LP-based Heuristics, Abstractions h^{flow}, h^{pot}, Merge & Shrink

Michaela Urbanovská

PUI Tutorial Week 7

Lecture check

• Any questions regarding the lecture?

Assignment #1-3

- No substitute date for 10.4.2023
- **12.4.2023** will be tutorial with consultation + computing more heuristic examples
- Deadline will be extended for everyone to 14.4.2023 23:59

Linear program

Linear program (LP) consists of:

- a finite set of real-valued variables V
- a finite set of linear constraints over V
- an **objective function** (linear combination of V)

Integer linear program (ILP) is the same thing with integer-valued variables.

- LP solution in **polynomial time**
- ILP finding solution is **NP-complete**
- We can approximate ILP solution with corresponding LP
- Sounds familiar? Relaxation
- Flow heuristic h^{flow}
- Potential heuristic h^{pot}

Running example

FDR problem example

FDR planning task $P = \langle \mathbf{V}, O, s_{init}, s_{goal}, c \rangle$

•
$$O = \{o_1, o_2, o_3, o_4, o_5\}$$

	pre	eff	с
01	${A = D, C = H}$	${A = E, C = J}$	2
o ₂	${A = D}$	$\{B=G\}$	1
03	$\{B=G,C=J\}$	$\{C = K\}$	1
04	${A = E}$	${A = D}$	2
05	$\{C=H\}$	$\{C = J\}$	5

Producing and consuming

For every variable $V \in \mathbf{V}$ and every value $v \in D_V$ we define

• a set of operators producing $\langle V, v \rangle$: $prod(\langle V, v \rangle) = \{o | o \in O, V \in vars(eff(o)), eff(o)[V] = v\}$

• a set of operators consuming $\langle V, v \rangle$: $cons(\langle V, v \rangle) = \{o | o \in O, V \in vars(pre(o)) \cap vars(eff(o)), pre(o)[V] = v, pre(o)[V] \neq eff(o)[V]\}$

- FDR planning task $P = \langle \mathbf{V}, O, s_{\textit{init}}, s_{\textit{goal}}, c \rangle$
- real-valued variable x_o for each $o \in O$ counts operators in plan

LP formulation

$$\begin{array}{l} \text{minimize } \sum_{o \in O} c(o) x_o \\ \text{subject to } LB_{V,v} \leq \sum_{o \in prod(\langle V,v \rangle)} x_o - \sum_{o \in cons(\langle V,v \rangle)} x_o, \forall V \in \mathbf{V}, \forall v \in D_V \\ \text{where } LB_{V,v} = \begin{cases} 0 & \text{if } V \in vars(s_{goal}) \text{ and } s_{goal}[V] = v \text{ and } s[V] = v, \\ 1 & \text{if } V \in vars(s_{goal}) \text{ and } s_{goal}[V] = v \text{ and } s[V] \neq v, \\ -1 & \text{if } (V \notin vars(s_{goal}) \text{ or } s_{goal}[V] \neq v) \text{ and } s[V] = v, \\ 0 & \text{if } (V \notin vars(s_{goal}) \text{ or } s_{goal}[V] \neq v) \text{ and } s[V] \neq v, \end{cases} \end{array}$$

$$\mathsf{LB}_{V,v} = \begin{cases} 0 & \text{if } V \in vars(s_{goal}) \text{ and } s_{goal}[V] = v \text{ and } s[V] = v, \\ 1 & \text{if } V \in vars(s_{goal}) \text{ and } s_{goal}[V] = v \text{ and } s[V] \neq v, \\ -1 & \text{if } (V \notin vars(s_{goal}) \text{ or } s_{goal}[V] \neq v) \text{ and } s[V] = v, \\ 0 & \text{if } (V \notin vars(s_{goal}) \text{ or } s_{goal}[V] \neq v) \text{ and } s[V] \neq v, \end{cases}$$

- if V = v in s then it cannot be consumed more times than produced to reach s_{goal}
- if V = v is not true in s it has to be produced at least once to reach s_{goal}
- if V = v is not set in s_{goal} but is set in s we don't know how many times it should be consumed or produced so we set the lower bound to -1 (can be consumed more then produced)
- if V = v is not set in goal state but is not set in s we can produce it but also consume it so we set the lower bound to 0

LP formulation

$$\begin{array}{l} \text{minimize } \sum_{o \in O} c(o) x_o \\ \text{subject to } LB_{V,v} \leq \sum_{o \in prod(\langle V, v \rangle)} x_o - \sum_{o \in cons(\langle V, v \rangle)} x_o, \forall V \in \mathbf{V}, \forall v \in D_V \\ \text{where } LB_{V,v} = \begin{cases} 0 & \text{if } V \in vars(s_{goal}) \text{ and } s_{goal}[V] = v \text{ and } s[V] = v, \\ 1 & \text{if } V \in vars(s_{goal}) \text{ and } s_{goal}[V] = v \text{ and } s[V] \neq v, \\ -1 & \text{if } (V \notin vars(s_{goal}) \text{ or } s_{goal}[V] \neq v) \text{ and } s[V] = v, \\ 0 & \text{if } (V \notin vars(s_{goal}) \text{ or } s_{goal}[V] \neq v) \text{ and } s[V] \neq v, \end{cases} \end{array}$$

The value of h^{flow} heuristic for the state s is $h^{flow}(s) = \begin{cases} \sum_{o \in O} c(o)x_o \end{bmatrix}$ if the solution is feasible ∞ if the solution is not feasible

Long story short

- Define variable x_o for each operator (operator "counters")
- Create prod and cons sets
- Write constraints with $LB_{V,v}$ constants on the left side
- Compute constants $LB_{V,v}$ based on the 4 rules
- Put it in a solver
- ...
- Profit!

- FDR planning task $P = \langle \mathbf{V}, O, s_{\textit{init}}, s_{\textit{goal}}, c
 angle$
- real-valued variable $P_{V,v}$ for each variable $V \in \mathbf{V}$ and each value $v \in D_V$
 - potential corresponding to $\langle V, v
 angle$
- real-valued variable M_V for each variable $V \in \mathbf{V}$
 - upper bound on the potentials of variable V
 - used in situations where we don't know the value \rightarrow prepare for the worst case
 - example: variable B in our problem P

Goal-awareness constraint: $P_{A,D} + P_{C,K} \leq 0$...what about B?

• Add each case of B (possibly exponentially many)

•
$$P_{A,D} + P_{B,F} + P_{C,K} \le 0$$

• $P_{A,D} + P_{B,G} + P_{C,K} \le 0$

• Use the *M_B* bound (linear)

•
$$P_{A,D} + M_B + P_{C,K} \le 0$$

•
$$P_{B,F} \leq M_B$$

•
$$P_{B,G} \leq M_B$$

LP formulation

The value of h^{pot} heuristic for the state s is

$$h^{pot}(s) = \begin{cases} \sum_{V \in \mathbf{V}} P_{V,s[V]} & \text{if the solution is feasible} \\ \infty & \text{if the solution is not feasible} \end{cases}$$

Long story short

- Define potential $P_{V,v}$ for each variable and its possible value
- Define potential upper bound for each variable $V \in \mathbf{V}$
- When computing $h^{pot}(s)$ we want to maximize sum of potentials of $\langle V, v \rangle$ pairs in s
- define goal-awareness constraints
- define consistency constraints with respect to operator costs
- Solve \rightarrow get the potentials

Abstraction heuristics

- Simplification of the problem
- Making the problem smaller by dropping state distinctions

Transition system $\mathcal{T} = \langle S, L, T, I, G \rangle$

- S finite set of states
- L finite set of labels
- $T \subseteq S \times L \times S$ transition relation
- $I \subseteq S$ set of initial states
- $G \subseteq S$ set of goal states
- $c(l) \in \mathrm{R}^+_0, \forall l \in L$ cost function for each label

Transition system for problem P

Transition system $\mathcal{T}(P)$ is defined for FDR problem $P = \langle V, O, s_{init}, s_{goal}, c \rangle$. The mapping goes as followed:

• S is set of states over V

•
$$L = O$$

•
$$T = \{(s, o, t) | res(o, s) = t\}$$

•
$$I = \{s_{init}\}$$

• $G = \{s | s \in S, s \text{ is consistent with } s_{goal}\}$

Abstraction definition

- Let's have two transition systems $\mathcal{T}^1 = \langle S^1, L, T^1, I^1, G^1 \rangle$ and $\mathcal{T}^2 = \langle S^2, L, T^2, I^2, G^2 \rangle$ with the same set of labels L.
- Let's have an abstraction function $\alpha : S^1 \mapsto S^2$ which maps S^1 to S^2 .
- S^2 is an **abstraction** of S^1 if
 - $\forall s \in I^1$ holds that $lpha(s) \in I^2$
 - $\forall s \in G^1$ holds that $lpha(s) \in G^2$
 - $\forall (s, l, t) \in T^1$ holds that $(\alpha(s), l, \alpha(t)) \in T^2$

Abstraction heuristics

Abstraction heuristic

Let *P* denote an FDR planning task and A denote an **abstraction** of its transition system T(P).

Abstraction heuristic induced by \mathcal{A} and α is the function

 $h^{\mathcal{A}, lpha} = h^*_{\mathcal{A}}(lpha(s)), \forall s \in S$

Abstraction heuristic

Let *P* denote an FDR planning task and A denote an **abstraction** of its transition system T(P).

Abstraction heuristic induced by \mathcal{A} and α is the function

$$h^{\mathcal{A},lpha}=h^*_{\mathcal{A}}(lpha(s)), orall s\in S$$

Synchronized product

Given two transition systems $\mathcal{T}^1 = \langle S^1, L, T^1, I^1, G^1 \rangle$ and $\mathcal{T}^2 = \langle S^2, L, T^2, I^2, G^2 \rangle$ with the same labels, their **synchronized product** $\mathcal{T}^1 \otimes \mathcal{T}^2 = \mathcal{T}$ is a transition system $\mathcal{T} = \langle S, L, T, I, G \rangle$, where

• $S = S^1 \times S^2$

•
$$T = \{((s_1, s_2), l, (t_1, t_2)) | (s_1, l, s_2) \in T^1, (s_2, l, t_2) \in T^2\}$$

• $l = l^1 \times l^2$

• $G = G^1 \times G^2$

- Different types of abstraction heuristics
- How to select α?
- In this tutorial: merge & shrink
- Consists of
 - merging = computing synchronized products of the abstractions
 - $\bullet~\mbox{shrinking} = \mbox{abstracting}$ the abstractions further
- There are many strategies...so we will just focus on the main thought behind it

Let's compute synchronized product!

Let's try an example we know well...

FDR representation

FDR problem
$$P = \langle V, O, s_I, s_G, c \rangle$$

 $V = \{a, t, p\}$
 $D_a = \{A, B\} D_t = \{B, C\} D_p = \{A, B, C, a, t\}$
 $s_I = \{a = A, t = C, p = A\}$
 $s_G = \{p = C\}$

		pre	eff	с
-	fAB	a=A	a=B	1
0 =	fBA	a=B	a=A	1
	dBC	t=B	t=C	1
	dCB	t=C	t=B	1
	laA	a=A, p=A	p=a	1
	laB	a=B, p=B	p=a	1
	ltΒ	t=B, p=B	p=t	1
	ltC	t=C, p=C	p=t	1
	uaA	p=a, a=A	p=A	1
	uaB	p=a, a=B	p=B	1
	utB	p=t, t=B	p=B	1
	utC	p=t, t=C	p=C	1

- One possible representation is by atomic projections
- One transition system for one variable from $V = \{a, t, p\}$

$$\begin{array}{ll} \mathcal{T}^{a} & \mathcal{T}^{t} & S^{p} = \\ S^{a} = \{aA, aB\} & S^{t} = \{tB, tC\} & \{pA, pB, pC, pa, pt\} \\ I^{a} = \{aA\} & I^{t} = \{tC\} & I^{p} = \{pA\} \\ G^{a} = \{aA, aB\} & G^{t} = \{tB, tC\} & G^{p} = \{pC\} \end{array}$$

- Create atomic projections (one per variable)
- Ø Merge two arbitrary transition systems (synchronized product)
- Shrink the new transition graph (merge states together to create smaller abstraction)
- Repeat 2 and 3 until you're left with one abstraction in which you can find the solution

- Know definition of h^{flow} and h^{pot} heuristics
- Know how to compute Merge & Shrink
 - How to create synchronized product
 - Atomic projections
 - Main principle
 - merging = creating synchronized products of two transition systems
 - shrinking = creating smaller abstraction

The End

Feedback form link

