ Q for which δ(q, a) was not defined
in steps 2 and 3.

6. Function ϕ is the backward transition function. This is equal to the
border array β for pattern P . 2

The next algorithm computes optimized backward transition function ϕopt

on the base of backward transition function ϕ.

Algorithm 5.7
Computation of optimized backward transition function ϕopt.
Input: Backward transition function ϕ.
Output: Optimized backward transition function ϕopt.
Method:

1. ϕopt = ϕ for all states of the depth equal to one.

2. Let us suppose that the function ϕopt has been computed for all states
having the depth less or equal to d. Let q has the depth equal to d+1.
Let us suppose that ϕ(q) = p. If δ(q, a) = fail and δ(p, a) = fail then
ϕopt(q) = ϕopt(ϕ(q)) else ϕopt(q) = ϕ(q). 2

Example 5.8
Let us construct KMP searching automaton for pattern P = abaabaa and
alphabet A = {a, b}. First, we construct the forward transition function.
It is depicted in Fig. 5.7. Now we will construct both, the nonoptimized

Figure 5.7: Forward transition function of KMP searching automaton for
pattern P = abaabaa from Example 5.8
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backward transition function ϕ and optimized backward transition func-
tion ϕopt using Algorithms 4.19 and 5.7. To construct the nonoptimized
backward transition function, we construct the border array β for pattern
P = abaabaa. The nondeterministic factor automaton has the transition
diagram depicted in Fig. 5.8. The transition diagram of the useful part

0 1 2 3 4 5 6 7
a b a a b a a

b a a b a a

START

Figure 5.8: Transition diagram of the nondeterministic factor automaton for
pattern P = abaabaa from Example 5.8

of the deterministic factor automaton is depicted in Fig. 5.9. The analy-

Figure 5.9: Part of the transition diagram of the deterministic factor au-
tomaton for pattern P = abaabaa from Example 5.8

sis of d–subsets of the deterministic factor automaton is summarized in the
Table 5.3.

d–subset Values of elements of border array

13467 β[3] = 1, β[4] = 1, β[5], = 1, β[6] = 1, β[7] = 1

25 β[5] = 2

36 β[6] = 3

47 β[7] = 4

Table 5.3: Computation of the border array for pattern P = abaabaa from
Example 5.8
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The resulting border array is in the Table 5.4: The values β[1] and β[2]

Index 1 2 3 4 5 6 7

Symbol a b a a b a a

β 0 0 1 1 2 3 4

Table 5.4: The border array for pattern P = abaabaa from Example 5.8

are equal to zero because strings a and ab have borders of zero length. This
border array is equal to the backward transition function ϕ. The optimized
backward transition function ϕopt is for some indices different than function
ϕ. Both functions ϕ and ϕopt have values according to the Table 5.5. The

I ϕ[I] ϕopt[I]

1 0 0

2 0 0

3 1 1

4 1 0

5 2 0

6 3 1

7 4 4

Table 5.5: Functions ϕ and ϕopt for pattern P = abaabaa from Example 5.8

complete MP and KMP automata are depicted in Fig. 5.10. Let us have

b

0 1 2 3 4 5 6 7a b a a b a aSTART

Figure 5.10: KMP searching automaton for pattern P = abaabaa from
Example 5.8; nontrivial values of ϕ are shown by dashed lines, nontrivial
values of ϕopt are shown by dotted lines, trivial values of both functions are
leading to the initial state 0

text starting with prefix T = abaabac . . .. We show the behaviours of both
variants of KMP automaton. The first one is MP variant and it is using ϕ.
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(0, abaabac . . .)` (1,baabac. . .)
` (2, aabac. . .)
` (3, abac. . .)
` (4, bac. . .)
` (5, ac. . .)
` (6, c. . .)fail
` (3, c. . .)fail
` (1, c. . .)fail
` (0, c. . .)
` (0, . . .)
` . . .

The second one is KMP variant using ϕopt.

(0, abaabac . . .)` (1,baabac. . .)
` (2, aabac. . .)
` (3, abac. . .)
` (4, bac. . .)
` (5, ac. . .)
` (6, c. . .)fail
` (1, c. . .)fail
` (0, c. . .)
` (0, . . .)
` . . .

We can see from these two sequences of transitions, that MP variant com-
pares symbol c 4 times and KMP variant compares symbol c 3 times. 2

Both variants of KMP algorithm have linear time and space complexities.
If we have text T = t1t2 . . . tn and pattern P = p1p2 . . . pm then KMP
algorithm requires [Cro97]:

2m − 3 symbol comparisons during preprocessing phase (computation
of function ϕ or ϕopt),

2n − 1 symbol comparisons during searching phase,
m elements of memory to store the values of function ϕ or ϕopt.

The final result is that the time complexity is O(n + m) and the space
complexity is O(m). Let us note, that this complexity is not influenced by
the size of alphabet on the contrary with the deterministic finite automata.

5.3 AC algorithm

The AC (Aho–Corasick) algorithm is the simulator of the SFFECO au-
tomaton (see Section 2.2.5) for exact matching of a finite set of patterns.
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It is based on the same principle as KMP algorithm and use the searching
automaton with restricted backward transition function:

ϕ : (Q − {q0}) → Q.

We start with the construction of forward transition function.

Algorithm 5.9
Construction of the forward transition function of AC automaton.
Input: Finite set of patterns S = (P1, P2, . . . , P|S|), where Pi ∈ A+,
1 ≤ i ≤ |S|.
Output: Deterministic finite automaton M = (Q, A, δ, q0, F ) accepting the
set S.
Method:

1. Q = {q0}, q0 is the initial state.

2. Create all possible states. Each new state q of AC automaton cor-
responds to some prefix a1a2 . . . aj of one or more patterns. Define
δ(q, aj+1) = q′, where q′ corresponds to prefix a1a2 . . . ajaj+1 of one or
more patterns. Q = Q ∪ {q′}.

3. For state q0 define δ(q0, a) = q0 for all such a that δ(q0, a) was not
defined in step 2.

4. δ(q, a) = fail for all q and a for which δ(q, a) was not defined in steps
2 or 3.

5. Each state corresponding to the complete pattern will be the final
state. It holds also in case when one pattern is either prefix or sub-
string of another pattern. 2

The same result as by Algorithm 5.9 we can obtain by modification of
SFFECO automaton. This modification consists in two steps:

1. Removing some number of self loops in the initial state. There are
self loops for symbols for which exist transitions from the initial state
to the next states.

2. Determinization of the automaton resulting from step 1.

Step 2 must be used only in case when some patterns in set S = (P1, P2,
. . . , P|s|) have equal prefixes. Otherwise the resulting automaton is deter-
ministic after step 1.
The next algorithm constructs the backward transition function. Let us note
that the depth of state q is the number of forward transitions from state q0

to state q.

Algorithm 5.10
Construction of backward transition function of AC automaton for set S =
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{P1, P2, . . . , P|S|}.
Input: Deterministic finite automaton M accepting set S.
Output: Complete AC automaton with backward transition function ϕ.
Method:

1. Let Q = Q0 ∪ Q1 ∪ . . . ∪ Qmaxd, where elements of Qd are states with
depth d. Let us note:

(a) Q0 = {q0},
(b) Qi ∩ Qj = ∅, for i 6= j, 0 ≤ i, j ≤ maxd.

2. ϕ(q) = q0 for all q ∈ Q1.

3. For d = 2, . . . , maxd and all states in Qd construct mborder array
mβ[2..n]. 2

The computation of backward transition function ϕ is depicted in Fig. 5.11.

b

a a

j(q )d

j j( (q ))d j(q') qd q'

START

Figure 5.11: Computation of ϕ(q′)

This backward transition function is not optimized similarly to the case
of MP searching automaton. The optimized version ϕopt of function ϕ is
constructed by the next algorithm.

Algorithm 5.11
Construction of optimized backward transition function ϕopt of AC search-
ing automaton.
Input: AC searching automaton with backward transition function ϕ (not
optimized).
Output: Optimized backward transition function ϕopt for the input AC
searching automaton.
Method:

1. Let Q = {q0}∪Q1 ∪ . . .∪Qmaxd, where elements of Qd are states with
the depth d.

2. ϕopt(q) = ϕ(q) = q0 for all q ∈ Q1.

3. For d = 2, 3, . . . , maxd and all states in q ∈ Qd do:

(a) X = {a : δ(q, a) = p, a ∈ A},
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(b) Y = {a : δ(ϕ(q), a) = r, a ∈ A},
(c) if Y ⊆ X or X = ∅ then ϕopt(q) = ϕopt(ϕ(q)) else ϕopt(q) = ϕ(q).

2

The principle of the construction of optimized backward transition function
ϕopt is depicted in Fig. 5.12.

b

c

a

a

j j jopt opt( )=q ( (q))

q

b

X= a,b ,  Y= a ,  Y X{ } { } Ì

j(q)

START

Figure 5.12: Construction of ϕopt(q)

Example 5.12
Let us construct AC searching automaton for set of patterns S = {ab, babb, bb}
and alphabet A = {a, b, c}. First we construct the forward transition func-
tion. It is depicted in Fig. 5.13. Further we will construct both backward

b a b

b

a

b

c

b

START
0 123 22

11

3

21

23

4

Figure 5.13: Forward transition function of AC searching automaton for set
of patterns S = {ab, babb, bb} and A = {a, b, c} from Example 5.12

transition functions ϕ and ϕopt. To construct the nonoptimized backward
transition function ϕ we construct the mborder array mβ for set of patterns
S = {ab, babb, bb}. The nondeterministic factor automaton has the transi-
tion diagram depicted in Fig. 5.14. Table 5.6 is the transition table of the
deterministic factor automaton for set of patterns S = {ab, babb, bb}. The
transition diagram of this factor automaton is depicted in Fig. 5.15. The
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b

b

b

a

b

b

b

b

START
0 1

23

2
2

1
1

3

2
1

2
3

4

Figure 5.14: Transition diagram of the nondeterministic factor automaton
for set of patterns S = {ab, babb, bb} from Example 5.12

a b

0 1122 123212334

1122 213

213 4

123212334 22 234

22 3

3 4

4

234

Table 5.6: Transition table of the deterministic factor automaton for set
S = {ab, babb, bb} from Example 5.12

analysis of d–subsets of the deterministic factor automaton is summarized
in the Table 5.7. The next table shows the border array.

State 11 123 21 22 23 3 4

Symbol a b b a b b b

mβ 0 0 123 11 123 21 23

The values of β[11] and β[123] are equal to zero because strings a and b have
borders of zero length. This border array is equal to backward transition
function ϕ. Optimized backward transition function ϕopt differs for some
states of function ϕ. Forward transition function δ and both functions ϕ
and ϕopt have values according to the Table 5.8. The complete AC search-
ing automaton is depicted on Fig. 5.16 The backward transition function
ϕ is shown by dashed lines, the optimized backward transition function is
shown by dotted lines in cases when ϕ 6= ϕopt. The Fig. 5.17 shows the
transition diagram of the deterministic automaton for nondeterministic SF-
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Figure 5.15: Transition diagram of the deterministic factor automaton for
set of patterns S = {ab, babb, bb} from Example 5.12

d–subset Values of elements of border array

123212334 mβ[21] = 123, mβ[23] = 123, mβ[3] = 123, mβ[4] = 123

1122 mβ[22] = 11

213 mβ[3] = 21

234 mβ[4] = 23

Table 5.7: Computation of mborder array for set of patterns S =
{ab, babb, bb} from Example 5.12

FECO automaton for S = {ab, babb, bb}. It is included in order to enable
comparison of deterministic finite automaton and AC searching automaton.

Let us show the sequence of transitions of resulting AC searching automaton
for input string bbabb.

(0, bbabb)` ( 123, babb)
` ( 23, abb) bb found, fail
` ( 123, abb)
` ( 22, bb)
` ( 3, b) ab found
` ( 4, ε) bb and babb found .

For comparison we show the sequence of transitions of deterministic finite
automaton:

(0, bbabb)` ( 0123, babb)
` ( 012323, abb) bb found
` ( 01122, bb)
` ( 0123213, b) ab found
` ( 0123234, ε) bb and babb found . 2
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δ a b c ϕ ϕopt

0 11 123 0

11 fail 21 fail 0 0

123 22 23 fail 0 0

21 fail fail fail 123 123

22 fail 3 fail 11 0

23 fail fail fail 123 123

3 fail 4 fail 21 123

4 fail fail fail 23 123

Table 5.8: The forward and both backward transition functions for set of
patterns S = {ab, babb, bb} from Example 5.12

Figure 5.16: Complete AC searching automaton for set of patterns S =
{ab, babb, bb} from Example 5.12

Similarly as the KMP algorithm, the AC algorithm have linear time and
space complexities. If we have alphabet A, text T = t1t2 . . . tn and set of

patterns S = {P1, P2, . . . P|s|}, where |S| =
∑|s|

i=1 |Pi|, then AC algorithm
needs [CH97b]:

O(|S|) time for preprocessing phase (construction of AC searching
automaton),

O(n) time for searching phase,
O(|S| ∗ |A|) space to store AC searching automaton.

The space requirement can be reduced to O(|S|). In this case the searching
phase has time complexity O(|n| ∗ log|A|). See more details in Crochemore
and Hancart [CH97b].
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Figure 5.17: Transition diagram of the deterministic finite automaton for
S = {ab, babb, bb} from Example 5.12; transitions for symbol c from all
states are leading to state 0
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6 Simulation of nondeterministic finite automata

– dynamic programming and bit parallelism

In the case when the space complexity or the preprocessing time of DFA
makes it unusable, we can use some of deterministic simulation methods
of corresponding NFA. At the beginning of this section we describe a ba-
sic simulation method, which is the base of the other simulation methods
presented further in this section. This method can be used for any general
NFA. The other simulation methods improve complexities of simulation, but
on the other hand they set some requirements to NFAs in order to be more
efficient.

The simulation methods will be presented on NFAs for exact and approx-
imate string matching. In this Section we will use another version of NFAs
for approximate string matching, where all transitions for edit operations
replace and insert are labeled by whole alphabet instead of complement of
matching symbol. This simplifies the formulae for the simulation while the
behavior of NFAs practically does not change.

6.1 Basic simulation method

In Algorithm 6.1 we show the basic algorithm, which is very similar to the
transformation of NFA to the equivalent DFA. In each step of the run of
NFA a new set of active states is computed by evaluating all transitions from
all states of the previous set of active states. This provides that all possible
paths labeled by input string are considered in NFA. The simulation finishes
when the end of the input text is reached or when there is no active state
(e.g., no accepting path exists).

Algorithm 6.1 (Simulation of run of NFA—basic method)
Input: NFA M = (Q, A, δ, q0, F ), input text T = t1t2 . . . tn.
Output: Output of run of NFA.
Method: Set S of active states is used.

S := ε−CLOSURE({q0})
i := 1
while i ≤ n and S 6= ∅ do

/∗ transitions are performed for all elements of S ∗/
S :=

⋃

q∈S ε−CLOSURE(δ(q, ti))

if S ∩ F 6= ∅ then
write(information associated with each final state in S ∩ F )

endif
i := i + 1

endwhile
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In the transformation of NFA to the equivalent DFA, all the possible con-
figurations of set S of active states are evaluated as well as all the possible
transitions among these configurations and a deterministic state is assigned
to each such configuration of S. Using the simulation method from Algo-
rithm 6.1 only the current configuration of set S is evaluated in each step of
the simulation of NFA—only used configurations are evaluated during the
simulation.

It is also possible to combine the simulation and the transformation.
When processing an input text, we can store the used configurations of S
in some state-cache and assign them deterministic states. In such a way we
transform NFA to DFA incrementally, but we evaluate only used states and
transitions. If the state-cache is full, we can use one of cache techniques for
making room in the state-cache, e.g., removing least recently used states.

This solution has the following advantages: we can control the amount of
used memory (size of state-cache) and for the most frequent configurations
we do not need always to compute the most frequent transitions, but we
can use directly the information stored in the state-cache (using a DFA
transition has better time complexity than computing a new configuration).

Theorem 6.2
The basic simulation method shown in Algorithm 6.1 simulates run of NFA.

Proof
Let M = (Q, A, δ, q0, F ) be an NFA and T = t1t2 . . . tn be an input text.
Algorithm 6.1 considers really all paths (i.e., sequences of configurations)
leading from q0.

At the beginning of the algorithm, set S of active states contains
ε−CLOSURE({q0})—each path must start in q0 and then some of ε-transitions
leading from q0 can be used. In this way all configurations (qj , T ), qj ∈ Q,
(q0, T ) `∗

M (qj , T ), are considered.
In each i-th step of the algorithm, 1 ≤ i ≤ n, all transitions (relevant to

T ) leading from all states of S are evaluated, i.e., both ti labeled transitions
as well as ε-transitions. At first all transitions reachable by transitions
labeled by ti from each state of S are inserted in new set S and then ε−
CLOSURE of new set S is also inserted in new set S. In this way all
configurations (qj , ti+1ti+2 . . . tn), qj ∈ Q, (q0, T ) `∗

M (qj , ti+1ti+2 . . . tn), are
considered in i-th step of the algorithm.

In each step of the algorithm, the set S of active states is tested for final
state and for each such found active final state the information associated
with such state is reported. 2

6.1.1 Implementation

6.1.1.1 NFA without ε-transitions This basic method can be imple-
mented using bit vectors. Let M = (Q, A, δ, q0, F ) be an NFA without
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ε-transitions and T = t1t2 . . . tn be an input text of M . We implement a
transition function δ as a transition table T (of size |Q|× |A|) of bit vectors:

T [i, a] =









τ0

τ1
...

τ|Q|−1









(5)

where a ∈ A and bit τj = 1, if qj ∈ δ(qi, a), or τj = 0 otherwise. Then we
also implement a set F of final states as a bit vector F :

F =









f0

f1
...

f|Q|−1









(6)

where bit fj = 1, if qj ∈ F , or fj = 0 otherwise. In each step i, 0 ≤ i ≤ n,
(i.e., after reading symbol ti) of the simulation of the NFA run, set S of
active states is represented by bit vector S:

Si =









s0,i

s1,i

...
s|Q|−1,i









(7)

where bit sj,i = 1, if state qj is active (i.e. qj ∈ S) in i-th simulation step,
or sj,i = 0 otherwise.

When constructing Si+1, we can evaluate all transitions labeled by ti+1

leading from state qj , which is active in i-th step, at once—just using bitwise
operation or for bit-vector Si+1 and bit-vector T [j, ti+1]. This implementa-
tion is used in Algorithm 6.3.

Note, that the first for cycle of Algorithm 6.3 is multiplication of vector
Si by matrix T [∗, ti]. This approach is also used in quantum automata
[MC97], where quantum computation is used.

Theorem 6.4
The simulation of the run of general NFA runs in time O(n|Q|d |Q|

w
e) and

space1 O(|A||Q|d |Q|
w
e), where n is the length of the input text, |Q| is the

1For the space complexity of this theorem we expect complete transition table for
representation of transition function.
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Algorithm 6.3 (Simulation of run of NFA—bit-vector imple-
mentation of basic method)
Input: Transition table T and set F of final states of NFA, input text
T = t1t2 . . . tn.
Output: Output of run of NFA.
Method:

S0 := [100 . . . 0] /∗ only q0 is active at the beginning ∗/
i := 1
while i ≤ n and Si−1 6= [00 . . . 0] do

Si := [00 . . . 0]
for j := 0, 1, . . . |Q| − 1 do

if sj,i−1 = 1 then /∗ qj is active in (i − 1)-th step ∗/
Si := Si or T [j, ti] /∗ evaluate transitions for qj ∗/

endif
endfor
for j := 0, 1, . . . |Q| − 1 do

if sj,i = 1 and fj = 1 then /∗ if qj is active final state ∗/
write(information associated with final state qj)

endif
endfor
i := i + 1

endwhile

number of states of the NFA, A is the input alphabet, and w is the size of
the used computer word in bits.

Proof
See the basic simulation method in Algorithm 6.3. The main while-cycle is
performed at most n-times and both inner while-cycles are performed just
|Q| times. If |Q| > w (i.e., more than one computer word must be used to
implement bit-vector for all states of NFA), each elementary bitwise opera-

tions must be split into d |Q|
w
e bitwise operations. It gives us time complexity

O(n|Q|d |Q|
w
e). The space complexity is given by the implementation of tran-

sition function δ by transition table T , which contains (|Q|×|A|) bit-vectors

each of size d |Q|
w
e. 2

Example 6.5
Let M be an NFA for the exact string matching for pattern P = aba and
T = accabcaaba be an input text.

Transition table δ and its bit-vector representation T are as follows:
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δM a b A \ {a, b}
0 {0,1} {0} {0}
1 ∅ {2} ∅
2 {3} ∅ ∅
3 ∅ ∅ ∅

TM a b A \ {a, b}

0

1
1
0
0

1
0
0
0

1
0
0
0

1

0
0
0
0

0
0
1
0

0
0
0
0

2

0
0
0
1

0
0
0
0

0
0
0
0

3

0
0
0
0

0
0
0
0

0
0
0
0

The process of simulation of M over T is displayed by set S of active
states and its bit-vector representation S.

- a c c a b c a a b a

S
1
0
0
0

1
1
0
0

1
0
0
0

1
0
0
0

1
1
0
0

1
0
1
0

1
0
0
0

1
1
0
0

1
1
0
0

1
0
1
0

1
1
0
1

S q0
q0

q1
q0 q0

q0

q1

q0

q2
q0

q0

q1

q0

q1

q0

q2

q0

q1

q3

6.1.1.2 NFA with ε-transitions If we have an NFA with ε-transitions,
we can transform it to an equivalent NFA without ε-transitions using Algo-
rithm 6.6. There are also other algorithms for removing ε-transitions but
this algorithm does not change the states of the NFA.

Algorithm 6.6 provides that all transitions labeled by symbols (not ε-
transitions) leading from all states of ε−CLOSURE({q0}) lead also from
q0. Then for each state q ∈ Q and symbol a ∈ A all states accessible from
δ(q, a) (i.e., ε−CLOSURE(δ(q, a))) are inserted into δ′(q, a).

Note, that the resulting NFA M ′ can contain inaccessible states. Each
state q, q ∈ S \ {q0}, of NFA M ′ is inaccessible if the only incoming transi-
tions into this state q in NFA M are the ε-transitions leading from q0.

The ε-transitions can also be removed directly during a construction of
NFA.

There is also other possibility of simulation of NFA with ε-transitions.
We can implement ε-transitions by table E (of size |Q|) of bit-vectors:
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Algorithm 6.6 (Removing ε-transitions from NFA)
Input: NFA M = (Q, A, δ, q0, F ) with ε-transitions.
Output: NFA M ′ = (Q, A, δ′, q0, F

′) without ε-transitions.
Method:

S := ε−CLOSURE({q0})
for each a ∈ A do

δ′(q0, a) :=
⋃

q∈S ε−CLOSURE(δ(q, a))

endfor
for each q ∈ Q \ {q0} do

for each a ∈ A do
δ′(q, a) := ε−CLOSURE(δ(q, a))

endfor
endfor
if S ∩ F 6= ∅ then

F ′ := F ∪ {q0}
else

F ′ := F
endif

E [i] =









e0

e1
...

e|Q|−1









(8)

where bit ej = 1, if qj ∈ ε−CLOSURE({qi}), or ej = 0 otherwise.
This implementation is used in Algorithm 6.7, where ε−CLOSURE(S) is

computed in each step of the simulation. The time and space complexities
are asymptotically same as in Algorithm 6.3, therefore Theorem 6.4 holds
for all NFAs (with as well as without ε-transitions).

Lemma 6.8
Let NFA M = (Q, A, δ, q0, F ) is implemented by bit-vectors as shown in the

previous subsection. Then Algorithm 6.6 runs in time O(|A||Q|2d |Q|
w
e) and

space O(|A||Q|d |Q|
w
e), where w is a length of used computer word in bits.

Proof
Let ε-transitions be implemented by table E as shown above (See Formula 8).

The statement in the first for cycle of Algorithm 6.6 contains the cycle
performed for all states of S (O(|Q|)), in which there is nested another for
cycle performed for all states of δ(q, a) (O(|Q|)).
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Algorithm 6.7 (Simulation of run of NFA with ε-transitions—
bit-vector implementation of basic method)
Input: Transition tables T and E , and set F of final states of NFA,
input text T = t1t2 . . . tn.
Output: Output of run of NFA.
Method:

/∗ only ε−CLOSURE({q0}) is active at the beginning ∗/
S0 := [100 . . . 0] or E [0]
i := 1
while i ≤ n and Si−1 6= [00 . . . 0] do

Si := [00 . . . 0]
for j := 0, 1, . . . |Q| − 1 do

if sj,i−1 = 1 then /∗ qj is active in (i − 1)-th step ∗/
Si := Si or T [j, ti] /∗ evaluate transitions for qj ∗/

endif
endfor
for j := 0, 1, . . . |Q| − 1 do /∗ construct ε−CLOSURE(Si) ∗/

if sj,i = 1 then
Si := Si or E [j]

endif
endfor
for j := 0, 1, . . . |Q| − 1 do

if sj,i = 1 and fj = 1 then /∗ if qj is active final state ∗/
write(information associated with final state qj)

endif
endfor
i := i + 1

endwhile

The statement inside next two nested for cycles (O(|Q|) and O(A)) also
contains a cycle (ε−CLOSURE() for all states of δ(q, a)—O(|Q|)).

Therefore the total time complexity is O(|A||Q|2d |Q|
w
e). The space com-

plexity is given by the size of new copy M ′ of NFA and no other space is
needed. 2

The basic simulation method presented in this section can be used for
any NFA and it runs in time O(n|Q|d |Q|

w
e) and space O(|A||Q|d |Q|

w
e), where

w is a length of used computer word in bits. The other simulation methods
shown below attempt to improve the time and space complexity, but they
cannot be used for general NFA.
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6.2 Dynamic programming

The dynamic programming is a general technique widely used in various
branches of computer science. It was also utilized in the approximate string
matching using the Hamming distance [Mel95] (and [GL89] for detection
of all permutations of pattern with at most k errors in text) and in the
approximate string matching using the Levenshtein distance [WF74, Sel80,
Ukk85, LV88, Mel95].

In this Section we describe how the dynamic programming simulates
the NFAs for the approximate string matching using the Hamming and
Levenshtein distances. In the dynamic programming, the set of active states
is represented by a vector of integer variables.

6.2.1 Algorithm

The dynamic programming for the string and sequence matching computes
matrix D of size (m+1)× (n+1). Each element dj,i, 0 ≤ j ≤ m, 0 < i ≤ n,
usually contains the edit distance between the string ending at i-th position
in text T and the prefix of pattern P of length j.

6.2.2 String matching

6.2.2.1 Exact string matching The dynamic programming for the ex-
act string matching is the same as the dynamic programming for the ap-
proximate string matching using the Hamming distance in which k = 0. See
the paragraph below.

6.2.2.2 Approximate string matching using Hamming distance
In the approximate string matching using the Hamming distance each ele-
ment dj,i, 0 < i ≤ n, 0 ≤ j ≤ m, contains the Hamming distance between
string ti−j+1 . . . ti and string p1 . . . pj . Elements of matrix D are computed
as follows:

dj,0 := j, 0 ≤ j ≤ m
d0,i := 0, 0 ≤ i ≤ n
dj,i := min(if ti = pj then dj−1,i−1,

dj−1,i−1 + 1), 0 < i ≤ n,
0 < j ≤ m

(9)

Formula 9 exactly represents simulation of NFA for approximate string
matching where transition replace is labeled by all symbols of alphabet as
shown in Fig. 6.1. However, we can optimize a little bit the formula and we
get Formula 10.
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Figure 6.1: NFA for the approximate string matching using the Hamming
distance (m = 4, k = 3)

dj,0 := k + 1, 0 < j ≤ m
d0,i := 0, 0 ≤ i ≤ n
dj,i := if ti = pj then dj−1,i−1 else dj−1,i−1 + 1, 0 < i ≤ n,

0 < j ≤ m

(10)

In Formula 10 term dj−1,i−1 represents matching—position i in text T
is increased, position j in pattern P is increased and edit distance d is the
same. Term dj−1,i−1 + 1 represents edit operation replace—position i in
text T is increased, position j in pattern P is increased and edit distance d
is increased. The value of d0,i, 0 ≤ i ≤ n, is set to 0, because the Hamming
distance between two empty strings (the prefix of length 0 of the pattern and
string of length 0 ending at position i) is 0. The value of dj,0, 0 ≤ j ≤ m, is
set to k + 1, where k is the maximum number of allowed errors (maximum
Hamming distance). In such a way it holds dj,i > k, ∀i, j, 0 ≤ i < m,
i < j ≤ m, so all the items not satisfying condition j ≤ i exceed maximum
acceptable value k.

Algorithm 6.9 shows the use of matrix D in the approximate string
matching.

An example of matrix D using Formula 10 for searching for pattern
P = adbbca in text T = adcabcaabadbbca with k = 3 is shown in Table 6.1.

Since we are interested in at most k errors in the found string, each value
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Algorithm 6.9 (Simulation of run of NFA—dynamic program-
ming)
Input: Pattern P = p1p2 . . . pm, input text T = t1t2 . . . tn, maximum
number of errors allowed k, k < m.
Output: Output of run of NFA.
Method:

Compute 0-th column of matrix D
for i := 1, 2, . . . , n do

Compute i-th column of matrix D for input symbol ti
if dm,i ≤ k then

write(‘Pattern P with dm,i errors ends at position i in text T .’)
endif

endfor

D - a d c a b c a a b a d b b c a

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 4 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0
d 4 5 0 2 2 1 2 2 1 1 2 0 2 2 2 2
b 4 5 6 1 3 2 2 3 3 1 2 3 0 2 3 3
b 4 5 6 7 2 3 3 3 4 3 2 3 3 0 3 4
c 4 5 6 6 8 3 3 4 4 5 4 3 4 4 0 4
a 4 4 6 7 6 9 4 3 4 5 5 5 4 5 5 0

Table 6.1: Matrix D for pattern P = adbbca, text T = adcabcaabadbbca,
and k = 3 using the Hamming distance

of di,j greater than k + 1 can be replaced by value k + 1 and represents that
the value is greater than k. It is useful in some implementations, since we
need just dlog2(k + 2)e bits for each number.

Theorem 6.10
The dynamic programming algorithm described by Formula 10 simulates a
run of the NFA for the approximate string matching using the Hamming
distance.

Proof
In the dynamic programming for the approximate string matching using the
Hamming distance there is for each depth j, 0 < j ≤ m, of NFA in each
step i of the run one integer variable dj,i that contains the Hamming distance
between string p1 . . . pj and the string in text T ending at position i. Since
for each value l of the Hamming distance there is one level of states in NFA,
integer variable dj,i = l and it contains level number of the topmost active
state in j-th depth of NFA. Each value of di,j greater than k + 1 can be
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Figure 6.2: Dynamic programming uses for each depth of states of NFA one
integer variable d

replaced by value k + 1 and it represents that there is no active state in
j-th depth of NFA in i-th step of the run. So in dynamic programming, the
set of active states from Section 6.1 is implemented by the vector of integer
variables—each variable for one depth of NFA.

In Formula 10 term dj−1,i−1 represents matching transition—active state
is moved from depth j − 1 to the next depth j within level dj−1,i−1 and
symbol ti is read from the input. Term dj−1,i−1 + 1 represents transition
replace—active state is moved from depth j − 1 and level dj−1,i−1 to the
next depth j and the next level dj−1,i−1 + 1 and symbol ti is read from the
input.

If the condition in if statement of Formula 10 holds (i.e., pj is read),
only one value (dj−1,i−1) is considered.

The self loop of the initial state is represented by setting d0,i := 0, 0 ≤
i ≤ n.

Therefore all transitions (paths) of the NFA are considered.
At the beginning, only the initial state is active, therefore d0,0 = 0 and

dj,0 = k + 1, 0 < j ≤ m.
If dm,i ≤ k, then we report that pattern P was found with dm,i errors

(the final state of level dm,i is active) ending at position i. 2

6.2.2.3 Approximate string matching using Levenshtein distance
In the approximate string matching using the Levenshtein distance [Sel80,
Ukk85] each element dj,i, 0 < i ≤ n, 0 ≤ j ≤ m, contains the Levenshtein
distance between the string ending at position i in T and string p1 . . . pj .
Since the Levenshtein distance compares two strings of not necessary equal
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length, element dj,i is always valid (symbols can be deleted from the pattern).
It also implies that we can directly determine only the ending position of
the found string in text.

P:

. . .. . . . . .

t
i-m+ +k1

T:

t
i-m+1

t
i-m+ -k1

t
i

k

t
n

k

m-k

. . . . . .

m+k

m

Figure 6.3: Range of beginnings of occurrence of P ending at position i in T

If the found string ends at position i, it can start in front of position
i − m + 1 (at most k symbols inserted) or behind position i − m + 1 (at
most k symbols deleted)—the beginning of occurrence of pattern P can be
located at position i − m + 1 + l, −k ≤ l ≤ k, as shown in Figure 6.3.

P:

. . .. . .

t
n-m+k

T:

t
m-k+1

t
m-k

t
n

m-k

. . .

m-k

t
n-m+k+1

Figure 6.4: The first and the last possible occurrence of P in T

It also implies that the first possible occurrence of the pattern in the text
can end at position m−k and the last occurrence can start at n−m+k +1
as shown in Figure 6.4.

Elements of matrix D are computed as follows:

dj,0 := j, 0 ≤ j ≤ m
d0,i := 0, 0 ≤ i ≤ n
dj,i := min(if ti = pj then dj−1,i−1

else dj−1,i−1 + 1,
if j < m then dj,i−1 + 1,
dj−1,i + 1), 0 < i ≤ n,

0 < j ≤ m

(11)
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Formula 11 exactly represents simulation of NFA for approximate string
matching where transitions replace and insert are labeled by all symbols of
alphabet as shown in Fig. 6.5.
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Figure 6.5: NFA for the approximate string matching using the Levenshtein
distance (m = 4, k = 3)

In Formula 11 term dj−1,i−1 represents matching and term dj−1,i−1 + 1
represents edit operation replace. Term dj,i−1 + 1 represents edit opera-
tion insert—position i in text T is increased, position j in pattern P is
not increased and edit distance d is increased. Term dj−1,i + 1 represents
edit operation delete—position i in text T is not increased, position j in
pattern P is increased and edit distance d is increased.

Pattern P is found with at most k differences ending at position i if
dm,i ≤ k, 1 ≤ i ≤ n. The maximum number of differences of the found
string is DL(P, ti−l+1 . . . ti) = dm,i, m − k ≤ l ≤ m + k, l < i.

An example of matrix D for searching for pattern P = adbbca in text
T = adcabcaabadbbca is shown in Table 6.2.

Theorem 6.11
The dynamic programming algorithm described by Formula 11 simulates a
run of the NFA for the approximate string matching using the Levenshtein
distance.

Proof
The proof is similar to the proof of Theorem 6.10. We only have to show
the simulation of edit operations insert and delete.
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D - a d c a b c a a b a d b b c a

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0
d 2 1 0 1 1 1 2 1 1 1 1 0 1 2 2 1
b 3 2 1 1 2 1 2 2 2 1 2 1 0 1 2 2
b 4 3 2 2 2 2 2 3 3 2 2 2 1 0 1 2
c 5 4 3 2 3 3 2 3 4 3 3 3 2 1 0 1
a 6 5 4 3 2 4 3 2 3 4 3 4 3 2 1 0

Table 6.2: Matrix D for pattern P = adbbca and text T = adcabcaabadbbca
using the Levenshtein distance

In Formula 11 term dj−1,i−1 represents matching transition and term
dj−1,i−1+1 represents transition replace. Term dj,i−1+1 represents transition
insert—active state is moved from level dj,i−1 to the next level dj,i−1 + 1
within depth j and symbol ti is read from the input. Term if j < m then
provides that insert transition is not considered in depth m, where the NFA
has no insert transition. Term dj−1,i +1 represents transition delete—active
state is moved from depth j − 1 and level dj−1,i to the next depth j and the
next level dj−1,i + 1 and no symbol is read from the input.

Since replace and insert transitions are labeled by all symbols of input
alphabet A, values dj−1,i−1 + 1 and dj,i−1 + 1 are considered even if ti = pj .
The contribution of the matching transition (i.e., dj−1,i−1) is considered only
if ti = pj .

Thus all transitions of the NFA are considered. 2

In [GP89] they compress the matrix D. They use the property that
(dj,i −dj−1,i−1) ∈ {0, 1}—the number of errors of an occurrence can only be
nondecreasing when reading symbols of that occurrence. Using this property
they shorten each column of the matrix D to k + 1 entries. They represent
the matrix D diagonal by diagonal in such a way that each line j, 0 ≤ j ≤ k,
of that new matrix contains the number of last entry of diagonal of matrix D
containing j errors.

6.2.2.4 Approximate string matching using generalized Leven-
shtein distance For the approximate string matching using the general-
ized Levenshtein distance we modify Formula 11 for the Levenshtein distance
such that we have added the term for edit transition transpose. The resulting
formula is as follows:
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dj,0 := j, 0 ≤ j ≤ m
d0,i := 0, 0 ≤ i ≤ n
dj,i := min(if ti = pj then dj−1,i−1

else dj−1,i−1 + 1,
if j < m then dj,i−1 + 1,
dj−1,i + 1,
if i > 1 and j > 1

and ti−1 = pj and ti = pj−1

then dj−2,i−2 + 1), 0 < i ≤ n,
0 < j ≤ m

(12)

Formula 12 exactly represents simulation of NFA for approximate string
matching shown in Fig. 6.6.
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Figure 6.6: NFA for the approximate string matching using the generalized
Levenshtein distance (m = 4, k = 3)

In Formula 12 term dj−1,i−1 represents matching, term dj−1,i−1+1 repre-
sents edit operation replace, term dj,i−1 +1 represents edit operation insert,
term dj−1,i + 1 represents edit operation delete, and term dj−2,i−2 + 1 rep-
resents edit operation transpose—position i in text T is increased by 2,
position j in pattern P is increased by 2 and edit distance d is increased by
1.

An example of matrix D for searching for pattern P = adbbca in text
T = adbcbaabadbbca is shown in Table 6.3.
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D - a d b c b a a b a d b b c a

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0
d 2 1 0 1 2 2 1 1 1 1 0 1 2 2 1
b 3 2 1 0 1 2 2 2 1 2 1 0 1 2 2
b 4 3 2 1 1 1 2 3 2 2 2 1 0 1 2
c 5 4 3 2 1 1 2 3 3 3 3 2 1 0 1
a 6 5 4 3 2 2 1 2 4 3 4 3 2 1 0

Table 6.3: Matrix D for pattern P = adbbca and text T = adbcbaabadbbca
using the generalized Levenshtein distance

Theorem 6.12
The dynamic programming algorithm described by Formula 12 simulates a
run of the NFA for the approximate string matching using the generalized
Levenshtein distance.

Proof
The proof is similar to the proof of Theorem 6.11. We only have to show
the simulation of edit operation transpose.

In Formula 12 term dj−1,i−1 represents matching transition, term
dj−1,i−1 + 1 represents transition replace, term dj,i−1 + 1 represents tran-
sition insert, and term dj−1,i + 1 represents transition delete.

Term dj−2,i−2 + 1 represents transition transpose—active state is moved
from depth j − 2 and level dj−2,i−2 to depth j and level dj−2,i−2 + 1 and
symbols ti−1 and ti are read from the input. When representing transition
transpose we need not new integer variable for state on transition transpose
in NFA. 2

6.2.3 Time and space complexity

In the algorithms presented in this subsection, matrix D of size mostly
(m + 1) × (n + 1) is computed, but in practice one needs just only one
(or two for the generalized Levenshtein distance) previous columns di−1 (or
di−1, di−2 respectively) in order to compute column di. In the columns we do
not need to store 0-th item, since this item contains always the same value
(except step 0). Therefore the space complexity of this matrix is O(m).

All operations shown in formulae for computing each element of matrix D
can be performed in constant time, therefore the time complexity of the
simulation of run of NFAs for the approximate string and sequence matching
is O(mn).

In [GP89] they compacted the matrix D for the approximate string
matching using the Levenshtein distance exploiting the property that dj,i −
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dj−1,i−1 ∈ {0, 1}, 0 < i ≤ n, 0 < j ≤ m. For each diagonal of the matrix D
they store only the positions, in which the value increases.

Let us remark that the size of the input alphabet can be reduced to
reduced alphabet A′, A′ ⊆ A, |A′| ≤ m+1 (A′ contains all the symbols used
in pattern P and one special symbol for all the symbols not contained in
P ). So A is bounded by a length m of pattern P .

The simulation of NFA using dynamic programming has time complexity
O(mn) and space complexity O(m).

6.3 Bit parallelism

Bit parallelism is a method that uses bit vectors and benefits from the feature
that the same bitwise operations (or, and, add, . . . etc.) over groups of bits
(or over individual bits) can be performed at once in parallel over the whole
bit vector. The representatives of bit parallelism are Shift-Or, Shift-And,
and Shift-Add algorithms.

Bit parallelism was used for the exact string matching (Shift-And in
[Döm64]), the multiple exact string matching (Shift-And in [Shy76]), the
approximate string matching using the Hamming distance (Shift-Add in
[BYG92]), the approximate string matching using the Levenshtein distance
(Shift-Or in [BYG92] and Shift-And in [WM92]) and for the generalized
pattern matching (Shift-Or in [Abr87]), where the pattern consists not only
of symbols but also of sets of symbols.

In this Section we will discuss only Shift-Or and Shift-Add algorithms.
Shift-And algorithm is the same as Shift-Or algorithm but the meaning of
0 and 1 is exchanged as well as the use of bitwise operations and and or is
exchanged.

6.3.1 Algorithm

The Shift-Or algorithm uses matrices Rl, 0 ≤ l ≤ k of size m × (n + 1) and
mask matrix D of size m × |A|. Each element rl

j,i, 0 < j ≤ m, 0 ≤ i ≤ n,
contains 0, if the edit distance between string p1 . . . pj and string ending at
position i in text T is ≤ l, or 1, otherwise. Each element dj,x, 0 < j ≤ m,
x ∈ A, contains 0, if pj = x, or 1, otherwise. The matrices are implemented
as tables of bit vectors as follows:

Rl
i =









rl
1,i

rl
2,i
...

rl
m,i









and D[x] =









d1,x

d2,x

...
dm,x









, 0 ≤ i ≤ n, 0 ≤ l ≤ k, x ∈ A. (13)
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6.3.2 String matching

6.3.2.1 Exact string matching In the exact string matching, vec-
tors R0

i , 0 ≤ i ≤ n, are computed as follows [BYG92]:

r0
j,0 := 1, 0 < j ≤ m

R0
i := shl(R0

i−1) or D[ti], 0 < i ≤ n (14)

In Formula 14 operation shl() is the bitwise operation left shift that
inserts 0 at the beginning of vector and operation or is the bitwise operation
or. Term shl(R0

i−1) or D[ti] represents matching—position i in text T is
increased, position in pattern P is increased by operation shl(), and the
positions corresponding to the input symbol ti are selected by term or D[ti].
Pattern P is found at position ti−m+1 . . . ti if r0

m,i = 0, 0 < i ≤ n.
An example of mask matrix D for pattern P = adbbca is shown in

Table 6.4 and an example of matrix R0 for exact searching for pattern P =
adbbca in text T = adcabcaabadbbca is shown in Table 6.5.

D a b c d A \ {a, b, c, d}
a 0 1 1 1 1
d 1 1 1 0 1
b 1 0 1 1 1
b 1 0 1 1 1
c 1 1 0 1 1
a 0 1 1 1 1

Table 6.4: Matrix D for pattern P = adbbca

R0 - a d c a b c a a b a d b b c a

a 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0
d 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 6.5: Matrix R0 for the exact string matching (for pattern P = adbbca
and text T = adcabcaabadbbca)

Theorem 6.13
Shift-Or algorithm described by Formula 14 simulates a run of the NFA for
the exact string matching.
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Proof
In Shift-Or algorithm for the exact string matching there is one bit vector
R0

i , 0 ≤ i ≤ n, which represents the set of active states of NFA. In the vector,
0 represents active state and 1 represents non-active state of the simulated
NFA. So in Shift-Or algorithm, the set of active states from Section 6.1 is
implemented by bit vector.

In Formula 14, term shl(R0
i−1) or D[ti] represents matching transition—

each active state is moved to the next position in the right2 in the same level.
All active states are moved at once and only the transitions corresponding
to read symbol ti are selected by mask vector D[ti], which changes 0 to 1
in each such state that its incoming matching transition is not labeled by
ti. The initial state of NFA is not in vector R0 and it is implemented by
inserting 0 at the beginning of the vector in operation shl()—initial state is
always active because of its self loop.

At the beginning only the initial state is active therefore R0
0 = 1(m).

If r0
m,i = 0, 0 < i ≤ n, then we report that the final state is active and

thus the pattern is found ending at position i in text T . 2

6.3.2.2 Approximate string matching using Hamming distance
In the approximate string matching using the Hamming distance, vectors Rl

i,
0 ≤ l ≤ k, 0 ≤ i ≤ n, are computed as follows:

rl
j,0 := 1, 0 < j ≤ m, 0 ≤ l ≤ k

R0
i := shl(R0

i−1) or D[ti], 0 < i ≤ n

Rl
i := (shl(Rl

i−1) or D[ti]) and shl(Rl−1
i−1), 0 < i ≤ n, 0 < l ≤ k

(15)

In Formula 15 operation and is bitwise operation and. Term
shl(Rl

i−1) or D[ti] represents matching and term shl(Rl−1
i−1) represents edit

operation replace—position i in text T is increased, position in pattern P is
increased, and edit distance l is increased. Pattern P is found with at most
k mismatches at position ti−m+1 . . . ti if rk

m,i = 0, 0 < i ≤ n. The maximum
number of mismatches of the found string is DH(P, ti−m+1 . . . ti) = l, where
l is the minimum number such that rl

m,i = 0.

An example of matrices Rl for searching for pattern P = adbbca in text
T = adcabcaabadbbca with at most k = 3 mismatches is shown in Table 6.6.

2In the Shift-Or algorithm, transitions from states in our figures are implemented by
operation shl() (left shift) because of easier implementation in the case when number of
states of NFA is greater than length of computer word and vectors R have to be divided
into two or more bit vectors.
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R0 - a d c a b c a a b a d b b c a

a 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0
d 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

R1 - a d c a b c a a b a d b b c a

a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1
b 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

R2 - a d c a b c a a b a d b b c a

a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 1
b 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

R3 - a d c a b c a a b a d b b c a

a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1
c 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1
a 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

Table 6.6: Matrices Rl for the approximate string matching using the Ham-
ming distance (P = adbbca, k = 3, and T = adcabcaabadbbca)

214



8

11109

2 3 4

5 6 7

A

A

A

A A

A

A

A

p
2

p
2

p
3

p
3

p
3

p
4

p
4

p
4

0 1

R
2

p
1

R
0

R
1

Figure 6.7: Bit parallelism uses one bit vector R for each level of states
of NFA

Theorem 6.14
Shift-Or algorithm described by Formula 15 simulates a run of the NFA for
the approximate string matching using the Hamming distance.

Proof
In Shift-Or algorithm for the approximate string matching there is for each
level l, 0 ≤ l ≤ k, of states of NFA one bit vector Rl

i, 0 ≤ i ≤ n. So in
Shift-Or algorithm, the set of active states from Chapter 6.1 is implemented
by bit vectors—one vector for each level of states.

In Formula 15 term shl(Rl
i−1) or D[ti] represents matching transition

(see the proof of Theorem 6.13). Term shl(Rl−1
i−1) represents transition re-

place—each active state of level l − 1 is moved to the next depth in level l.
The selfloop of the initial state is implemented by inserting 0 at the

beginning of vector R0 within operation shl(). 0 is inserted also at the
beginning of each vector Rl, 0 < l ≤ k. Since the first state of l-th level is
connected with the initial state by the sequence of l transitions labeled by A,
each of these first states is active from l-th step of the simulation respectively
till the end. The impact of 0s inserted at the beginning of vectors Rl does
not appear before l-th step, therefore also vectors Rl simulate correctly the
NFA.

If rl
m,i = 0, 0 < i ≤ n, the final state of l-th level is active and we can

report that the pattern is found with at most l errors ending at position i
in the text. In fact, we report just only the minimum l in each step. 2

6.3.2.3 Approximate string matching using Levenshtein distance
In the approximate string matching using the Levenshtein distance, vec-
tors Rl

i, 0 ≤ l ≤ k, 0 ≤ i ≤ n, are computed by Formula 16. To prevent
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insert transitions leading into final states we use auxiliary vector V defined
by Formula 17.

rl
j,0 := 0, 0 < j ≤ l, 0 < l ≤ k

rl
j,0 := 1, l < j ≤ m, 0 ≤ l ≤ k

R0
i := shl(R0

i−1) or D[ti], 0 < i ≤ n
Rl

i := (shl(Rl
i−1) or D[ti])

and shl(Rl−1
i−1 and Rl−1

i )

and (Rl−1
i−1 or V ), 0 < i ≤ n, 0 < l ≤ k

(16)

V =









v1

v2
...

vm









, where vm = 1 and vj = 0, ∀j, 1 ≤ j < m. (17)

In Formula 16 term shl(Rl
i−1) or D[ti] represents matching, term

shl(Rl−1
i−1) represents edit operation replace, term shl(Rl−1

i ) represents edit
operation delete—position in pattern P is increased, position in text T is
not increased, and edit distance l is increased. Term Rl−1

i−1 represents edit
operation insert—position in pattern P is not increased, position in text T
is increased, and edit distance l is increased. Term or V provides that no
insert transition leads from any final state.

Pattern P is found with at most k differences ending at position i if
rk
m,i = 0, 0 < i ≤ n. The maximum number of differences of the found

string is l, where l is the minimum number such that rl
m,i = 0.

An example of matrices Rl for searching for pattern P = adbbca in text
T = adcabcaabadbbca with at most k = 3 errors is shown in Table 6.7.

Theorem 6.15
Shift-Or algorithm described by Formula 16 simulates a run of the NFA for
the approximate string matching using the Levenshtein distance.

Proof
The proof is similar to the proof of Theorem 6.14, we only have to add the
simulation of insert and delete transitions.

In Formula 16 term shl(Rl
i−1) or D[ti] represents matching transition

and term shl(Rl−1
i−1) represents transition replace (see the proof of The-

orem 6.14). Term Rl−1
i−1 represents transition insert–each active state of

level l − 1 is moved into level l within the same depth. Term shl(Rl−1
i )

represents transition delete–each active state of level l − 1 is moved to the
next depth in level l while no symbol is read from the input (position i in
text T is the same).
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R0 - a d c a b c a a b a d b b c a

a 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0
d 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

R1 - a d c a b c a a b a d b b c a

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
b 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

R2 - a d c a b c a a b a d b b c a

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
c 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0
a 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0

R3 - a d c a b c a a b a d b b c a

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
a 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0

Table 6.7: Matrices Rl for the approximate string matching using the Lev-
enshtein distance (P = adbbca, k = 3, and T = adcabcaabadbbca)
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At the beginning, only the initial state q0 and all states located on the
same ε-diagonal like q0 are active (i.e., all states of ε−CLOSURE({q0}) are
active), therefore l-th bit of vector Rl, 0 < l ≤ k, is 0 in the initial setting of
the vector. The states in front of l-th bit in vector Rl can also be 0, since they
have no impact (l-th bit is always 0, since all states of ε−CLOSURE({q0})
are always active due to the selfloop of q0). Therefore the bits behind l-th
bit are set in the initial setting while the initial setting of the bits in front
of l-th bit can be arbitrary.

In the case of the Levenshtein distance, the situation with inserting 0s
at the beginning of vectors Rl, 0 < l ≤ k, during shl() operation is slightly
different. Since all the states of the ε-diagonal leading from q0 are always
active, there is no impact of these 0 insertions. 2

6.3.2.4 Approximate string matching using generalized Leven-
shtein distance In order to construct Shift-Or algorithm for the approx-
imate string matching using the generalized Levenshtein distance [Hol97],
we modify Formula 16 for the approximate string matching using the Lev-
enshtein distance such that we add the term representing edit operation
transpose. Since NFA for the approximate string matching using the gener-
alized Levenshtein distance has on each transition transpose one auxiliary
state, (see Figure 6.6) we have to introduce new bit vectors S l

i, 0 ≤ l < k,
0 ≤ i < n, as follows:

Sl
i =









sl
1,i

sl
2,i
...

sl
m,i









, 0 ≤ l < k, 0 ≤ i < n. (18)

Vectors Rl
i, 0 ≤ l ≤ k, 0 ≤ i ≤ n, and Sl

i, 0 ≤ l < k, 0 ≤ i < n, are then
computed as follows:
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rl
j,0 := 0, 0 < j ≤ l,

0 < l ≤ k
rl
j,0 := 1, l < j ≤ m,

0 ≤ l ≤ k
R0

i := shl(R0
i−1) or D[ti], 0 < i ≤ n

Rl
i := (shl(Rl

i−1) or D[ti])

and shl(Rl−1
i−1 and Rl−1

i and (Sl−1
i−1 or D[ti]))

and (Rl−1
i−1 or V ), 0 < i ≤ n,

0 < l ≤ k
sl
j,0 := 1, 0 < j ≤ m,

0 ≤ l < k
Sl

i := shl(Rl
i−1) or shr(D[ti]), 0 < i < n,

0 ≤ l < k

(19)

Term shl(Rl
i−1) or D[ti] represents matching, term shl(Rl−1

i−1) represents

edit operation replace, term shl(Rl−1
i ) represents edit operation delete, and

term Rl−1
i−1 represents edit operation insert.

Term (Sl−1
i−1 or D[ti]) represents edit operation transpose–position in pat-

tern P is increased by 2, position in text T is also increased by 2 but edit
distance is increased just by 1. The increase of both positions by 2 is pro-
vided using vector Sl

i.
Pattern P is found with at most k differences ending at position i if

rk
m,i = 0, 0 < i ≤ n. The maximum number of differences of the found

string is l, where l is the minimum number such that rl
m,i = 0.

An example of matrices Rl and Sl for searching for pattern P = adbbca
in text T = adbcbaabadbbca with at most k = 3 errors is shown in Table 6.8.

Theorem 6.16
Shift-Or algorithm described by Formula 19 simulates a run of the NFA for
the approximate string matching using the generalized Levenshtein distance.

Proof
In Formula 19 term shl(Rl

i−1) or D[ti] represents matching transition and

term shl(Rl−1
i−1) represents transition replace, term Rl−1

i−1 represents transition

insert, and term shl(Rl−1
i ) represents transition delete (see the proof of

Theorem 6.15).
Term (Sl−1

i−1 or D[ti]) represents edit operation transpose. In this transi-
tion all states of level l are moved to the next position in the right (shl(Rl

i−1))
of auxiliary level l′. Then only the transitions corresponding to input sym-
bol ti have to be selected. It is provided by mask vector D[ti]. Since each
transition leading to state of depth j is labeled by symbol pj+1, we have
to shift the mask vector in opposite direction than in which vector Rl

i−1
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R0 - a d b c b a a b a d b b c a
a 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0
d 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
b 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

S0 a 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
d 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
b 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1
b 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R1 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0
b 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1
b 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1
c 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0
a 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0

S1 a 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
d 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1
b 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1
b 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1
c 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R2 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
c 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
a 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

S2 a 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
d 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1
b 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1
b 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1
c 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R3 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
a 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0

Table 6.8: Matrices Rl and Sl for the approximate string matching us-
ing the generalized Levenshtein distance (P = adbbca, k = 3, and T =
adbcbaabadbbca)
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is shifted (shr(D[ti])). All states of auxiliary level l′ are stored in vector
Sl

i := shl(Rl
i−1) or shr(D[ti]), 0 < i < n, 0 ≤ l < k.

In next step i + 1 of the computation all states of auxiliary level l′ are
moved to the next position in the right of level l+1 and only the transitions
corresponding to input symbol ti+1 are selected by mask vector D[ti+1].
Since each transition leading to state of depth j +1 is labeled by symbol pj ,
we have to shift mask vector D[ti+1] in the same direction in which vector S l

i

is shifted. Therefore we insert term shl(S l−1
i−1 or D[ti]) in Formula 16 as well

as we insert the formula for computation of vector S l
i in Formula 16. 2

6.3.3 Other methods of bit parallelism

In the previous Sections we described only Shift-Or algorithm. If we ex-
change the meaning of 0s and 1s and the usage of ands and ors in the
formulae presented, we get Shift-And algorithm [WM92].

Other method of bit parallelism is Shift-Add algorithm [BYG92]. In
this algorithm we have one bit-vector, which contains m blocks of bits of
size b = dlog2 me (one block for each depth of NFA for the approximate
string matching using the Hamming distance). The formula for computing
such vector then consists of shifting the vector by b bits and adding with the
mask vector for current input symbol t. This vector contains 1 in (b.j)-th
position, if t 6= pj+1, or 0, elsewhere. This algorithm runs in time O(dmb

w
en).

We can also use Shift-Add algorithm for the weighted approximate string
matching using the Hamming distance. In such case each block of bits in
mask vector contains binary representation of weight of the corresponding
edit operation replace. We have also to enlarge the length of block of bits
to prevent a carry to the next block of bits. Note, that Shift-Add algorithm
can also be considered as an implementation of dynamic programming.

In [BYN96a] they improve the approximate string matching using the
Levenshtein distance in such a way, that they search for any of the first
(k + 1) symbols of the pattern. If they find any of them, they start NFA
simulation and if the simulation then reaches the initial situation (i.e., only
the states located in ε-diagonal leading from the initial state are active),
they again start searching for any of the first (k +1) symbols of the pattern,
which is faster than the simulation.

Shift-Or algorithm can also be used for the exact string matching with
don’t care symbols, classes of symbols, and complements as shown in
[BYG92]. In [WM92] they extend this method to unlimited wild cards and
apply the above features for the approximate string matching. They also use
bit parallelism for regular expressions, for the weighted approximate string
matching, for set of patterns, and for the situations, when errors are not
allowed in some parts of pattern (another mask vector is used).

All the previous cases have good time complexity if the NFA simulation
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fits in one computer word (each vector in one computer word). If NFA is
larger, it is necessary to partition NFA or pattern as described in [BYN96b,
BYN96a, BYN97, BYN99, NBY98, WM92].

Shift-Or algorithm can also be used for multiple pattern matching
[BYG92, BYN97] or for the distributed pattern matching [HIMM99].

6.3.4 Time and space complexity

The time and space analysis of the Shift-Or algorithm is as follows [WM92].
Denote the computer word size by w. The preprocessing requires O(m|A|)
time plus O(kdm

w
e) to initialize the k vectors. The running time is O(nkdm

w
e).

The space complexity is O(|A|dm
w
e) for mask matrix D plus O(kdm

w
e) for

the k vectors.
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