Computed tomography (CT)
Part 2
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1Using images from J. Hozman, J. Fessler, S. Webb, M. Slaney, A. Kak and

others
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Analytical methods
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Reconstruction methods

» Backprojection (not an inverse)

» Fourier reconstruction (slow)

> Filtered backprojection

» Algebraic reconstruction (iterative)
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Forward projection

sinogram

P =[xy
(.y)eL(rv)
r=xcosy+ysinyp

P,(r) = /to(x,y)dt

X = rcosp — tsingp

y=rsinp+4tcosp

Variable correspondence: L Lng)

E=r, 0=t E=x, n=y
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Backprojection

laminogram

po(x.9) = [ Po(r)dg
0

r=xcosy+ysinp 5/49



Backprojection

laminogram

Hb(X’)/):/Pgo(r)d(P
0

r=xcosy+ysinp

for uniformly discretized ¢
pi=m(i—1)/n,, i=1,...,n,

Ny
T .
po(xy) = —= 3 Po(xcospi + ysin )
¥ i=1
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Backprojection

..is not an inverse of the Radon transform, leads to star artifacts

model 8 funkee rekoustruovany
protil & funkee

/
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projekee !:zlm:z ‘han pmekee
nrhfnk'm

laminogram i, — the original object p blurred, convolved by 1/|r|
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Backprojection

...is not an inverse of the Radon transform, leads to star artifacts

laminogram pp, — the original object p blurred, convolved by 1/|r|
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Central slice theorem

(Projection Theorem, Véta o centrdlnim fezu)

Py(r) = /,u(rcosgp — tsing, rsinp + tcos p)dt
Fourier transform of the Radon transform by r:
FAR N = F (P} = Pol) = [ Pulr)e 7ar
= // p(rcosg — tsingp, rsinp + tcosp)e 2™ drdt
Substitution (r, t) — (x,y):

/Sgo(w) = /M(X’y)e—%rjw(xcos p+ysin w)dXdy

7/49



Central slice theorem

lSLp(w) — /M(X’y)e—Zﬂjw(xcosgo+ysinLp)dxdy

Denote u =wcosp v =wsiny

N

Pu,v) = / p(x, y)e MUt dxdy

and therefore
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Central slice theorem

Pu,v) = F {u(x,y)}
Po(w) = F {u(x, y)} (weos ¢, wsin @) = fi(w cos p, wsin )

Slice of the 2D Fourier transform of the image u at angle ¢ is the 1D
Fourier transform of the projection P, of the same image .
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Fourier reconstruction

8/49



Fourier reconstruction (2)
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» 1D FT I:"q,(w) of each projection P, (r)
> Interpolate FT from polar to Cartesian grid (to get P(u,v))
> Inverse 2D FT P(u, v) to get object 1

Cons: computational complexity, interpolation artifacts
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Inverse Radon transform

From the Fourier slice theorem:

P(u,v) = Z {u(x,y)}

oo o0

wix,y) =F" {P(U v / / u, V)e2ﬂj(xu+yv)dudv

— o0 —00

Polar coordinates u = wcosp, v =wsiny:

e e

Xy // Pcp 271'Jw(xcoscp+ysm<,p)|w|dwd<p

0 —oo

where |w| is the Jacobian (determinant) of (w, ¢) — (u, v)

du  Ou
?,;5 %“,’|—}wsin2¢wcos2gp|—|w|
Oy ow
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Inverse Radon transform

T o0
// 'D(,p 27TJUJ X cos p+y sin @) \w|dwd<,0
0 —o©

can be written as

pu(x,y) = / Qu(x cos + ysinp)dyp
—_——
0

r

Qulr) = [ Pole)e?™"uldw
where Q,(r) is a modified projection
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Inverse Radon transform

pxy) = [ Qe

0
Qu(r) = / B (w)e?™ e || dw

Qp(r) = FH{|wlPo(w) } = Z 7 {|wl}  Py(r)
defining the exact inverse Radon transform

Pu(r) = Z[u(x,y)]
p(x,y) = Z[Py(r)]
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Filtered backprojection

Filtrovana zpétna projekce

> Filter all projections P,(r) for all ¢, get modified projections
Q<p(r)

» Backproject modified projections and sum

ulx.y) = [ Qg
0

Qp(r) = h(t) * Py(r) = F 71 {H(w)} * P(r)
H(w) = |wl|

» No Fourier transform involved.
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Practical implementation of filtered backprojection

» Problem: Ideal filter H(w) = |w| amplifies noise
» Solution: Make P,(w) frequency limited.
Ramakrishnan-Lakshiminaryanan — Ram-Lak filter:

if <Q
Hey = {141 1Tl <
0 otherwise
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Practical implementation of filtered backprojection

» Problem: Ideal filter H(w) = |w| amplifies noise
» Solution: Make P,(w) frequency limited.
Ramakrishnan-Lakshiminaryanan — Ram-Lak filter:

if <Q
ey = {141 Tl <
0 otherwise

» Ram-Lak filter causes artefacts (Gibbs). Many solutions

(Hamming filter, Shepp-Logan filter). Tradeoff between SNR

and resolution.

Hiw)
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Bandlimited ramp filter h

in space domain

Impulse response of
T

bandiimited ramp filter
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Filtered backprojection example

0
Image f(,y)
64
|
R
64
-4, 6

Ramp filtered sinogram
ﬁw(")

179
64

Sinogram
Pe(r)

64

Top sinogram row

40

& polr)

asaans

Laminogram

64

Jolz,y)

Top row of filtered sinogram

64

64

FBP image
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Filtered backprojection

|I‘| l I“““\ |
2 .

original image, 1,3, 4, 16, 32, a 64 projections
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Fan-beam reconstruction

» Rays not parallel, not a Radon transform.

» Rebinning

image courtesy of Gillian Henderson
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Fan-beam reconstruction

» Rays not parallel, not a Radon transform.

6, 63 6

» Rebinning

image courtesy of Jonathan Mamou and Yao Wang
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Fan-beam reconstruction (2)

» Rays not parallel, not a Radon transform.
» Exact algorithms:
» Rebinning
> filtered backprojection (Katsevich) — computational
complexity, increased dose.
» Approximate algorithms: Modified filtered backprojection
(quadratic cosine correction, cos ). Feldkamp-Davis-Kress
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Fan-beam reconstruction (2)

» Rays not parallel, not a Radon transform.
» Exact algorithms:
» Rebinning
> filtered backprojection (Katsevich) — computational
complexity, increased dose.

» Approximate algorithms: Modified filtered backprojection
(quadratic cosine correction, cos ). Feldkamp-Davis-Kress

» Algebraic reconstruction. Best quality but slow.
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Algebraic reconstruction
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Algebraic reconstruction

» Setup and solve a (large) system of equations describing the
measurements.

» Mostly (but not necessarily) linear
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Algebraic reconstruction

» Setup and solve a (large) system of equations describing the
measurements.

» Mostly (but not necessarily) linear
Advantages over FBP

» Better modeling of the physics — attenuation, scattering,
limited resolution, beam geometry, sensor noise, beam
hardening. ..

> Flexible, better handling of limited acquisition — restricted
region, restricted angles, few measurements required

» Can use a statistical image model (regularization)
» Higher quality, less apparent artifacts

Disadvantage — speed
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FBP versus ART

few projections

Phantom FBP (iradon) ART w/ box constraints

y >

Courtesy of Technical University of Denmark
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FBP versus ART
missing angles

Phantom Data = sinogram

50 100 150

ART w/ box constr. Filtered back projection

Courtesy of Technical University of Denmark
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Linear reconstruction
Image matrix
B | Mo
I
|
i Hy
: My
|
|
» Discretize continuous p(x) to pixels y;
M
p(x) = Z pii(x)
i=1
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Linear reconstruction
> Discretize continuous p(x) to pixels y;
M
p(x) =Y pitbi(x)
i=1

> Basis functions (piecewise constant, P0)

1,if x in pixel i

Yilx) = {0, otherwise
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Linear reconstruction
> Discretize continuous p(x) to pixels y;

p(x) = Z piti(x)

> Basis functions (piecewise constant, P0)

) = {Lifx in pixel i

0, otherwise

» Radon transform

M
Po(r) = 2] (0, r) = wiZ[vi] (e, r)
i=1
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Linear reconstruction (2)
» For all projections p; = P,.(r;), j=1,...,N

}:m (] (e 17)
—_— ——

wij

M
pj = Z Wijlbi
i=1

p=Wpn

where 11; are pixel values, p; are the projections.

Knowing p, solve for p.
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Linear reconstruction (2)
» For all projections p; = P,.(r;), j=1,...,N

pj = }:m i) (), 17)
—_———

wij

M
pj = Z Wijlbi
i=1

p=Wpn

where 11; are pixel values, p; are the projections.

Knowing p, solve for p.

» Linear equation system

> is big (10* ~ 10° unknowns and measurements)
» can be overdetermined
» can be underdetermined
P is sparse
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Weight coefficients

Image matrix

W Mo
—— ]

=
=
K
o
g
£
5
z
&
5
£

+

For line rays — intersection length
Yi(x)d/
24 /49
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Weight coefficients

For line rays — intersection length

W,'J' = / 1/),'(X)d/
x€L(rj¢))
For thick rays — intersection area

wij = / pi(x)dx

xel'(rj,pj)
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Weight coefficients

For line rays — intersection length

wij = / Yi(x)d/

x€L(rj¢))

Binary approximation

1, if ray L(rj, ¢j) intersects pixel 1);
Wi =
Y 0, otherwise
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Least squares solution

for overdetermined systems

Minimize the reconstruction error e

p* = argmin| Wy — p|?
b ——

e
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Least squares solution
for overdetermined systems
Minimize the reconstruction error e

p* = argmin||\Wpu — p|®
B ———
e

The reconstruction error e must be perpendicular to range of W.

0=WTe=WT"(Wyu* —p)
Normal equations
WTp=w"wp*
Pseudoinverse solution

pt=(WTW)'wTp
suitable for smaller problems
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Minimum-norm solution
for underdetermined systems or noisy data
Add regularization D

p* = argmin||Wp — p||* + A Dp|?
B ———

e

Normal equations
WTp = (W'W+AD"D)u*
Pseudoinverse solution

gt = (WTW+ADTD) 'wTp
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[terative methods

Principles
» Start from an initial guess of p
» Compare measured projections and simulations
» Correct pixel values to decrease the difference
P lterate until convergence

Properties

» Take advantage of the sparseness (complexity O(N) per
iteration)

» Low memory complexity (O(M))
» — Suitable for large systems of equations
» Early stopping

» Slower for small problems (compared to direct methods)
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Projection method

Kaczmarz's method

M
pj:ZWij//“h j:1727"'aN
i=1

pj = <Wj7 H’> = WJTH'
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Projection method

Kaczmarz's method

M
pi=> wyui, j=1,2,....N
i=1
pj = <WJ'7 /1'> = WJTU'
> Affine solution space of equation j
S ={meRM pj = (wj, )}
Normal vector w;

Vp e S, p €S (wjp—p)=0
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Projection to an affine space

\\
~ Nl:;"“:
/7
N S //
/
.
/
c /’
& /
° /
o5 //
o5 ~
e
oY

Projection onto §;

g* = Ps;(h) = arggrgigHg —h||
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Projection to an affine space

Projection onto &;
g" =Ps;(h) = arg min|lg — h]

Moving in the normal direction (minimum change) until hitting S;

g* = h — )\Wj
pj = (wj, h)
Solution
= W normalized residual
WJ',WJ'
(wj, w))
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Projection method
the algorithm

> Initial solution (9 (e.g. random)
» Project sequentially to constraints 1,2,... N, 1,2,...

pt = Pg, p©)
1@ = P @
1@ = P u®

P Repeat until convergence
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Interpretation of the update

(k1) _ () (wj, n) — p;
<VVJ’VVJ>

Pj

Iz w;

pj *Zwuﬂ/ = Wj7 1)

Projection p;(w;, u(¥)) along ray j
Backprojection of the correction p; along ray j
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Projection example
N =2

f;

~
~H initial
guess

'&“

f
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Projection method

properties

v

Computationally cheap: one projection cost O(M), applying
all constraints O(MN)

Low-memory complexity: O(M) if wj; can be calculated on
the fly.

If a solution exists, the projection method converges to it.
Convergence may be slow.

If no solution exists, the method may oscillate.
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Projection method improvements

» Constraint ordering
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Projection method improvements

» Constraint ordering

» Under/overrelaxation,

<ijvlt> _-FUVV-

_ (0
p=p"’ —a
<j’ _/> ’

O<a<?2
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Projection method improvements

» Constraint ordering

» Under/overrelaxation,

(wj, ) —Pi.

_ 0,
peR (wj,wj) 7

O<a<?2

» Incorporating constraints — positivity (u; > 0), zero
outside,. ..
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Simplified update rules

> Binary additive case (w;; € {0,1})

> hi—p

i,wii=1

Vi 8k = bk forwg =1, Nj =} wy =1
lj i

» Binary multiplicative case (w;; € {0,1})

Pk
> b’

i,wii=1

Vi, gr = hx for wy; =1
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Projections by integration

pj = /u(rj cos @j — tsin g, rjsin j + t cos @)dt

M
pi=>_ wiui = (wj, @)
P
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Projections by integration

pj = /M(rj cos @ — tsin, rjsin @; 4 t cos @)dt
Zwulu,: W, (L)

p(x) = Z pivi(x)
=1

wij = /w;(rj cos j — tsin, rjsin @j + t cos ¢)dt

pj = Asz,u(rj cos @ — tsin g, rjsin j + t cos ),
K

with t = As k
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Backprojections by integration

Backprojection can be also interpreted by sampling the integration
path.
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Other iterative methods

vVvYyy

simultaneous iterative reconstruction (SIRT), Cimmino's
method — block update

simultaneous algebraic reconstruction technique (SART) —
bilinear v, projection by integration, Hamming window over
rays

iterative least-squares technique (ILST)

multiplicative algebraic reconstruction technique (MART)
iterative sparse asymptotic minimum variance (SAMV)

(preconditioned) conjugated gradients (CG) — needs
regularization for ill-posed problems

v
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Example

moving heart

filtered back projection iterative (nonlinear)

Courtesy of Biomedizinische NMR Forschungs GmbH
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3D CT
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3D computed tomography

» Technical challenges: power, cooling
» Rotation method (slice by slice)
» Spiral/helix method
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Spiral method

» Acceleration: 10 min — 1 min

Path of Continuously
Rotating X-ray Tube
Relative to the Patient

Direction of
Continuous
Patient Transport

‘_\ Distance Advanced

by Couch During
One Rotation
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Spiral method

» Acceleration: 10 min — 1 min

» Pitch:
P=AIl/d

Al bed shift per rotation, d slice thickness.
Normally 0 < P < 2. Overlap for P < 1. Typically P = 1.5.

Path of Continuously
Rotating X-ray Tube
Relative to the Patient

Direction of
Continuous
Patient Transport

‘_\ Distance Advanced

by Couch During
One Rotation
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Spiral method (2)

Distance along Z-axis

P Interpolation in z axis

> Interpolation wide — 1 turn. Less noise, larger effective slice
thickness.

» Interpolation Slim — 1/2 turn, symmetry. More noise, smaller
effective slice thickness.
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Spiral method (2)

» Interpolation in z axis

» Interpolation wide — 1 turn. Less noise, larger effective slice
thickness.

» Interpolation Slim — 1/2 turn, symmetry. More noise, smaller
effective slice thickness.
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Multislice acquisition

(@

» Acceleration
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Multislice acquisition

z-filter

----- Interpolation

\/ I‘-‘!:\'

,. '}i%“gg/.m

» Multi-plane reconstruction / multi-slice linear interpolation /
multi-slice filtered interpolation
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Multislice acquisition

(b) Filter width

» Multi-plane reconstruction / multi-slice linear interpolation /
multi-slice filtered interpolation



CT image quality

» Parameters:
» Resolution (0.5 mm)
» Contrast (§H, about 5 — 10 HU.)
» Detection threshold (about 1 mm at AH = 200, 5mm at

AH =5).
> Noise (SNR)
> Artifacts

» Scanner defects, malfunctions, operator error
» Metal parts (shadows)

» Motion artifacts

» Partial volume
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Artifact examples

xl

Figre 2.19 Example of image artifacts: (a) test phantom, {b) second pha ntom, e nolse, (d) detector
urder-samplng, {e) view imder-sam pling, (£ beam harderdng, { g) scatter, () nenlinear partial
volurne effect, am {1 obfect motlon. (unpublished results)
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Radiation dose
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Radiation dose

» Absorbed dose D. 1Gy (gray) = 1J/kg Before 1 Gy = 100 rad

» Effective dose equivalent (davkovy ekvivalent)
He [Sv] (sievert)

He =Y wiH; =Y wicD;

H = ¢D. Quality factor ¢ is 1 for X-rays and ~ rays, 10 for
neutrons, 20 for a particles.

Coefficient w is organ dependent: male/female glands 0.2,
lungs 0.12, breast 0.1, stomach 0.12, thyroid gland 0.05, skin
0.01. Z Wi = 1

Before 1 Sv = 100 rem
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Radiation dose

» Absorbed dose D. 1Gy (gray) = 1J/kg Before 1 Gy = 100 rad

» Effective dose equivalent (davkovy ekvivalent)
He [Sv] (sievert)

He =Y wiH; =Y wicD;

H = ¢D. Quality factor ¢ is 1 for X-rays and ~ rays, 10 for
neutrons, 20 for a particles.

Coefficient w is organ dependent: male/female glands 0.2,
lungs 0.12, breast 0.1, stomach 0.12, thyroid gland 0.05, skin
0.01. Z Wi = 1

Before 1 Sv = 100 rem

» Sum the doses
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Radiation dose

» Medical limit (USA) is 50 mSv/year (=limit for a person
working with radiation in CR), corresponding to 1000 chest
X-rays, or 15 head CTs, or 5 whole body CTs (1
CT~ 10 mSv).

» low-dose CT~ 2 ~ 5mSv, PET~ 25 mSv

» In CR radioactive background about 3 mSv/year (mainly
radon), similar to USA. In Colorado (altitude 1500 ~ 4000 m)
about 4.5 mSv/year. Mean dose from medical imaging
0.3 mSv/year, about 3 long flights.
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Radiation dose

» Medical limit (USA) is 50 mSv/year (=limit for a person
working with radiation in CR), corresponding to 1000 chest
X-rays, or 15 head CTs, or 5 whole body CTs (1
CT~ 10 mSv).

» low-dose CT~ 2 ~ 5mSv, PET~ 25 mSv

» In CR radioactive background about 3 mSv/year (mainly
radon), similar to USA. In Colorado (altitude 1500 ~ 4000 m)
about 4.5 mSv/year. Mean dose from medical imaging
0.3 mSv/year, about 3 long flights.

» cancer related death 20%. 1 CT=10mSv — relative increase
by 1073 ~ 1074
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Computed tomography, conclusions

Excellent spatial resolution

3D image

Weak soft tissue contrast (contrast agents available)

| 2

>

» Fast acquisition
>

» Reconstruction algorithm
>

Radiation dose
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