
LP-based Heuristics, Abstractions
hflow , hpot , Merge & Shrink

Michaela Urbanovská

PUI Tutorial
Week 7

Michaela Urbanovská PUI Tutorial 7 1 / 28



Lecture check

Any questions regarding the lecture?

Michaela Urbanovská PUI Tutorial 7 2 / 28



Organization

Assignment #1-3
No substitute date for 10.4.2023
12.4.2023 will be tutorial with consultation + computing more
heuristic examples
Deadline will be extended for everyone to 14.4.2023 23:59

Michaela Urbanovská PUI Tutorial 7 3 / 28



LP-based heuristics

Linear program
Linear program (LP) consists of:

a finite set of real-valued variables V
a finite set of linear constraints over V
an objective function (linear combination of V)

Integer linear program (ILP) is the same thing with integer-valued
variables.

Michaela Urbanovská PUI Tutorial 7 4 / 28



LP-based heuristics

LP - solution in polynomial time
ILP - finding solution is NP-complete
We can approximate ILP solution with corresponding LP
Sounds familiar? Relaxation

Flow heuristic - hflow

Potential heuristic - hpot

Michaela Urbanovská PUI Tutorial 7 5 / 28



Running example

FDR problem example
FDR planning task P = ⟨V, O, sinit , sgoal , c⟩

V = {A, B, C}
DA = {D, E}; DB = {F , G}; DC = {H, J , K}
sinit = {A = D, B = F , C = H}
sgoal = {A = D, C = K}
O = {o1, o2, o3, o4, o5}

pre eff c
o1 {A = D, C = H} {A = E, C = J} 2
o2 {A = D} {B = G} 1
o3 {B = G, C = J} {C = K} 1
o4 {A = E} {A = D} 2
o5 {C = H} {C = J} 5

Michaela Urbanovská PUI Tutorial 7 6 / 28



hflow

Producing and consuming
For every variable V ∈ V and every value v ∈ DV we define

a set of operators producing ⟨V , v⟩:
prod(⟨V , v⟩) = {o|o ∈ O, V ∈ vars(eff (o)), eff (o)[V ] = v}
a set of operators consuming ⟨V , v⟩:
cons(⟨V , v⟩) = {o|o ∈ O, V ∈
vars(pre(o)) ∩ vars(eff (o)), pre(o)[V ] = v , pre(o)[V ] ̸= eff (o)[V ]}

Michaela Urbanovská PUI Tutorial 7 7 / 28



hflow

FDR planning task P = ⟨V, O, sinit , sgoal , c⟩
real-valued variable xo for each o ∈ O - counts operators in plan

LP formulation

minimize
∑
o∈O

c(o)xo

subject to LBV ,v ≤
∑

o∈prod(⟨V ,v⟩)
xo −

∑
o∈cons(⟨V ,v⟩)

xo, ∀V ∈ V, ∀v ∈ DV

where LBV ,v =


0 if V ∈ vars(sgoal) and sgoal [V ] = v and s[V ] = v ,

1 if V ∈ vars(sgoal) and sgoal [V ] = v and s[V ] ̸= v ,

−1 if (V /∈ vars(sgoal) or sgoal [V ] ̸= v) and s[V ] = v ,

0 if (V /∈ vars(sgoal) or sgoal [V ] ̸= v) and s[V ] ̸= v ,

Michaela Urbanovská PUI Tutorial 7 8 / 28



hflow

LBV ,v =


0 if V ∈ vars(sgoal) and sgoal [V ] = v and s[V ] = v ,

1 if V ∈ vars(sgoal) and sgoal [V ] = v and s[V ] ̸= v ,

−1 if (V /∈ vars(sgoal) or sgoal [V ] ̸= v) and s[V ] = v ,

0 if (V /∈ vars(sgoal) or sgoal [V ] ̸= v) and s[V ] ̸= v ,

if V = v in s then it cannot be consumed more times than produced
to reach sgoal

if V = v is not true in s it has to be produced at least once to reach
sgoal

if V = v is not set in sgoal but is set in s we don’t know how many
times it should be consumed or produced so we set the lower bound
to −1 (can be consumed more then produced)
if V = v is not set in goal state but is not set in s we can produce it
but also consume it so we set the lower bound to 0

Michaela Urbanovská PUI Tutorial 7 9 / 28



hflow

LP formulation

minimize
∑
o∈O

c(o)xo

subject to LBV ,v ≤
∑

o∈prod(⟨V ,v⟩)
xo −

∑
o∈cons(⟨V ,v⟩)

xo, ∀V ∈ V, ∀v ∈ DV

where LBV ,v =


0 if V ∈ vars(sgoal) and sgoal [V ] = v and s[V ] = v ,

1 if V ∈ vars(sgoal) and sgoal [V ] = v and s[V ] ̸= v ,

−1 if (V /∈ vars(sgoal) or sgoal [V ] ̸= v) and s[V ] = v ,

0 if (V /∈ vars(sgoal) or sgoal [V ] ̸= v) and s[V ] ̸= v ,

The value of hflow heuristic for the state s is

hflow (s) =
{

⌈
∑

o∈O c(o)xo⌉ if the solution is feasible
∞ if the solution is not feasible

Michaela Urbanovská PUI Tutorial 7 10 / 28



hflow

Long story short
Define variable xo for each operator (operator ”counters”)
Create prod and cons sets
Write constraints with LBV ,v constants on the left side
Compute constants LBV ,v based on the 4 rules
Put it in a solver
...
Profit!

Michaela Urbanovská PUI Tutorial 7 11 / 28



hpot

FDR planning task P = ⟨V, O, sinit , sgoal , c⟩
real-valued variable PV ,v for each variable V ∈ V and each value
v ∈ DV

potential corresponding to ⟨V , v⟩
real-valued variable MV for each variable V ∈ V

upper bound on the potentials of variable V
used in situations where we don’t know the value → prepare for the
worst case
example: variable B in our problem P

Michaela Urbanovská PUI Tutorial 7 12 / 28



hpot

Goal-awareness constraint: PA,D + PC ,K ≤ 0 ...what about B?
Add each case of B (possibly exponentially many)

PA,D + PB,F + PC ,K ≤ 0
PA,D + PB,G + PC ,K ≤ 0

Use the MB bound (linear)
PA,D + MB + PC ,K ≤ 0
PB,F ≤ MB
PB,G ≤ MB

Michaela Urbanovská PUI Tutorial 7 13 / 28



hpot

LP formulation
maximize

∑
V ∈V

PV ,sinit [V ]

subject to PV ,v ≤ MV , ∀V ∈ V, ∀v ∈ DV∑
V ∈V

maxpot(V , sgoal) ≤ 0

∑
V ∈vars(eff (o))

(maxpot(V , pre(o)) − PV ,eff (o)[V ])) ≤ c(o), ∀o ∈ O

where maxpot(V , p) =
{

PV ,p[V ] if V ∈ vars(p),
MV otherwise.

The value of hpot heuristic for the state s is

hpot(s) =
{∑

V ∈V PV ,s[V ] if the solution is feasible
∞ if the solution is not feasible

Michaela Urbanovská PUI Tutorial 7 14 / 28



hpot

Long story short
Define potential PV ,v for each variable and its possible value
Define potential upper bound for each variable V ∈ V
When computing hpot(s) we want to maximize sum of potentials of
⟨V , v⟩ pairs in s
define goal-awareness constraints
define consistency constraints with respect to operator costs
Solve → get the potentials

Michaela Urbanovská PUI Tutorial 7 15 / 28



Abstraction heuristics

Simplification of the problem
Making the problem smaller by dropping state distinctions

Michaela Urbanovská PUI Tutorial 7 16 / 28



Abstraction heuristics

Transition system T = ⟨S, L, T , I , G⟩
S - finite set of states
L - finite set of labels
T ⊆ S × L × S - transition relation
I ⊆ S - set of initial states
G ⊆ S - set of goal states
c(l) ∈ R+

0 , ∀l ∈ L - cost function for each label

Michaela Urbanovská PUI Tutorial 7 17 / 28



Abstraction heuristics

Transition system for problem P
Transition system T (P) is defined for FDR problem
P = ⟨V , O, sinit , sgoal , c⟩.
The mapping goes as followed:

S is set of states over V
L = O
T = {(s, o, t)|res(o, s) = t}
I = {sinit}
G = {s|s ∈ S, s is consistent with sgoal}

Michaela Urbanovská PUI Tutorial 7 18 / 28



Abstraction heuristics

Abstraction definition
Let’s have two transition systems T 1 = ⟨S1, L, T 1, I1, G1⟩ and
T 2 = ⟨S2, L, T 2, I2, G2⟩ with the same set of labels L.
Let’s have an abstraction function α : S1 7→ S2 which maps S1 to
S2.
S2 is an abstraction of S1 if

∀s ∈ I1 holds that α(s) ∈ I2

∀s ∈ G1 holds that α(s) ∈ G2

∀(s, l , t) ∈ T 1 holds that (α(s), l , α(t)) ∈ T 2

Michaela Urbanovská PUI Tutorial 7 19 / 28



Abstraction heuristics

Abstraction heuristic
Let P denote an FDR planning task and A denote an abstraction of its
transition system T (P).
Abstraction heuristic induced by A and α is the function

hA,α = h∗
A(α(s)), ∀s ∈ S

Synchronized product
Given two transition systems T 1 = ⟨S1, L, T 1, I1, G1⟩ and
T 2 = ⟨S2, L, T 2, I2, G2⟩ with the same labels, their synchronized
product T 1 ⊗ T 2 = T is a transition system T = ⟨S, L, T , I, G⟩, where

S = S1 × S2

T = {((s1, s2), l , (t1, t2))|(s1, l , s2) ∈ T 1, (s2, l , t2) ∈ T 2}
I = I1 × I2

G = G1 × G2

Michaela Urbanovská PUI Tutorial 7 20 / 28



Abstraction heuristics

Abstraction heuristic
Let P denote an FDR planning task and A denote an abstraction of its
transition system T (P).
Abstraction heuristic induced by A and α is the function

hA,α = h∗
A(α(s)), ∀s ∈ S

Synchronized product
Given two transition systems T 1 = ⟨S1, L, T 1, I1, G1⟩ and
T 2 = ⟨S2, L, T 2, I2, G2⟩ with the same labels, their synchronized
product T 1 ⊗ T 2 = T is a transition system T = ⟨S, L, T , I, G⟩, where

S = S1 × S2

T = {((s1, s2), l , (t1, t2))|(s1, l , s2) ∈ T 1, (s2, l , t2) ∈ T 2}
I = I1 × I2

G = G1 × G2

Michaela Urbanovská PUI Tutorial 7 20 / 28



Merge & Shrink heuristic

Different types of abstraction heuristics
How to select α?
In this tutorial: merge & shrink
Consists of

merging = computing synchronized products of the abstractions
shrinking = abstracting the abstractions further

There are many strategies...so we will just focus on the main thought
behind it

Michaela Urbanovská PUI Tutorial 7 21 / 28



Merge & Shrink heuristic

Transition systems T 1 and T 2

L1 = L2 = {a, b, c, d , e}
S1 = {A, B, C , D}
T 1 = {(A, a, B), (B, b, C), (C , c, A), (A, d , A), (A, e, D)}
I1 = {A}
G1 = {A, C}
S2 = {X , Y , Z}
T 2 = {(X , a, Y ), (X , a, Z ), (Y , b, Z ), (Z , c, Y ), (Z , d , Y ), (Z , e, Z )}
I2 = {X}
G2 = {X}

Let’s compute synchronized product!

Michaela Urbanovská PUI Tutorial 7 22 / 28



Merge & Shrink heuristic

Let’s try an example we know well...

A B C

Michaela Urbanovská PUI Tutorial 7 23 / 28



FDR representation
FDR problem P = ⟨V , O, sI , sG , c⟩
V = {a, t, p}
Da = {A, B} Dt = {B, C} Dp = {A, B, C , a, t}
sI = {a = A, t = C , p = A}
sG = {p = C}

O =

pre eff c
fAB a=A a=B 1
fBA a=B a=A 1
dBC t=B t=C 1
dCB t=C t=B 1
laA a=A, p=A p=a 1
laB a=B, p=B p=a 1
ltB t=B, p=B p=t 1
ltC t=C, p=C p=t 1
uaA p=a, a=A p=A 1
uaB p=a, a=B p=B 1
utB p=t, t=B p=B 1
utC p=t, t=C p=C 1

Michaela Urbanovská PUI Tutorial 7 24 / 28



Atomic projections

One possible representation is by atomic projections
One transition system for one variable from V = {a, t, p}

T a

Sa = {aA, aB}
Ia = {aA}
Ga = {aA, aB}

T t

St = {tB, tC}
It = {tC}
G t = {tB, tC}

T p

Sp =
{pA, pB, pC , pa, pt}
Ip = {pA}
Gp = {pC}

Michaela Urbanovská PUI Tutorial 7 25 / 28



Merge & Shrink

1 Create atomic projections (one per variable)
2 Merge two arbitrary transition systems (synchronized product)
3 Shrink the new transition graph (merge states together to create

smaller abstraction)
4 Repeat 2 and 3 until you’re left with one abstraction in which you can

find the solution

Michaela Urbanovská PUI Tutorial 7 26 / 28



Recap

Know definition of hflow and hpot heuristics
Know how to compute Merge & Shrink

How to create synchronized product
Atomic projections
Main principle

merging = creating synchronized products of two transition systems
shrinking = creating smaller abstraction

Michaela Urbanovská PUI Tutorial 7 27 / 28



The End

Feedback form link

Michaela Urbanovská PUI Tutorial 7 28 / 28

https://forms.gle/JAAcKJqwLH2KWtyF8

