Automated (AI) Planning

Abstractions and Abstraction Heuristics

Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural
Patterns
Performance

Coming up with heuristics in a principled way

General procedure for obtaining a heuristic

Solve an easier version of the problem.
Two common methods:

- relaxation: consider less constrained version of the problem
- abstraction: consider smaller version of real problem

In the previous chapter, we have studied relaxation, which has been very successfully applied to satisficing planning.
Now, we study abstraction, which is one of the most prominent techniques for optimal planning.

Abstracting a transition system

Abstracting a transition system means dropping some distinctions between states, while preserving the transition behaviour as much as possible.

- An abstraction of a transition system \mathcal{T} is defined by an abstraction mapping α that defines which states of \mathcal{T} should be distinguished and which ones should not.
- From \mathcal{T} and α, we compute an abstract transition system \mathcal{T}^{\prime} which is similar to \mathcal{T}, but smaller.
- The abstract goal distances (goal distances in \mathcal{T}^{\prime}) are used as heuristic estimates for goal distances in \mathcal{T}.

Abstracting a transition system: example

Example (15-puzzle)

A 15 -puzzle state is given by a permutation $\left\langle b, t_{1}, \ldots, t_{15}\right\rangle$ of $\{1, \ldots, 16\}$, where b denotes the blank position and the other components denote the positions of the 15 tiles.
One possible abstraction mapping ignores the precise location of tiles $8-15$, i. e., two states are distinguished iff they differ in the position of the blank or one of the tiles $1-7$:

$$
\alpha\left(\left\langle b, t_{1}, \ldots, t_{15}\right\rangle\right)=\left\langle b, t_{1}, \ldots, t_{7}\right\rangle
$$

The heuristic values for this abstraction correspond to the cost of moving tiles $1-7$ to their goal positions.

Abstraction example: 15-puzzle

9	2	12	6					
5	7	14	13					
3	4	1	11					
15	10	8		$\quad \rightarrow$	1	2	3	4
:---:	:---:	:---:	:---:					
5	6	7	8					
9	10	11	12					
13	14	15						

real state space

- $16!=20922789888000 \approx 2 \cdot 10^{13}$ states
- $\frac{16!}{2}=10461394944000 \approx 10^{13}$ reachable states

Automated (AI) Planning

Abstractions:
informally
Introduction
Practical
requirements
Multiple
abstractions
Outlook
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics

Structural
Patterns

Abstraction example: 15-puzzle

	2		6
5	7		
3	4	1	

\rightarrow| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 5 | 6 | 7 | |
| | | | |
| | | | |

abstract state space

- $16 \cdot 15 \cdot \ldots \cdot 9=518918400 \approx 5 \cdot 10^{8}$ states
- $16 \cdot 15 \cdot \ldots \cdot 9=518918400 \approx 5 \cdot 10^{8}$ reachable states

Automated
(AI) Planning

Abstractions:
informally
Introduction
Practical
requirements
Multiple
abstractions
Outlook
Abstractions:
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics

Structural
Patterns

Computing the abstract transition system

Given \mathcal{T} and α, how do we compute \mathcal{T}^{\prime} ?

Requirement

We want to obtain an admissible heuristic. Hence, $h^{*}\left(\alpha(s)\right.$) (in the abstract state space \mathcal{T}^{\prime}) should never overestimate $h^{*}(s)$ (in the concrete state space \mathcal{T}).

An easy way to achieve this is to ensure that all solutions in \mathcal{T} also exist in \mathcal{T}^{\prime} :

- If s is a goal state in \mathcal{T}, then $\alpha(s)$ is a goal state in \mathcal{T}^{\prime}.
- If \mathcal{T} has a transition from s to t, then \mathcal{T}^{\prime} has a transition from $\alpha(s)$ to $\alpha(t)$.

Practical requirements for abstractions

To be useful in practice, an abstraction heuristic must be efficiently computable. This gives us two requirements for α :

- For a given state s, the abstract state $\alpha(s)$ must be efficiently computable.
- For a given abstract state $\alpha(s)$, the abstract goal distance $h^{*}(\alpha(s))$ must be efficiently computable.

There are different ways of achieving these requirements:

- pattern database heuristics (Culberson \& Schaeffer, 1996)
- merge-and-shrink abstractions (Dräger, Finkbeiner \& Podelski, 2006)
- structural patterns (Katz \& Domshlak, 2008)

Multiple

Practical requirements for abstractions: example

Example (15-puzzle)

In our running example, α can be very efficiently computed: just project the given 16 -tuple to its first 8 components.

To compute abstract goal distances efficiently during search, most common algorithms precompute all abstract goal distances prior to search by performing a backward breadth-first search from the goal state(s). The distances are then stored in a table (requires about 495 MB of RAM).
During search, computing $h^{*}(\alpha(s))$ is just a table lookup.
This heuristic is an example of a pattern database heuristic.

Multiple abstractions

- One important practical question is how to come up with a suitable abstraction mapping α.
- Indeed, there is usually a huge number of possibilities, and it is important to pick good abstractions (i. e., ones that lead to informative heuristics).
- However, it is generally not necessary to commit to a single abstraction.

Combining multiple abstractions

Maximizing several abstractions:
Automated (AI) Planning

- Each abstraction mapping gives rise to an admissible heuristic.
- By computing the maximum of several admissible heuristics, we obtain another admissible heuristic which dominates the component heuristics.
- Thus, we can always compute several abstractions and maximize over the individual abstract goal distances.

Adding several abstractions:

- In some cases, we can even compute the sum of individual estimates and still stay admissible.
- Summation often leads to much higher estimates than maximization, so it is important to understand when it is admissible.

Maximizing several abstractions: example

Example (15-puzzle)

- mapping to tiles $1-7$ was arbitrary $~$ can use any subset of tiles
- with the same amount of memory required for the tables for the mapping to tiles $1-7$, we could store the tables for nine different abstractions to six tiles and the blank
- use maximum of individual estimates

Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural
Patterns

Adding several abstractions: example

9	2	12	6
5	7	14	13
3	4	1	11
15	10	8	

9	2	12	6
5	7	14	13
3	4	1	11
15	10	8	

- 1st abstraction: ignore precise location of $8-15$
- 2nd abstraction: ignore precise location of 1-7
\sim Is the sum of the abstraction heuristics admissible?

Automated
(AI) Planning

Abstractions:
informally
Introduction
Practical
requirements
Multiple
abstractions
Outlook
Abstractions:
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural
Patterns

Adding several abstractions: example

	2		6
5	7		
3	4	1	

9		12	
		14	13
			11
15	10	8	

- 1st abstraction: ignore precise location of $8-15$
- 2nd abstraction: ignore precise location of 1-7
\sim The sum of the abstraction heuristics is not admissible.

Automated
(AI) Planning

Abstractions:
informally
Introduction
Practical
requirements
Multiple
abstractions
Outlook
Abstractions:
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics

Structural
Patterns

Adding several abstractions: example

	2		6
5	7		
3	4	1	

9		12	
		14	13
			11
15	10	8	

- 1st abstraction: ignore precise location of 8-15 and blank
- 2nd abstraction: ignore precise location of 1-7 and blank
\leadsto The sum of the abstraction heuristics is admissible.

Automated
(AI) Planning

Abstractions:
informally
Introduction
Practical
requirements
Multiple
abstractions
Outlook
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics

Structural
Patterns

Transition systems

Definition (transition system)

A transition system is a 5-tuple $\mathcal{T}=\langle S, L, T, I, G\rangle$ where

- S is a finite set of states (the state space),
- L is a finite set of (transition) labels,
- $T \subseteq S \times L \times S$ is the transition relation,
- $I \subseteq S$ is the set of initial states, and
- $G \subseteq S$ is the set of goal states.

We say that \mathcal{T} has the transition $\left\langle s, l, s^{\prime}\right\rangle$ if $\left\langle s, l, s^{\prime}\right\rangle \in T$.
Note: For technical reasons, the definition slightly differs from our earlier one. (It includes explicit labels.)

Transition systems: example

Note: To reduce clutter, our figures usually omit arc labels and are important for the formal definition of the transition system.

Transition systems of SAS ${ }^{+}$planning tasks

Definition (transition system of an SAS ${ }^{+}$planning task)

Let $\Pi=\langle V, I, O, G\rangle$ be an SAS^{+}planning task.
The transition system of Π, in symbols $\mathcal{T}(\Pi)$, is the transition

- S^{\prime} is the set of states over V,
- $L^{\prime}=O$,
- $T^{\prime}=\left\{\left\langle s^{\prime}, o^{\prime}, t^{\prime}\right\rangle \in S^{\prime} \times L^{\prime} \times S^{\prime} \mid \operatorname{app}_{o^{\prime}}\left(s^{\prime}\right)=t^{\prime}\right\}$,
- $I^{\prime}=\{I\}$, and
- $G^{\prime}=\left\{s^{\prime} \in S^{\prime} \mid s^{\prime} \models G\right\}$.

Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural

Example task: one package, two trucks

Example (one package, two trucks)

Consider the following SAS^{+}planning task $\langle V, I, O, G\rangle$:

- $V=\left\{p, t_{\mathrm{A}}, t_{\mathrm{B}}\right\}$ with
- $\mathcal{D}_{p}=\{\mathrm{L}, \mathrm{R}, \mathrm{A}, \mathrm{B}\}$
- $\mathcal{D}_{t_{\mathrm{A}}}=\mathcal{D}_{t_{\mathrm{B}}}=\{\mathrm{L}, \mathrm{R}\}$
- $I=\left\{p \mapsto \mathrm{~L}, t_{\mathrm{A}} \mapsto \mathrm{R}, t_{\mathrm{B}} \mapsto \mathrm{R}\right\}$
- $O=\left\{\operatorname{pickup}_{i, j} \mid i \in\{\mathrm{~A}, \mathrm{~B}\}, j \in\{\mathrm{~L}, \mathrm{R}\}\right\}$
$\cup\left\{\operatorname{drop}_{i, j} \mid i \in\{\mathrm{~A}, \mathrm{~B}\}, j \in\{\mathrm{~L}, \mathrm{R}\}\right\}$
$\cup\left\{\operatorname{move}_{i, j, j^{\prime}} \mid i \in\{\mathrm{~A}, \mathrm{~B}\}, j, j^{\prime} \in\{\mathrm{L}, \mathrm{R}\}, j \neq j^{\prime}\right\}$, where
- pickup $_{i, j}=\left\langle t_{i}=j \wedge p=j, p:=i\right\rangle$
- $\operatorname{drop}_{i, j}=\left\langle t_{i}=j \wedge p=i, p:=j\right\rangle$
- move $_{i, j, j^{\prime}}=\left\langle t_{i}=j, t_{i}:=j^{\prime}\right\rangle$
- $G=(p=\mathrm{R})$

Transition system of example task

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions

- State $\left\{p \mapsto i, t_{\mathrm{A}} \mapsto j, t_{\mathrm{B}} \mapsto k\right\}$ is depicted as $i j k$.
- Transition labels are again not shown. For example, the transition from LLL to ALL has the label pickup $\mathrm{A}_{\mathrm{A}} \mathrm{L}$.

Abstractions

Definition (abstraction, abstraction mapping)

Let $\mathcal{T}=\langle S, L, T, I, G\rangle$ and $\mathcal{T}^{\prime}=\left\langle S^{\prime}, L^{\prime}, T^{\prime}, I^{\prime}, G^{\prime}\right\rangle$
be transition systems with the same label set $L=L^{\prime}$,
Abstractions:
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB

- for all $s \in I$, we have $\alpha(s) \in I^{\prime}$,
heuristics
- for all $s \in G$, we have $\alpha(s) \in G^{\prime}$, and
- for all $\langle s, l, t\rangle \in T$, we have $\langle\alpha(s), l, \alpha(t)\rangle \in T^{\prime}$.

Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural

Abstraction heuristics

Definition (abstraction heuristic)

Let Π be an SAS ${ }^{+}$planning task with state space S, and let \mathcal{A} be an abstraction of $\mathcal{T}(\Pi)$ with abstraction mapping α. The abstraction heuristic induced by \mathcal{A} and $\alpha, h^{\mathcal{A}, \alpha}$, is the heuristic function $h^{\mathcal{A}, \alpha}: S \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ which maps each state $s \in S$ to $h_{\mathcal{A}}^{*}(\alpha(s))$ (the goal distance of $\alpha(s)$ in \mathcal{A}).

Note: $h^{\mathcal{A}, \alpha}(s)=\infty$ if no goal state of \mathcal{A} is reachable from $\alpha(s)$

Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural

Abstraction heuristics: example

Consistency of abstraction heuristics

Theorem (consistency and admissibility of $h^{\mathcal{A}, \alpha}$)
Let Π be an SAS ${ }^{+}$planning task, and let \mathcal{A} be an abstraction
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics

Structural
Dattame

Orthogonality of abstraction mappings

Definition (orthogonal abstraction mappings)

Let α_{1} and α_{2} be abstraction mappings on \mathcal{T}.
We say that α_{1} and α_{2} are orthogonal if for all transitions $\langle s, l, t\rangle$ of \mathcal{T}, we have $\alpha_{i}(s)=\alpha_{i}(t)$ for at least one $i \in\{1,2\}$.

Orthogonal abstraction mappings: example

	2		6
5	7		
3	4	1	

9		12	
		14	13
			11
15	10	8	

Are the abstraction mappings orthogonal?

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics

Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural
Dattorm

Orthogonal abstraction mappings: example

	2		6
5	7		
3	4	1	

9		12	
		14	13
			11
15	10	8	

Are the abstraction mappings orthogonal?

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural

Orthogonality and additivity

Theorem (additivity for orthogonal abstraction mappings)
Let $h^{\mathcal{A}_{1}, \alpha_{1}}, \ldots, h^{\mathcal{A}_{n}, \alpha_{n}}$ be abstraction heuristics for the same

Then $\sum_{i=1}^{n} h^{\mathcal{A}_{i}, \alpha_{i}}$ is a safe, goal-aware, admissible and consistent heuristic for Π.

PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural

Orthogonality and additivity: example

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics

Orthogonality and additivity: example

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
abstraction \mathcal{A}_{1}
mapping: only consider state of first package

M\&S
Algorithm
Additive
heuristics

Orthogonality and additivity: example

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
abstraction \mathcal{A}_{1}
mapping: only consider state of first package

M\&S
Algorithm
Additive
heuristics

Orthogonality and additivity: example

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
abstraction \mathcal{A}_{2} (orthogonal to \mathcal{A}_{1}) mapping: only consider state of second package

M\&S
Algorithm
Additive
heuristics

Orthogonality and additivity: example

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
abstraction \mathcal{A}_{2} (orthogonal to \mathcal{A}_{1}) mapping: only consider state of second package

M\&S
Algorithm
Additive
heuristics

Using abstraction heuristics in practice

In practice, there are conflicting goals for abstractions:

- we want to obtain an informative heuristic, but
- want to keep its representation small.

Abstractions have small representations if they have

- few abstract states and
- a succinct encoding for α.

Counterexample: one-state abstraction

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural

Counterexample: identity abstraction

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
Identity abstraction: $\alpha(s):=s$.

+ perfect heuristic and succinct encoding for α
- too many abstract states

Counterexample: perfect abstraction

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Practice
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural

Pattern database heuristics informally

Pattern databases: informally

A pattern database heuristic for a planning task is an abstraction heuristic where

- some aspects of the task are represented in the abstraction with perfect precision, while
- all other aspects of the task are not represented at all.

Example (15-puzzle)

- Choose a subset T of tiles (the pattern).
- Faithfully represent the locations of T in the abstraction.
- Assume that all other tiles and the blank can be anywhere in the abstraction.

Projections

Formally, pattern database heuristics are induced abstractions of a particular class of homomorphisms called projections.

Definition (projections)

Let Π be an SAS^{+}planning task with variable set V and state set S. Let $P \subseteq V$, and let S^{\prime} be the set of states over P.
The projection $\pi_{P}: S \rightarrow S^{\prime}$ is defined as $\pi_{P}(s):=\left.s\right|_{P}$ (with $\left.s\right|_{P}(v):=s(v)$ for all $v \in P$).
We call P the pattern of the projection π_{P}.
In other words, π_{P} maps two states s_{1} and s_{2} to the same abstract state iff they agree on all variables in P.

Pattern database heuristics

Abstraction heuristics for projections are called pattern database (PDB) heuristics.

Definition (pattern database heuristic)

The abstraction heuristic induced by π_{P} is called a pattern database heuristic or PDB heuristic.
heuristics
Projections
We write h^{P} as a short-hand for $h^{\pi_{P}}$.

Why are they called pattern database heuristics?

- Heuristic values for PDB heuristics are traditionally stored in a 1-dimensional table (array) called a pattern database (PDB). Hence the name "PDB heuristic".

Examples
Additivity
Canonical
heuristic
function
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Additive
heuristics
Structural
Patterns

Back to the running example

Logistics problem with one package, two trucks, two locations:

- state variable package: $\{L, R, A, B\}$
- state variable truck $\mathrm{A}:\{L, R\}$
- state variable truck $\mathrm{B}:\{L, R\}$

Automated (AI) Planning

Abstractions:
informally
Abstractions:
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: projection

Project to $\{$ package $\}$:

Abstractions
informally

Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: projection (2)

Project to $\{$ package, truck A\}:

Abstractions
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: projection (2)

Project to $\{$ package, truck $A\}$:

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Limitations of projections

How accurate is the PDB heuristic?

- consider generalization of the example: N trucks, M locations (fully connected), still one package
- consider any pattern that is proper subset of variable set V
- $h\left(s_{0}\right) \leq 2 \sim$ no better than atomic projection to package

These values cannot be improved by maximizing over several patterns or using additive patterns.

Merge-and-shrink abstractions can represent heuristics with $h\left(s_{0}\right) \geq 3$ for tasks of this kind of any size. Time and space requirements are polynomial in N and M.

Merge-and-shrink abstractions: main idea

Main idea of merge-and-shrink abstractions

(due to Dräger, Finkbeiner \& Podelski, 2006):
Instead of perfectly reflecting a few state variables, reflect all state variables, but in a potentially lossy way.

The need for succinct abstraction mappings

- One major difficulty for non-PDB abstractions is to succinctly represent the abstraction mapping.
- For pattern databases, this is easy because the abstraction mappings - projections - are very structured.
- For less rigidly structured abstraction mappings, we need another idea.

Merge-and-shrink abstractions: idea

- The main idea underlying merge-and-shrink abstractions is that given two abstractions \mathcal{A} and \mathcal{A}^{\prime}, we can merge them into a new product abstraction.
- The product abstraction captures all information of both abstractions and can be better informed than either.
- It can even be better informed than their sum.
- By merging a set of very simple abstractions, we can in theory represent arbitrary abstractions of an SAS ${ }^{+}$task.
- In practice, due to memory limitations, such abstractions can become too large. In that case, we can shrink them by abstracting them further using any abstraction on an intermediate result, then continue the merging process.

Running example: explanations

- Atomic projections - projections to a single state variable - play an important role in this chapter.
- Unlike previous chapters, transition labels are critically important in this chapter.
- Hence we now look at the transition systems for atomic projections of our example task, including transition labels.
- We abbreviate operator names as in these examples:
- MALR: move truck A from left to right
- DAR: drop package from truck A at right location
- PBL: pick up package with truck B at left location
- We abbreviate parallel arcs with commas and wildcards (\star) in the labels as in these examples:
- PAL, DAL: two parallel arcs labeled PAL and DAL
- MA**: two parallel arcs labeled MALR and MARL

Running example: atomic projection for package

$$
\mathcal{T}^{\pi_{\{\text {package }\}}}:
$$

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Running example: atomic projection for truck A

$\mathcal{T}^{\boldsymbol{\pi}_{\{\text {truck A }}}:$
PAL,DAL,MB $\star \star$, $P B \star, D B \star$

PAR,DAR,MB**, $P B \star, D B \star$

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally

PDB

heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Running example: atomic projection for truck B

$\mathcal{T}^{\pi_{\{\text {truck B }\}}}$:

PBL,DBL,MA**,
PA*,DA*

PBR,DBR,MA**,
$P A \star, D A \star$

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally

PDB

heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Synchronized product of transition systems

Definition (synchronized product of transition systems)

For $i \in\{1,2\}$, let $\mathcal{T}_{i}=\left\langle S_{i}, L, T_{i}, I_{i}, G_{i}\right\rangle$ be transition systems with identical label set.
The synchronized product of \mathcal{T}_{1} and \mathcal{T}_{2}, in symbols $\mathcal{T}_{1} \otimes \mathcal{T}_{2}$, is the transition system $\mathcal{T}_{\otimes}=\left\langle S_{\otimes}, L, T_{\otimes}, I_{\otimes}, G_{\otimes}\right\rangle$ with

- $S_{\otimes}:=S_{1} \times S_{2}$
- $T_{\otimes}:=\left\{\left\langle\left\langle s_{1}, s_{2}\right\rangle, l,\left\langle t_{1}, t_{2}\right\rangle\right\rangle \mid\left\langle s_{1}, l, t_{1}\right\rangle \in T_{1}\right.$ and

$$
\left.\left\langle s_{2}, l, t_{2}\right\rangle \in T_{2}\right\}
$$

- $I_{\otimes}:=I_{1} \times I_{2}$
- $G_{\otimes}:=G_{1} \times G_{2}$

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Synchronized product of functions

Definition (synchronized product of functions)

Let $\alpha_{1}: S \rightarrow S_{1}$ and $\alpha_{2}: S \rightarrow S_{2}$ be functions with identical domain.

The synchronized product of α_{1} and α_{2}, in symbols $\alpha_{1} \otimes \alpha_{2}$, is the function $\alpha_{\otimes}: S \rightarrow S_{1} \times S_{2}$ defined as $\alpha_{\otimes}(s)=\left\langle\alpha_{1}(s), \alpha_{2}(s)\right\rangle$.

Example: synchronized product

$$
\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}:
$$

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: computation of synchronized product

$$
\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}:
$$

Automated
(AI) Planning

Abstractions: informally

Abstractions
formally

PDB

heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: computation of synchronized product

$$
\mathcal{T}^{\pi}\{\text { package }\} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}: S_{\otimes}=S_{1} \times S_{2}
$$

PAL,DAL,MB $\star \star$,
$P B \star, D B \star$

PAR,DAR,MB $\star \star$,

Automated (AI) Planning

Abstractions: informally

Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: computation of synchronized product

$$
\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}: I_{\otimes}=I_{1} \times I_{2}
$$

PAL,DAL,MB $\star \star$,

Automated (AI) Planning

Abstractions: informally

Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: computation of synchronized product

$$
\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}: G_{\otimes}=G_{1} \times G_{2}
$$

PAL,DAL,MB $\star \star$,

PAR,DAR,MB $\star \star$, $\mathrm{PB} \star, \mathrm{DB} \star$

Automated (AI) Planning

Abstractions: informally

Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: computation of synchronized product

$$
\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}: T_{\otimes}:=\left\{\left\langle\left\langle s_{1}, s_{2}\right\rangle, l,\left\langle t_{1}, t_{2}\right\rangle\right\rangle \mid \ldots\right\}
$$

PAL,DAL,MB $\star \star$,
$P B \star, D B \star$

PAR,DAR,MB $\star \star$,
Automated (AI) Planning

Abstractions: informally

Abstractions:
formally

PDB

heuristics

Merge \&

Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: computation of synchronized product

$$
\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}: T_{\otimes}:=\left\{\left\langle\left\langle s_{1}, s_{2}\right\rangle, l,\left\langle t_{1}, t_{2}\right\rangle\right\rangle \mid \ldots\right\}
$$

PAL,DAL,MB $\star \star$,
$P B \star, D B \star$

PAR,DAR,MB $\star \star$,
Automated (AI) Planning

Abstractions: informally

Abstractions
formally

PDB

heuristics

Merge \&

Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: computation of synchronized product

$$
\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}: T_{\otimes}:=\left\{\left\langle\left\langle s_{1}, s_{2}\right\rangle, l,\left\langle t_{1}, t_{2}\right\rangle\right\rangle \mid \ldots\right\}
$$

PAL,DAL,MB $\star \star$,
$P B \star, D B \star$

PAR,DAR,MB**, $\mathrm{PB} \star, \mathrm{DB}$

Automated (AI) Planning

Abstractions: informally

Abstractions
formally

PDB

heuristics
Merge \&
Shrink
Abstractions
PDB limitations
Main ideas
Running
example
Synchronized
products
Definition
Example
Properties
M\&S
Algorithm
Additive
heuristics

Example: computation of synchronized product

$$
\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}: T_{\otimes}:=\left\{\left\langle\left\langle s_{1}, s_{2}\right\rangle, l,\left\langle t_{1}, t_{2}\right\rangle\right\rangle \mid \ldots\right\}
$$

PAL,DAL,MB $\star \star$, $P B \star, D B \star$

PAR,DAR,MB**

B**

Generic merge-and-shrink abstractions: outline

Using the results from the previous section, we can develop the

Automated (AI) Planning

Abstractions: informally

Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm

We explain these steps with our running example.

Initialization step: atomic projection for package

Automated
(AI) Planning
$\mathcal{T}^{\pi}{ }_{\text {\{package }\}}:$

Abstractions: informally

Abstractions:
formally
PDB
heuristics
Merge \&
Shrink
Abstractions

M\&S

Algorithm
Merge steps and shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

Initialization step: atomic projection for truck A

$\mathcal{T}^{\pi_{\{\text {truck A }\}}}:$
PAL,DAL,MB**, $\mathrm{PB} \star, \mathrm{DB} \star$

PAR,DAR,MB**, $P B \star, D B \star$

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally

PDB

heuristics
Merge \&
Shrink
Abstractions

M\&S

Algorithm
Merge steps and
shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

Initialization step: atomic projection for truck B

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions

M\&S

Algorithm
Merge steps and shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

First merge step

$$
\mathcal{T}_{1}:=\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}:
$$

current collection: $\left\{\mathcal{T}_{1}, \mathcal{T}^{\left.\pi_{\{\text {truck } \mathrm{B}\}}\right\}}\right.$

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions

M\&S

Algorithm
Merge steps and
shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns
Performance

Need to simplify?

- If we have sufficient memory available, we can now compute $\mathcal{T}_{1} \otimes \mathcal{T}^{\pi_{\{\text {truck B }\}}}$, which would recover the complete transition system of the task.
- However, to illustrate the general idea, let us assume that we do not have sufficient memory for this product.
- More specifically, we will assume that after each product operation we need to reduce the result abstraction to four states to obey memory constraints.
- So we need to reduce \mathcal{T}_{1} to four states. We have a lot of leeway in deciding how exactly to abstract \mathcal{T}_{1}.
- In this example, we simply use an abstraction that leads to a good result in the end.

First shrink step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
PDB
heuristics
Merge \&
Shrink
Abstractions

M\&S

Algorithm
Merge steps and
shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

First shrink step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
PDB
heuristics
Merge \&
Shrink
Abstractions

M\&S

Algorithm
Merge steps and
shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

First shrink step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

Automated
(AI) Planning

Abstractions: informally

Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Merge steps and
shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

First shrink step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Merge steps and
shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

First shrink step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Merge steps and
shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

First shrink step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Merge steps and
shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

First shrink step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

Abstractions:
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions

M\&S

Algorithm
Merge steps and shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

First shrink step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

Abstractions:
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions

M\&S

Algorithm
Merge steps and shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

First shrink step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
PDB
heuristics
Merge \&
Shrink
Abstractions

M\&S

Algorithm
Merge steps and shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

First shrink step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

current collection: $\left\{\mathcal{T}_{2}, \mathcal{T}^{\left.\pi_{\{\text {truck B }\}}\right\}}\right.$

Automated
(AI) Planning

Abstractions:
informally
Abstractions
formally
PDB
heuristics
Merge \&
Shrink
Abstractions
M\&S
Algorithm
Merge steps and
shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

Second merge step

$$
\mathcal{T}_{3}:=\mathcal{T}_{2} \otimes \mathcal{T}_{\{\text {truck } \mathrm{B}\}}:
$$

current collection: $\left\{\mathcal{T}_{3}\right\}$

Automated
(AI) Planning

Abstractions:
informally
Abstractions:
formally
PDB
heuristics

Merge \&

Shrink
Abstractions

M\&S

Algorithm
Merge steps and
shrink steps
Abstraction
mapping
Concrete
algorithm
Additive
heuristics
Structural
Patterns

Another shrink step?

- Normally we could stop now and use the distances in the

Automated (AI) Planning final abstraction as our heuristic function.

- However, if there were further state variables to integrate, we would simplify further, e. g. leading to the following abstraction (again with four states):

- We get a heuristic value of 3 for the initial state, better than any PDB heuristic that is a proper abstraction.
- The example generalizes to more locations and trucks, even if we stick to the size limit of 4 (after merging).

