
TEMPORAL PLANNING

Stefan Edelkamp

PUI - CTU

STEFAN EDELKAMP .

HISTORY

STEFAN EDELKAMP .

PDDL 2.1

STEFAN EDELKAMP .

DURATIVE ACTIONS

Respect different time spans to execute an action

Temporal Modalities:

(at start …) preconditions and change when action is initiated

(at end …), preconditions and effects when action terminates

(over all …), invariance condition to be true throughout the action

STEFAN EDELKAMP .

GENERAL OBJECTIVE FUNCTION – PLAN METRIC

In propositional planning, there are only two sensible metrics:

- number of operators in a total-ordered plan

- depth of operators in a partial-ordered plan

With introducing numbers and durations there are now more expressive options,

like the makespan (predicate implicitly used in the planner).

or arithmetic expressions over the numerical variable

STEFAN EDELKAMP .

PDDL 2.2

STEFAN EDELKAMP .

TILS

Timed initial literals specified in the initial state

leads to time window for the durative actions if timed initial literal is mentioned in the
preconditions.

Can be compiled away in polynomial time to PDDL2.1 in a linear number of steps.

STEFAN EDELKAMP .

REPOSITORY

http://planning.domains

Includes huge number PDDL domains/instances, a PDDL editor, lectures explaining

PDDL etc.

International Planning Competitions:

http://icaps-conference.org/index.php/Main/Competitions

Latest (9th)

https://ipc2018.bitbucket.io/

Also includes results and participating planners in source code!

STEFAN EDELKAMP .

http://planning.domains/
http://icaps-conference.org/index.php/Main/Competitions
https://ipc2018.bitbucket.io/

SUMMARY ON PDDL

STEFAN EDELKAMP .

TEMPORAL PLANNING: TIME DOES MATTER

In general, activities have varying durations:
➢ Loading a package onto a truck is much quicker

than driving the truck;

➢ Drinking a cup of tea takes longer than making it;

➢ Procrastinating tasks takes longer than doing
them

➢ …
STEFAN EDELKAMP .

EXAMPLE: ZENO DOMAIN
INITIAL STATE GOAL STATE

STEFAN EDELKAMP .

ZENO
PDDL
DOMAIN
FILE

STEFAN EDELKAMP .

ZENO
PDDL
PROBLEM
FILE

STEFAN EDELKAMP .

SEQUENTIAL AND TEMPORAL PLAN

STEFAN EDELKAMP .

SNAG: SEQUENTIAL PLAN TIME VS.
PARALLEL PLAN TIME

STEFAN EDELKAMP .

DIFFERENT PLAN OBJECTIVES

FUEL TIME

STEFAN EDELKAMP .

DURATIVE ACTIONS?

A

pre

eff

A

STEFAN EDELKAMP .

DURATIVE ACTIONS?

A

pre

eff

A

FF

STEFAN EDELKAMP .

DURATIVE ACTIONS IN PDDL 2.1

A

pre

effeff

prepre

at start at end

over all

STEFAN EDELKAMP .

PDDL EXAMPLE (I)

(:durative-action LOAD-TRUCK

:parameters

(?obj – obj ?truck – truck ?loc - location)

:duration (= ?duration 2)

:condition

(and (over all (at ?truck ?loc))

(at start (at ?obj ?loc)))

:effect

(and (at start (not (at ?obj ?loc)))

(at end (in ?obj ?truck))))

:precondition

Beware of self-overlapping actions!
STEFAN EDELKAMP .

PDDL EXAMPLE (II)

(:durative-action open-barrier

:parameters

(?loc – location ?p - person)

:duration (= ?duration 1)

:condition

(and (at start (at ?loc ?p)))

:effect

(and (at start (door-open ?loc))

(at end (not (door-open ?loc))))

STEFAN EDELKAMP .

PDDL EXAMPLE (II)

(:durative-action open-barrier

:parameters

(?loc – location ?p - person)

:duration (= ?duration 1)

:condition

(and (at start (at ?loc ?p)))

:effect

(and (at start (door-open ?loc))

(at end (not (door-open ?loc))))

STEFAN EDELKAMP .

DURATIVE ACTIONS

pre

effeff

prepre

A A A A

U As

As U

U ¬As

(Fox and Long, ICAPS 2003)

STEFAN EDELKAMP .

PLANNING WITH SNAP ACTIONS (I)

Challenge 1: What if B interferes with the goal?

@PDDL 2.1 semantics: no actions can be executing in a goal state.

Solution: add ¬As, ¬Bs, ¬Cs.... to the goal (or make this implicit in a
temporal planner.)

A A B

¬As, G

A A B

Bs, f

As,f

As ¬Bs, ¬G

B

Bs

STEFAN EDELKAMP .

PLANNING WITH SNAP ACTIONS (II)

Challenge 2: what about over all conditions?

If A is executing, inv_A must hold.

Solution:

In every state where As is true: inv_A must also
be true

Or: (imply (As) inv_A)

Violating an invariant then leads to a dead-end.

pre

effeff

preinv_A

A A A

U As

As U

U ¬As

STEFAN EDELKAMP .

PLANNING WITH SNAP ACTIONS (III)

●Challenge 3: where did the durations go?

–More generally, what are the temporal
constraints?

–Logically sound ≠ temporally sound.

A A B A B

STEFAN EDELKAMP .

OPTION 1: DECISION EPOCH PLANNING
➢Search with time-stamped states and a priority queue of pending end
snap-actions.

➢ See Temporal Fast Downward (Eyerich,
Mattmüller and Röger, ICAPS 2009); Sapa (Do
and Kambhampati, JAIR 2003), and others.

➢In a state S, at time t and with queue Q, either:

➢ Apply a start snap-action A (at time t)

➢ Insert A into Q at time (t + dur(A))

➢ S'.t = S.t + ε

➢ Remove and apply the first end snap-action from Q.

➢ S'.t set to the scheduled time of this, plus ε

Term from Cushing et al, IJCAI 2007

STEFAN EDELKAMP .

RUNNING THROUGH OUR EXAMPLE...

A A

A

B

B

t=0 t=0.01

t=3 t=5.01

Can only choose A
- eliminated the

temporally inconsistent
option (B before A)

Q

STEFAN EDELKAMP .

DECISION EPOCH PLANNING: THE SNAG

Must fix start- and end-timestamps at the point when the action is
started.

–Used for the priority queue

Can we always do this?

A C

D

C

D

q

q

¬q

dur(C) = 10

dur(D) = 1

t = 0 t = 0.01

Queued: t = 10

Queued: t = 1.01

STEFAN EDELKAMP .

OPTION 2: SIMPLE TEMPORAL NETWORKS

STEFAN EDELKAMP .

A SIMPLE TEMPORAL PROBLEM?

➢All our constraints are of the form:

➢ ε ≤ t(i+1) – t(i) (c.f. sequence constraints)

➢ durmin(A) ≤ t(A) – t(A) ≤ durmax(A)

➢Or, more generally, lb ≤ t(j) – t(i) ≤ ub

➢ Is a Simple Temporal Problem

➢ “Temporal Constraint Networks”,
Dechter, Meiri and Pearl, AIJ, 1991

➢Good news – is polynomial

➢ Bad news – in planning, we need to solve it a
lot....

STEFAN EDELKAMP .

EXAMPLE

John travels to work either by car (30-40 min) or by bus (>= 60 min)

Fred travels to work either by car (20-30 min) or in a carpool (40-50 min)

Today John left between 7:10 and 7:30am.

Fred arrived at work between 8:00 and 8:10am.

John arrived at work 10-20min after Fred left home.

STEFAN EDELKAMP .

VISUALIZE TCSP AS
DIRECTED CONSTRAINT GRAPH

1 3

42

0
[10,20]

[30,40]

[60,inf]

[10,20]

[20,30]

[40,50]

[60,70]

STEFAN EDELKAMP .

SIMPLE TEMPORAL NETWORK

• Tij = (aij Xi - Xj  bij)

1 3

42

0
[10,20]

[30,40]

[60,inf]

[10,20]

[20,30]

[40,50]

[60,70]
STEFAN EDELKAMP .

Simple Temporal Network:

A set of time points Xi at which events occur.

Unary constraints
(a0 < Xi < b0) or (a1 < Xi < b1) or . . .

Binary constraints
(a0 < Xj - Xi < b0) or (a1 < Xj - Xi < b1) or . . .

STEFAN EDELKAMP .

Shostak (1981) A simple temporal problem is consistent if and only if the distance

graph has no cycles.

→ The consistency and the minimal network of an STP can be determined in

cubic time using all-pairs shortest path search.

1 3

42

0
[10,20] [30,40]

[10,20]

[40,50]

[60,70]

STN

STEFAN EDELKAMP .

TO QUERY STN MAP TO
DISTANCE GRAPH GD

70

1 3

42

0
20

50

-10

40

-30

20 -10

-40

-60

1 3

42

0
[10,20] [30,40]

[10,20]

[40,50]

[60,70]

Tij = (aij Xj - Xi  bij)
Xj - Xi  bij

Xi - Xj  - aij

Edge encodes an upper bound on distance to target from source.

STEFAN EDELKAMP .

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph

SHORTEST PATHS OF GD

70

1 2

43

0
20

50

-10

40

-30

20 -10

-40

-60

STN MINIMUM NETWORK

0 1 2 3 4

0 [0] [10,20] [40,50] [20,30] [60,70]

1 [-20,-10] [0] [30,40] [10,20] [50,60]

2 [-50,-40] [-40,-30] [0] [-20,-10] [20,30]

3 [-30,-20] [-20,-10] [10,20] [0] [40,50]

4 [-70,-60] [-60,-50] [-30,-20] [-50,-40] [0]

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph STN minimum network

TEST CONSISTENCY:
NO NEGATIVE CYCLES

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph

70

1 2

43

0
20

50

-10

40

-30

20 -10

-40

-60

LATEST SOLUTION

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0
70

1 2

43

0
20

50

-10

40

-30

20 -10

-40

-60

d-graph

Node 0 is the reference.

EARLIEST SOLUTION

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0
70

1 2

43

0
20

50

-10

40

-30

20 -10

-40

-60

d-graph

Node 0 is the reference.

FEASIBLE VALUES

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph

• X1 in [10, 20]

• X2 in [40, 50]

• X3 in [20, 30]

• X4 in [60, 70]

Z A B C

BACK TO PLANNING: LATEST POSSIBLE TIMES?
(MAXIMUM SEPARATION)

t(A) – t(Z) <= 4
t(B) – t(Z) <= 8

t(C) – t(Z) <= 10

('A comes no
more than 4 time

units after Z')

STEFAN EDELKAMP .

Z A B C

LATEST POSSIBLE TIMES?
t(A) – t(Z) <= 4
t(B) – t(Z) <= 8

t(C) – t(Z) <= 10

t(B) – t(A) <= 2
t(C) – t(B) <= 1

('B comes no
more than 2 time

units after A')

STEFAN EDELKAMP .

EARLIEST POSSIBLE TIMES?
(MINIMUM SEPARATION)

●For latest possible time: find the shortest path

●For earliest possible times...?

STEFAN EDELKAMP .

Z A B C

EARLIEST POSSIBLE TIMES?
2 <= t(A) – t(Z)
4 <= t(B) – t(Z)

3 <= t(B) – t(A)
1<= t(C) – t(B)

STEFAN EDELKAMP .

HACKING ALGORITHMS

➢Longest path from Z to C?

➢= Shortest negative path from C to Z

2 <= t(A) – t(Z)

Multiply both sides by -1:
-2 > - t(A) + t(Z)

p >= q is the same as q <= p:
- t(A) + t(Z) < -2

Rearrange LHS:
t(Z) – t(A) < -2

STEFAN EDELKAMP .

Z A B C

EARLIEST POSSIBLE TIMES?
2 <= t(A) – t(Z)
4 <= t(B) – t(Z)

3 <= t(B) – t(A)
1<= t(C) – t(B)

-2 >= – t(A) + t(Z)
-4 >= – t(B) + t(Z)

-3 >= – t(B) + t(A)
-1 >= – t(C) + t(B)

t(Z) – t(A) <= -2
t(Z) – t(B) <= -4

t(A) – t(B) <= -3
t(B) – t(C) <= -1

STEFAN EDELKAMP .

SIMPLE TEMPORAL NETWORKS (I)
➢Can map STPs to an equivalent digraph:

➢ One vertex per time-point (and one for 'time
zero');

➢ For lb ≤ t(j) – t(i) ≤ ub:

➢ An edge (i → j) with weight ub.

➢ An edge (j → i), with weight -lb

➢ (c.f. lb ≤ t(j) – t(i) → t(j) – t(i) ≤ -lb)

STEFAN EDELKAMP .

EXAMPLE STN

A A

B

A

B

-ε -ε -ε

3

-3

5

-5

0.00: (A) [3]

0.01: (B) [5]

STEFAN EDELKAMP .

SIMPLE TEMPORAL NETWORKS (II)
●Solve the shortest path problem (e.g. using Bellman-Ford) from/to zero

–dist(0,j)=x → maximum timestamp of j = x

–dist(j,0)=y → minimum timestamp of j = -y

●If we find a negative cycle then the temporal constraints are inconsistent:

A A

B

A

B

-ε
-ε

3

-3

5

-5

STEFAN EDELKAMP .

I

A ...

I

B

ABB

AB

ABA

ABAB ABBA A A

B

A

B
-ε -ε

3

-3

5

-5A A

B

A

B
-ε

-ε -ε

3

-3

5

-5 STEFAN EDELKAMP .

PUBLIC TRANSPORT EXAMPLE

Drivers have working hours;

Bus routes have fixed durations and start and end locations.

Goals are that each bus route is done.

The routes have timetables that they must follow.

STEFAN EDELKAMP .

TEMPORAL PLANNING: PUBLIC TRANSPORT

Work D1

Route1 D1 B1

Working D1 Working D1

Route3 D1 B2

Actions have:

At D1B

¬At B1 A¬At B1 A

At D1 A
At B1 A

At B1 B

Working D1

At D1 B
At B2 B

At D1 A
At B2 A

At D1 A

Done Route1
Done Route3

¬At D1 A ¬At D1 A

¬Working D1

Available D1

¬Available D1

● Conditions and Effects at the start and at the end;

● Invariant/overall conditions;

duration >= 2 , duration <= 4

duration = 2
duration = 3

● Durations constraints:

(= ?duration 4)

(and (>= ?duration 2) (<= ?duration 4))

STEFAN EDELKAMP .

PLANNING WITH SNAP ACTIONS

Work D1

Working D1

At D1 A
At B1 A At D1B

At B1 B

Working D1

Route1 D1 B1

Working D1

At D1 B
At B2 B

At D1 A
At B2 A

Route3 D1 B2

duration = 2
duration = 3

At D1 A

Three Challenges:

● Make sure ends can’t be applied unless starts have.

● Overall Conditions.

● Duration constraints.

Done Route1
Done Route2

¬At D1 A
¬At B1 A

¬At D1 A
¬At B1 A

¬Working D1

R1⊢ R3⊢ R3⊣
R1⊣

Available D1

¬Available D1

W⊣W⊢

duration >= 2 , duration <= 4

STEFAN EDELKAMP .

PLANNING WITH SNAP ACTIONS AND STNS

2

Constraints:

W⊣ - W⊢ >= 2

W⊣ - W⊢ <= 4

R1 ⊢ >= W⊢ + ε
R1⊣ - R1⊢ = 2

R3 ⊢ >= R1⊢ + ε
R3⊣ - R3⊢ = 3

W⊣ >= R3 ⊣ + ε

R1⊢ R3⊢ R3⊣
R1⊣

W⊣W⊢

4

-2

-2

3

-3-ε

-ε -ε

STEFAN EDELKAMP .

TIMED INITIAL LITERALS
Introduced in PDDL 2.2 (IPC 2004);

Allow us to model facts that become true, or false, at a specific time.

Can use them to model deadlines or time windows.

Cannot be done directly, but we can achieve this by adding more facts to the domain.

STEFAN EDELKAMP .

MODELLING DEADLINES USING TILS
(:durative-action unload-truck

:parameters (?p - obj ?t- truck ?l- location)

:duration (= ?duration 2)

:condition (and (over all (at ?t ?l))

(at start (in ?p?t)))

(at end (can-deliver ?p)))

:effect (and (at start (not (in ?p ?t)))

(at end (at ?p ?l))))

Init:

(can-deliver package1)

(at 9 (not (can-deliver package1)))

(can-deliver package2)

(at 11 (not (can-deliver package2)))

Make sure the action achieving the desired fact
has a condition that ensures it takes place before
the deadline (over all or at start/end).

Make that fact true in the initial state.

And a TIL to delete it at the deadline.

Note that we could have multiple deadlines for
different objects.

STEFAN EDELKAMP .

REASONING WITH TILS IN FORWARD SEARCH

Order the TILs chronologically;

At each state we have a choice:

 Apply an action that is applicable in that state;

 Apply the next Available TIL.

This allows us to leave the choice to search about whether the TIL will appear before
or after a given action.

STEFAN EDELKAMP .

TEMPORAL PLANNING: PUBLIC TRANSPORT

Work D1

Route1 D1 B1

Working D1 Working D1

Route3 D1 B2

Actions have:

At D1B

¬At B1 A¬At B1 A

At D1 A
At B1 A

At B1 B

Working D1

At D1 B
At B2 B

At D1 A
At B2 A

At D1 A

Done Route1
Done Route3

¬At D1 A ¬At D1 A

¬Working D1

Available D1

¬Available D1

● Conditions and Effects at the start and at the end;

● Invariant/overall conditions;

duration >= 2 , duration <= 4

duration = 2
duration = 3

● Durations constraints:

(= ?duration 4)

(and (>= ?duration 2) (<= ?duration 4))

● We can also have windows of opportunity: (at 3.75 (due Route3)) (at 4 (not (due Route3)))

(due Route3)

STEFAN EDELKAMP .

PLANNING WITH TIME WINDOWS

2

Constraints:

W⊣ - W⊢ >= 2

W⊣ - W⊢ <= 4

R1 ⊢ >= W⊢ + ε
R1⊣ - R1⊢ = 2

R3 ⊢ >= R1⊢ + ε
R3⊣ - R3⊢ = 3

W⊣ >= R3 ⊣ + ε

R1⊢ R3⊢ R3⊣
R1⊣

W⊣W⊢

4

-2

-2

3

-3

-ε -ε

0

TW

1

-ε -ε

-ε

Due Route3

Due Route3

-3.75W⊢ >= T0 + ε
TW1 = T0 + 3.75

TW11 >= R3 ⊢ +

ε
R3⊣ >= TW1 + ε

-ε

3.75

STEFAN EDELKAMP .

Planning with Preferences

⚫ Find: A sequence of actions: any plan will do?

⚫ Even the shortest might not be necessarily the best.

⚫ We might care about how the goal is achieved.

⚫ What if we can't reach the goal:

⚫ Report 'No Plan Exists'.

⚫ Search Indefinitely.

⚫ Maybe we could satisfy some of it?

STEFAN EDELKAMP .

Link to Numerical

Metric Planning
Given:
⚫ An initial state: a set of propositions and assignments to numeric variables,

e.g. (at rover waypoint1) (= (energy rover) 10).

⚫ A goal: a desired set of propositions/assignments,
e.g. (at rover waypoint4) (have-soil-sample waypoint3).

⚫ A set of actions each with:

⚫ Preconditions on execution;

⚫ Effects that describe how the world

changes upon their execution.

Find:

⚫ A sequence of actions that when applied in the initial state leads

to a state that satisfies the goal condition.

(:action navigate

:parameters

(?r - rover ?y - waypoint ?z - waypoint)

:precondition (and

(available ?r)

(at ?r ?y)

(visible ?y ?z)

(>= (energy ?r) 8))

:effect (and

(decrease (energy ?r) 8)

(not (at ?x ?y))

(at ?x ?z)))

STEFAN EDELKAMP .

Planning with Preferences

⚫ Simple Preferences (soft goals and preconditions):

⚫ (p0 (at end (at rover waypoint3)))

⚫ Trajectory preferences (Conditions on the plan):

⚫ (p1 (always (>= (energy rover) 2)

⚫ (p2 (sometime (at driver costa-coffee))

⚫ (p3 (at-most-once (at truck Birmingham)))

⚫ (p4 (sometime-after (at Birmingham) (at Glasgow)))

⚫ (p5 (sometime-before (at Birmingham) (had-lunch)))

⚫ Temporal Preferences (not covered).

⚫ Metric Function:

⚫ (minimze (+ (fuel-used) (*2 (is-violated p0)) (*5 (is-violated p1)))
STEFAN EDELKAMP .

EXAMPLES
Blocksworld:

➢a fragile block can never have something above it, or

➢it can have at most one block on it;

➢we would like that the blocks forming the same tower always have the same colour;

➢in some state of the plan, all blocks should be on the table.

Transportation:

➢we would like that every airplane is used (instead of using only a few airplanes, because it is
better to distribute the workload among the available resources and limit heavy usage);

➢whenever a ship is ready at a port to load the containers it has to transport, all such
containers should be ready at that port;

➢we would like that at the end of the plan all trucks are clean and

➢at their source location ;we would like no truck to visit any destination more than once
STEFAN EDELKAMP .

MODALITIES

(:constraints ...)

plus

:constraints flag in the: requirements list.

BNF

<GD> ::= (at end <GD>) | (always <GD>) | (sometime <GD>) |(within <num>
<GD>) | (at-most-once <GD>) |(sometime-after <GD> <GD>) | (sometime-before
<GD> <GD>) |(always-within <num> <GD> <GD>) |(hold-during <num> <num>
<GD> |(hold-after <num> <GD> | ...

STEFAN EDELKAMP .

GOALS FOR TODAY
●Get to work
●If I do that, get a coffee on the way
●If I get a coffee, go to the loo after

STEFAN EDELKAMP .

GOALS FOR TODAY
• Get to work
• If I do that, get a coffee on the way
• If I get a coffee, go to the loo after
• Play the piano

STEFAN EDELKAMP .

GOALS FOR *THE END* OF TODAY?

(:goals (and

(at stefan work)

)

)

STEFAN EDELKAMP .

WORK/LIFE BALANCE

(sometime (at stefan work))

(sometime (at stefan piano))

STEFAN EDELKAMP .

SELLING OUT...

(preference p0 (sometime (at stefan work)))

(preference p1 (sometime (at stefan piano)))

cost(p0) = 100

cost(p1) = 5

STEFAN EDELKAMP .

WITH GOAL(S)

(:goal (and

(at stefan mybed)

))

(:constraints (and

(preference p0 (sometime (at stefan work)))

(preference p1 (sometime (at stefan piano)))

))

STEFAN EDELKAMP .

IF I DO THAT, GET A COFFEE ON THE WAY

(sometime (at stefan coffeeshop)) ?

(sometime-before (at stefan work)

(at stefan coffeeshop))

STEFAN EDELKAMP .

A = (AT STEFAN WORK)
B = (AT STEFAN COFFEESHOP)

STEFAN EDELKAMP .

IF I GET A COFFEE, GO TO THE LOO

(sometime (at stefan loo)) ???

STEFAN EDELKAMP .

IF I GET A COFFEE, GO TO THE LOO

(sometime-before (at stefan work)

(at stefan coffeeshop))

(sometime-after (at stefan coffeeshop)

(at stefan loo))

STEFAN EDELKAMP .

A = (AT STEFAN COFFEESHOP)
B = (AT STEFAN LOO)

STEFAN EDELKAMP .

WATCH OUT!

What if playing the piano adds (played stefan piano):

(sometime-after (at stefan work)

(played stefan piano))

Order a then b then c?

(and (sometime-before (b) (a))

(sometime-after (b) (c))

We can satisfy this with b, c, a, b not just a, b, c!

STEFAN EDELKAMP .

ONE LAST SORT OF PREFERENCE

(:goal (and

(at stefan mybed)

(preference p4 (switched-off phone))

))

STEFAN EDELKAMP .

Summary

⚫ It's not just about where you get to but how you

get there;

⚫ We can't always achieve everything, but want to

achieve all we can;

⚫ Sophisticated domain-independent planners

exist to deal with these concerns for us:

⚫ Much of this success is down to heuristics;

⚫ Treat summary stats with care!

STEFAN EDELKAMP .

