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Motivation

Any problems with stochastic outcomes

Dynamic pricing: deciding on prices for products based on demand, buying price, stock
Maintenance and repair: when to replace/inspect based on age, condition, etc. 1

Agriculture: how much to plant based on weather and soil state.
Purchase and production: how much to produce based on demand.
Robotic navigation

1https:
//stats.stackexchange.com/questions/145122/real-life-examples-of-markov-decision-processes
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In addition, MDPs form a basis of many techniques in

Reinforcement Learning
Game theory (extensive form games)
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Motivation

Any problems with stochastic outcomes
Dynamic pricing: deciding on prices for products based on demand, buying price, stock
Maintenance and repair: when to replace/inspect based on age, condition, etc. 1

Agriculture: how much to plant based on weather and soil state.
Purchase and production: how much to produce based on demand.
Robotic navigation

In addition, MDPs form a basis of many techniques in
Reinforcement Learning
Game theory (extensive form games)

Important extension - Partial Observable MDPs

1https:
//stats.stackexchange.com/questions/145122/real-life-examples-of-markov-decision-processes

Jan Mrkos PUI Tutorial 9 3 / 21

https://stats.stackexchange.com/questions/145122/real-life-examples-of-markov-decision-processes
https://stats.stackexchange.com/questions/145122/real-life-examples-of-markov-decision-processes


Markov Decision Process

Markovian:

Named after Andrey Markov (1856 - 1922)
Memoryless, the next evolution of the systems depends ONLY on the current state, NOT
on the sequence of events that lead to the state.

You are expected to make a sequence of decision as responses to the changes in the
environment.
Plan vs. policy: ”In planning, the problem is finding the plan. In MDP, the problem is
executing the plan.”
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Resources

Also, I have heard good things about the free https://algorithmsbook.com/.

Jan Mrkos PUI Tutorial 9 5 / 21
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Markov Decision Process

Tuple ⟨S, A, D, T , R⟩:
S: finite set of states agent can find itself in
A: finite set of action agent can perform
D: finite set of timesteps
T : transition function - transitions between states
R: reward function - rewards obtained from transitions

Only one of many possible definitions!
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Example: Emil in the gridworld

S: Possible Emils positions
A: Move directions
D: Emil has e.g. 200 steps to find gold
T : stochastic movement, e.g. 10% to move to the
side of selected action
R: e.g. +100 for finding gold, -1 for each move
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MDP example - blackjack

Blackjack
S: Possible player hands and played cards
A: Hit, Stand, ...
T : Possible drawn cards,
R: Win/loose at the end
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Example: Abstract example

S: S0, S1, S2, S3

A: a0, a1, a2

T :

T (S0, a0, S1) = 0.6
T (S0, a0, S2) = 0.4
T (S1, a1, S3) = 1
T (S2, a2, S3) = 1

R :

R(S0, a0, S1) = 5
R(S0, a0, S2) = 2
R(S1, a1, S3) = 1
R(S2, a2, S3) = 4

s0

s1

s2

s3a0

R = 5
p = 0.6

R = 1
p = 0.6

R = 1a1

a2

R = 4

1Example: [Mausam, Kobolov: Planning With Markov Decision Processes]
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When MDP might be a good model?

Domain with uncertainty - uncertain outcomes of actions
Sequential decision making - for sequences of decisions
Fair Nature - no one is actively playing against us
Full observability, perfect sensors - we know where agent is
Cyclic domain structures - when states can be revisited
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Policy

Def: Policy
Assignment of action to state, π : S → A

Partial policy - e.g. output of robust replanning
Complete policy - domain of π is whole state space S.
Stationary policy - independent of timestep (e.g. emil)
Markovian policy - dependent only on last state

In general, policy can be history dependent and stochastic!

Jan Mrkos PUI Tutorial 9 11 / 21



Value function (of a policy)

Def: Value function
Assignment of value to state, V : S →< −∞, ∞ >

Def: Value function of a policy
Assignment of value to state based on utility of rewards obtained by following policy π from a
state, V π : S →< −∞, ∞ >, V π(s) = u(Rπs

1 , Rπs
2 , . . .)

Def: Optimal MDP solution
Optimal MDP solution is a policy π∗ such that value function V π∗ called optimal value
function dominates all other value functions in all states, ∀sV π∗(s) ≥ V π(s).
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Value function (of a policy)

Def: Value function of a policy
Assignment of value to state based on utility of rewards obtained by following policy π from a
state, V π : S →< −∞, ∞ >, V π(s) = u(Rπs

1 , Rπs
2 , . . .)

Def: Optimal MDP solution
Optimal MDP solution is a policy π∗ such that value function V π∗ called optimal value
function dominates all other value functions in all states, ∀sV π∗(s) ≥ V π(s).

Questions:
How can we pick u? Can we choose u(R1, R2, . . .) = ∑

i Ri ?
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Expected linear aditive utility

Def: Expected linear aditive utility
Function u(Rt , Rt+1, . . .) = E

[∑|D|
t′=t γt′Rt′

]
is expected linear additive utility

Sounds convoluted, but it gives

Bellman equation
V π(s) = [

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV π(s ′)]]

γ ∈ (0, 1] is a discount factor, makes agent prefer earlier rewards.
Risk-neutral
For infinite D and bounded rewards, γ < 1 gives convergence (why?)
Under certain conditions, implies existence of optimal solution(s)
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Example

Bellman equation
V π(s) = [

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV π(s ′)]]

s0

s1

s2

s3

a1

a2

R = 1

p = 0.5

R = 2p = 0.5

R = 4

p = 0.2
R = 1p = 0.8
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Example

Bellman equation
V π(s) = [

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV π(s ′)]]

Look at the following small MDP. Which action would you take?

s0

s1

s2

s3

a1

a2

R = 1

p = 0.5

R = 2p = 0.5

R = 4

p = 0.2
R = 1p = 0.8
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Example

Bellman equation
V π(s) = [

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV π(s ′)]]

Calculate value of a policy π(S1) = a1

s0

s1

s2

s3

a1

a2

R = 1

p = 0.5

R = 2p = 0.5

R = 4

p = 0.2
R = 1p = 0.8
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Example

Bellman equation
V π(s) = [

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV π(s ′)]]

Calculate value of a policy π(S1) = a2

s0

s1

s2

s3

a1

a2

R = 1

p = 0.5

R = 2p = 0.5

R = 4

p = 0.2
R = 1p = 0.8
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Example

Bellman equation
V π(s) = [

∑
s′∈S T (s, a, s ′)[R(s, a, s ′) + γV π(s ′)]]

Calculate value of both policies given the value of states in this larger MDP:

s0

s1

s2

s3

a1

a2

R = 1

p = 0.5

R = 2p = 0.5

R = 4

p = 0.2
R = 1p = 0.8

s0

s1

s2

s3

a1

a2

R = 1

p = 0.5

R = 2p = 0.5

R = 4

p = 0.2
R = 1p = 0.8

V π(S1) = 4

V π(S2) = 2

V π(S3) = 1
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Optimality principle
When using expected linear additive utility, ”MDP” has an optimal deterministic Markovian
policy π∗.

Thm: The optimality principle for infinite-horizon MDPs
Infinite horizon MDP with V π(st) = E

[∑∞
t′=0 γt′Rπ

t+t′

]
and γ ∈ [0, 1). Then there exists

optimal value function V ∗, is stationary, Markovian, and satisfies for all s:

V ∗(s) = max
π

V π(s)

V ∗(s) = max
a∈A

 ∑
s′∈S

T (s, a, s ′)[R(s, a, s ′) + γV ∗(s ′)]


π∗(s) = arg max

a∈A

 ∑
s′∈S

T (s, a, s ′)[R(s, a, s ′) + γV ∗(s ′)]


Jan Mrkos PUI Tutorial 9 16 / 21



Examples

In the examples, we will use γ = 1 since we are in domains with finite horizon (and have
guaranteed convergence).

Jan Mrkos PUI Tutorial 9 17 / 21



Calculate the optimal value function in acyclic MDP

S: {S0, S1, S2, S3}
A: {a0, a1, a2, a3}

T :

T (S0, a0, S1) = 0.5
T (S0, a0, S2) = 0.5
T (S1, a1, S2) = 0.2
T (S2, a1, S3) = 0.8
T (S2, a2, S1) = 1
T (S2, a3, S3) = 1

R :

R(S0, a0, S1) = 1
R(S0, a0, S2) = 2
R(S0, a1, S2) = 4
R(S0, a1, S3) = 1
R(S2, a2, S1) = 1
R(S2, a3, S3) = 3

s0

s1

s2

s3

a0

a1

R = 1

p = 0.5

R = 2p = 0.5

R = 4

p = 0.2
R = 1p = 0.8

R
=

1
a 2

R
=

3
a3
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Calculate the value of a given policy π in cyclic MDP

S: {S0, S1, S2, S3}
A: {a0, a1, a2} = π - only the
policy actions are shown

T :

T (S0, a0, S1) = 0.6
T (S0, a0, S2) = 0.4
T (S1, a1, S3) = 1
T (S2, a2, S3) = 0.7
T (S2, a2, S0) = 0.3

R :

R(S0, a0, S1) = 5
R(S0, a0, S2) = 2
R(S1, a1, S3) = 1
R(S2, a2, S3) = 4
R(S2, a2, S0) = 3

s0

s1

s2

s3a0

R = 5
p = 0.6

R = 1
p = 0.4

R = 1a1

a2

R
=

4
p

=
0.7

R = 3
p = 0.3
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Calculation notes

Looking at the calculations, what can you say about the calculations of value of optimal
function?

In acyclic MDP, it can be straightforward to calculate the optimal value of states by
taking the states in an appropriate order (which is?).
In a cyclic MDP, for a given policy, writing the Bellman equations for all states gives a set
of linear equations. These can be solved using standard techniques from linear algebra
(e.g. substitution :-), do you know other methods or solvers?).
In a cyclic MDP, calculating is complicated by the max term - non-linear set of equations.
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Thank you for
participating in the

tutorials :-)

Please fill the feedback
form →

https://forms.gle/BimaGk1wUzb1rXba7
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