# LP-based Heuristics, Abstractions $h^{\text {flow }}, h^{\text {pot }}$, Merge \& Shrink 

Michaela Urbanovská

PUI Tutorial

Week 7

## Lecture check

- Any questions regarding the lecture?



## Organization

Assignment \#1-3

- No substitute date for 10.4.2023
- 12.4.2023 will be tutorial with consultation + computing more heuristic examples
- Deadline will be extended for everyone to 14.4.2023 23:59


## LP-based heuristics

## Linear program

Linear program (LP) consists of:

- a finite set of real-valued variables $\mathbf{V}$
- a finite set of linear constraints over V
- an objective function (linear combination of V)

Integer linear program (ILP) is the same thing with integer-valued variables.

## LP-based heuristics

- LP - solution in polynomial time
- ILP - finding solution is NP-complete
- We can approximate ILP solution with corresponding LP
- Sounds familiar? Relaxation
- Flow heuristic - $h^{\text {flow }}$
- Potential heuristic - $h^{p o t}$


## Running example

## FDR problem example

FDR planning task $P=\left\langle\mathbf{V}, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$

- $\mathbf{V}=\{A, B, C\}$
- $D_{A}=\{D, E\} ; D_{B}=\{F, G\} ; D_{C}=\{H, J, K\}$
- $s_{\text {init }}=\{A=D, B=F, C=H\}$
- $s_{\text {goal }}=\{A=D, C=K\}$
- $O=\left\{o_{1}, o_{2}, o_{3}, o_{4}, o_{5}\right\}$

|  | pre | eff | c |
| :--- | :--- | :--- | :--- |
| $\mathrm{o}_{1}$ | $\{\mathrm{~A}=\mathrm{D}, \mathrm{C}=\mathrm{H}\}$ | $\{\mathrm{A}=\mathrm{E}, \mathrm{C}=\mathrm{J}\}$ | 2 |
| $\mathrm{o}_{2}$ | $\{\mathrm{~A}=\mathrm{D}\}$ | $\{\mathrm{B}=\mathrm{G}\}$ | 1 |
| $\mathrm{O}_{3}$ | $\{\mathrm{~B}=\mathrm{G}, \mathrm{C}=\mathrm{J}\}$ | $\{\mathrm{C}=\mathrm{K}\}$ | 1 |
| $\mathrm{o}_{4}$ | $\{\mathrm{~A}=\mathrm{E}\}$ | $\{\mathrm{A}=\mathrm{D}\}$ | 2 |
| $\mathrm{o}_{5}$ | $\{\mathrm{C}=\mathrm{H}\}$ | $\{\mathrm{C}=\mathrm{J}\}$ | 5 |

## Producing and consuming

For every variable $V \in \mathbf{V}$ and every value $v \in D_{V}$ we define

- a set of operators producing $\langle V, v\rangle$ : $\operatorname{prod}(\langle V, v\rangle)=\{o \mid o \in O, V \in \operatorname{vars}(\operatorname{eff}(o)), \operatorname{eff}(o)[V]=v\}$
- a set of operators consuming $\langle V, v\rangle$ : $\operatorname{cons}(\langle V, v\rangle)=\{o \mid o \in O, V \in$ $\operatorname{vars}(\operatorname{pre}(o)) \cap \operatorname{vars}(\operatorname{eff}(o)), \operatorname{pre}(o)[V]=v, \operatorname{pre}(o)[V] \neq \operatorname{eff}(o)[V]\}$


## $h^{\text {flow }}$

- FDR planning task $P=\left\langle\mathbf{V}, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$
- real-valued variable $x_{o}$ for each $o \in O$ - counts operators in plan


## LP formulation

$$
\operatorname{minimize} \sum_{o \in O} c(o) x_{o}
$$

subject to $L B_{V, v} \leq \sum_{o \in \operatorname{prod}(\langle V, v\rangle)} x_{o}-\sum_{o \in \operatorname{cons}(\langle V, v\rangle)} x_{o}, \forall V \in \mathbf{V}, \forall v \in D_{V}$ where $L B_{V, v}= \begin{cases}0 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V]=v, \\ 1 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V] \neq v, \\ -1 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V]=v, \\ 0 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V] \neq v,\end{cases}$

$$
\operatorname{LB}_{V, v}= \begin{cases}0 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V]=v, \\ 1 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V] \neq v, \\ -1 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V]=v, \\ 0 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V] \neq v,\end{cases}
$$

- if $V=v$ in $s$ then it cannot be consumed more times than produced to reach $s_{\text {goal }}$
- if $V=v$ is not true in $s$ it has to be produced at least once to reach $s_{\text {goal }}$
- if $V=v$ is not set in $s_{\text {goal }}$ but is set in $s$ we don't know how many times it should be consumed or produced so we set the lower bound to -1 (can be consumed more then produced)
- if $V=v$ is not set in goal state but is not set in $s$ we can produce it but also consume it so we set the lower bound to 0


## $h^{\text {flow }}$

## LP formulation

$$
\operatorname{minimize} \sum_{o \in O} c(o) x_{o}
$$

subject to $L B_{V, v} \leq \sum_{o \in \operatorname{prod}(\langle V, v\rangle)} x_{o}-\sum_{o \in \operatorname{cons}(\langle V, v\rangle)} x_{o}, \forall V \in \mathbf{V}, \forall v \in D_{V}$ where $L B_{V, v}= \begin{cases}0 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V]=v, \\ 1 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V] \neq v, \\ -1 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V]=v, \\ 0 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V] \neq v,\end{cases}$
The value of $h^{\text {flow }}$ heuristic for the state $s$ is $h^{\text {flow }}(s)= \begin{cases}\left\lceil\sum_{o \in O} c(o) x_{0}\right\rceil & \text { if the solution is feasible } \\ \infty & \text { if the solution is not feasible }\end{cases}$

## $h^{\text {flow }}$

## Long story short

- Define variable $x_{o}$ for each operator (operator "counters")
- Create prod and cons sets
- Write constraints with $L B_{V, v}$ constants on the left side
- Compute constants $L B_{V, v}$ based on the 4 rules
- Put it in a solver
- ...
- Profit!
- FDR planning task $P=\left\langle\mathbf{V}, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$
- real-valued variable $P_{V, v}$ for each variable $V \in \mathbf{V}$ and each value $v \in D_{V}$
- potential corresponding to $\langle V, v\rangle$
- real-valued variable $M_{V}$ for each variable $V \in \mathbf{V}$
- upper bound on the potentials of variable $V$
- used in situations where we don't know the value $\rightarrow$ prepare for the worst case
- example: variable $B$ in our problem $P$

Goal-awareness constraint: $P_{A, D}+P_{C, K} \leq 0 \ldots$ what about B ?

- Add each case of B (possibly exponentially many)
- $P_{A, D}+P_{B, F}+P_{C, K} \leq 0$
- $P_{A, D}+P_{B, G}+P_{C, K} \leq 0$
- Use the $M_{B}$ bound (linear)
- $P_{A, D}+M_{B}+P_{C, K} \leq 0$
- $P_{B, F} \leq M_{B}$
- $P_{B, G} \leq M_{B}$


## LP formulation

$$
\begin{gathered}
\text { maximize } \sum_{V \in \mathbf{V}} P_{V, s_{\text {init }}[V]} \\
\text { subject to } P_{V, v} \leq M_{V}, \forall V \in \mathbf{V}, \forall v \in D_{V} \\
\sum_{V \in \mathbf{V}} \operatorname{maxpot}\left(V, s_{\text {goal }}\right) \leq 0 \\
\sum_{V \in \operatorname{vars}(\operatorname{eff}(o))}\left(\operatorname{maxpot}(V, \operatorname{pre}(o))-P_{V, e f f(o)[V])}\right) \leq c(o), \forall o \in O
\end{gathered}
$$

$$
\text { where } \operatorname{maxpot}(V, p)= \begin{cases}P_{V, p[V]} & \text { if } V \in \operatorname{vars}(p) \\ M_{V} & \text { otherwise }\end{cases}
$$

The value of $h^{p o t}$ heuristic for the state $s$ is

$$
h^{p o t}(s)= \begin{cases}\sum_{V \in \mathbf{V}} P_{V, s[V]} & \text { if the solution is feasible } \\ \infty & \text { if the solution is not feasible }\end{cases}
$$

## Long story short

- Define potential $P_{V, v}$ for each variable and its possible value
- Define potential upper bound for each variable $V \in \mathbf{V}$
- When computing $h^{p o t}(s)$ we want to maximize sum of potentials of $\langle V, v\rangle$ pairs in $s$
- define goal-awareness constraints
- define consistency constraints with respect to operator costs
- Solve $\rightarrow$ get the potentials


## Abstraction heuristics

- Simplification of the problem
- Making the problem smaller by dropping state distinctions



## Abstraction heuristics

Transition system $\mathcal{T}=\langle S, L, T, I, G\rangle$

- $S$ - finite set of states
- $L$ - finite set of labels
- $T \subseteq S \times L \times S$ - transition relation
- $I \subseteq S$ - set of initial states
- $G \subseteq S$ - set of goal states
- $c(I) \in \mathrm{R}_{0}^{+}, \forall I \in L$ - cost function for each label


## Abstraction heuristics

## Transition system for problem $P$

Transition system $\mathcal{T}(P)$ is defined for FDR problem
$P=\left\langle V, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$.
The mapping goes as followed:

- $S$ is set of states over $V$
- $L=O$
- $T=\{(s, o, t) \mid r e s(o, s)=t\}$
- $I=\left\{s_{\text {init }}\right\}$
- $G=\left\{s \mid s \in S, s\right.$ is consistent with $\left.s_{\text {goal }}\right\}$


## Abstraction heuristics

## Abstraction definition

- Let's have two transition systems $\mathcal{T}^{1}=\left\langle S^{1}, L, T^{1}, I^{1}, G^{1}\right\rangle$ and $\mathcal{T}^{2}=\left\langle S^{2}, L, T^{2}, I^{2}, G^{2}\right\rangle$ with the same set of labels $L$.
- Let's have an abstraction function $\alpha: S^{1} \mapsto S^{2}$ which maps $S^{1}$ to $S^{2}$.
- $S^{2}$ is an abstraction of $S^{1}$ if
- $\forall s \in I^{1}$ holds that $\alpha(s) \in I^{2}$
- $\forall s \in G^{1}$ holds that $\alpha(s) \in G^{2}$
- $\forall(s, I, t) \in T^{1}$ holds that $(\alpha(s), I, \alpha(t)) \in T^{2}$


## Abstraction heuristics

## Abstraction heuristic

Let $P$ denote an FDR planning task and $\mathcal{A}$ denote an abstraction of its transition system $\mathcal{T}(P)$.
Abstraction heuristic induced by $\mathcal{A}$ and $\alpha$ is the function

$$
h^{\mathcal{A}, \alpha}=h_{\mathcal{A}}^{*}(\alpha(s)), \forall s \in S
$$

## Abstraction heuristics

## Abstraction heuristic

Let $P$ denote an FDR planning task and $\mathcal{A}$ denote an abstraction of its transition system $\mathcal{T}(P)$.
Abstraction heuristic induced by $\mathcal{A}$ and $\alpha$ is the function

$$
h^{\mathcal{A}, \alpha}=h_{\mathcal{A}}^{*}(\alpha(s)), \forall s \in S
$$

## Synchronized product

Given two transition systems $\mathcal{T}^{1}=\left\langle S^{1}, L, T^{1}, I^{1}, G^{1}\right\rangle$ and $\mathcal{T}^{2}=\left\langle S^{2}, L, T^{2}, I^{2}, G^{2}\right\rangle$ with the same labels, their synchronized product $\mathcal{T}^{1} \otimes \mathcal{T}^{2}=\mathcal{T}$ is a transition system $\mathcal{T}=\langle S, L, T, I, G\rangle$, where

- $S=S^{1} \times S^{2}$
- $T=\left\{\left(\left(s_{1}, s_{2}\right), l,\left(t_{1}, t_{2}\right)\right) \mid\left(s_{1}, l, s_{2}\right) \in T^{1},\left(s_{2}, l, t_{2}\right) \in T^{2}\right\}$
- $I=I^{1} \times I^{2}$
- $G=G^{1} \times G^{2}$


## Merge \& Shrink heuristic

- Different types of abstraction heuristics
- How to select $\alpha$ ?
- In this tutorial: merge \& shrink
- Consists of
- merging $=$ computing synchronized products of the abstractions
- shrinking $=$ abstracting the abstractions further
- There are many strategies...so we will just focus on the main thought behind it


## Merge \& Shrink heuristic

## Transition systems $\mathcal{T}^{1}$ and $\mathcal{T}^{2}$

- $L^{1}=L^{2}=\{a, b, c, d, e\}$
- $S^{1}=\{A, B, C, D\}$
- $T^{1}=\{(A, a, B),(B, b, C),(C, c, A),(A, d, A),(A, e, D)\}$
- $I^{1}=\{A\}$
- $G^{1}=\{A, C\}$
- $S^{2}=\{X, Y, Z\}$
- $T^{2}=\{(X, a, Y),(X, a, Z),(Y, b, Z),(Z, c, Y),(Z, d, Y),(Z, e, Z)\}$
- $I^{2}=\{X\}$
- $G^{2}=\{X\}$

Let's compute synchronized product!

## Merge \& Shrink heuristic

Let's try an example we know well...


## FDR representation

FDR problem $P=\left\langle V, O, s_{I}, s_{G}, c\right\rangle$
$V=\{a, t, p\}$
$D_{a}=\{A, B\} D_{t}=\{B, C\} D_{p}=\{A, B, C, a, t\}$
$s_{I}=\{a=A, t=C, p=A\}$
$s_{G}=\{p=C\}$

|  | pre | eff | $c$ |
| :---: | :---: | :---: | :---: |
| fAB | $a=A$ | $a=B$ | 1 |
| fBA | $a=B$ | $a=A$ | 1 |
| dBC | $\mathrm{t}=\mathrm{B}$ | $\mathrm{t}=\mathrm{C}$ | 1 |
| dCB | $\mathrm{t}=\mathrm{C}$ | $\mathrm{t}=\mathrm{B}$ | 1 |
| laA | $\mathrm{a}=\mathrm{A}, \mathrm{p}=\mathrm{A}$ | $\mathrm{p}=\mathrm{a}$ | 1 |
| laB | $\mathrm{a}=\mathrm{B}, \mathrm{p}=\mathrm{B}$ | $\mathrm{p}=\mathrm{a}$ | 1 |
| la | $\mathrm{t}=\mathrm{B}, \mathrm{p}=\mathrm{B}$ | $\mathrm{p}=\mathrm{t}$ | 1 |
| ltC | $\mathrm{t}=\mathrm{C}, \mathrm{p}=\mathrm{C}$ | $\mathrm{p}=\mathrm{t}$ | 1 |
| uaA | $\mathrm{p}=\mathrm{a}, \mathrm{a}=\mathrm{A}$ | $\mathrm{p}=\mathrm{A}$ | 1 |
| uaB | $\mathrm{p}=\mathrm{a}, \mathrm{a}=\mathrm{B}$ | $\mathrm{p}=\mathrm{B}$ | 1 |
| utB | $\mathrm{p}=\mathrm{t}, \mathrm{t}=\mathrm{B}$ | $\mathrm{p}=\mathrm{B}$ | 1 |
| ut C | $\mathrm{p}=\mathrm{t}, \mathrm{t}=\mathrm{C}$ | $\mathrm{p}=\mathrm{C}$ | 1 |

## Atomic projections

- One possible representation is by atomic projections
- One transition system for one variable from $V=\{a, t, p\}$

| $\mathcal{T}^{\mathbf{a}}$ | $\mathcal{T}^{\mathbf{t}}$ | $\mathcal{T}^{\mathbf{p}}$ |
| :--- | :--- | :--- |
| $S^{a}=\{a A, a B\}$ | $S^{t}=\{t B, t C\}$ | $S^{p}=$ |
| $I^{a}=\{a A\}$ | $I^{t}=\{t C\}$ | $\{p A, p B, p C, p a, p t\}$ |
| $G^{a}=\{a A, a B\}$ | $G^{t}=\{t B, t C\}$ | $I^{p}=\{p A\}$ |
|  |  | $G^{p}=\{p C\}$ |

## Merge \& Shrink

(1) Create atomic projections (one per variable)
(2) Merge two arbitrary transition systems (synchronized product)
(3) Shrink the new transition graph (merge states together to create smaller abstraction)
(9) Repeat 2 and 3 until you're left with one abstraction in which you can find the solution

## Recap

- Know definition of $h^{\text {flow }}$ and $h^{\text {pot }}$ heuristics
- Know how to compute Merge \& Shrink
- How to create synchronized product
- Atomic projections
- Main principle
- merging $=$ creating synchronized products of two transition systems
- shrinking $=$ creating smaller abstraction


## The End

## AIMDOU:

Feedback form link


