Wright ADL

Wright Model

= Components - computation elements with
multiple ports

= Connectors - interaction - first class -
consists of roles and glue

= Configuration - components and
connectors related into a system

Example

System SimpleExample

component Server =
port provide = [provide protocol]
computation =

component Client =
port request = [request protocol]
computation =

connector C-S-connector =
role client = [client protocol]
role server = [server protocol |
glue = [glue protocol]

Instances
S: Server
c: Client
cs: C-S-connector
Attachments
S.provide as cs.server
c.request as cs.client

Describing connection

Should be able to express common cases
of architectural interaction (pipes, events,
procedure call)

Should allow description of complex
dynamic interactions between
components (for example, that a
connection must be initialized before use)

Should allow distinctions between
connector variations

Should be based on analyzable formal
model

CommunicatinquSequential
Processes - C

Processes and events - events may have
iInput (e”?x) and output (e!x) data

Prefixing e --> P
Internal/external choice (| and)

Parallel Composition -- P || Q - joint
Interaction over events in intersection of
alphabets of P and Q

Special symbol for successful termination 36

Scoped process hames (letQ = ... In R)

Why CSP?

Other options: Petri Nets, SDL, I/O Automata,
StateCharts

In CSP, we can capture the distinction
between internal and external choice

CSP has parallel composition
Tool support (theorem proving)

Disadvantages: timing, fairness not addressed
in CSP

Wright Connectors

Connectors describe the behavior of
connection

Roles - local behavior of the interaction parties
- the obligations of each participant in the
Interaction

Glue - describes how the activities of the roles
are coordinated

Glue || role-1 || role-2 || . . . || role-n

Simple Pipe

connector pipe =
port source = inlx --> source
port sink = out?y --> sink
glue = source.in?x --> sink.out!x --> glue

Simple Client/Server

connector C-S-connector =
role Client = (request!x --> result?y --> Client) | 3§
role Server = (invoke?v --> return!w --> Server) 36
glue = (Client.request?x --> Server.invoke!x -->
Server.return?y --> Client.resultly --> glue)

Another Pipe

connector Pipe =
role Writer = write --> Writer | close -->36

role Reader = let ExitOnly = close -> 3

in let DoRead = (read --> Reader
read-eof --> ExitOnly)
in DoRead | ExitOnly

dglue = let ReadOnly = Reader.read --> ReadOnly
Reader.read-eof --> Reader.close --> 3
Reader.close --> 3§
in let WriteOnly = Writer.write --> WriteOnly
Writer.close --> 3
in Writer.write--> glue
Reader.read --> glue
Writer.close --> ReadOnly
Reader.close --> WriteOnly

connector shared_memory =
role User1 = set --> User1 | get --> User1 |
role User2 = set --> User2 | get --> User2 |
glue = User1.set --> glue User2.set --> glue
User1.get --> glue User2.get --> glue

Wright Components

= Port - logical point of interaction between a
component and its environment (l.e. the rest
of the system) - Defines the expectations of
the component.

= A component may have multiple ports

= Computation - describes the relationship
between the ports

Example

system System
component Split =
port input = getchar?x --> input
port output1 = putchar!x --> output1
port output2 = putchar!x --> output2
computation = input.getchar?y --> output1.putcharly
--> [nput.getchar?y --> output2.putcharly -->
computation
component filter =
port inport = get?x --> inport
port outport = put!x --> outport
computation = inport.get?x --> outport!x --> computation

component Merger
port input1 = get?c --> input1
port input2 = get?c --> input2
port output = put!c --> output
computation = input1.get?c --> output.put!c -->
iInput2.get?d --> output.put!d --> computation

Wright Configuration

Describe the system structure

Instances - instantiate some
components and connectors of
given types

Attachments - bind the port of a
component to the role of a
connector

Hierarchical

Instances
s . Split
|, u: Filter
m: Merger
p1, p2, p3, p4: Pipe;
Attachments
s.output1 as p1.source
s.output2 as p2.source
l.inport as p1.sink
u.inport as p2.sink
|.outport as p3.source
u.output as p4.source
m.input1 as p3.sink
m.input2 as p4.sink

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18

