

Wright ADL

Wright Model
■ Components - computation elements with

multiple ports
■ Connectors - interaction - first class -

consists of roles and glue
■ Configuration - components and

connectors related into a system

Example
System SimpleExample
 component Server =
 port provide = [provide protocol]
 computation =
 component Client =
 port request = [request protocol]
 computation =
 connector C-S-connector =
 role client = [client protocol]
 role server = [server protocol]
 glue = [glue protocol]

Instances
 s: Server
 c: Client
 cs: C-S-connector
Attachments
 s.provide as cs.server
 c.request as cs.client

Describing connection
■ Should be able to express common cases

of architectural interaction (pipes, events,
procedure call)

■ Should allow description of complex
dynamic interactions between
components (for example, that a
connection must be initialized before use)

■ Should allow distinctions between
connector variations

■ Should be based on analyzable formal
model

Communicating Sequential
Processes - CSP

■ Processes and events - events may have
input (e?x) and output (e!x) data

■ Prefixing e --> P
■ Internal/external choice (| and )
■ Parallel Composition -- P || Q - joint

interaction over events in intersection of
alphabets of P and Q

■ Special symbol for successful termination 
■ Scoped process names (let Q = … in R)

Why CSP?
■ Other options: Petri Nets, SDL, I/O Automata,

StateCharts
■ In CSP, we can capture the distinction

between internal and external choice
■ CSP has parallel composition
■ Tool support (theorem proving)
■ Disadvantages: timing, fairness not addressed

in CSP

Wright Connectors
■ Connectors describe the behavior of

connection
■ Roles - local behavior of the interaction parties

- the obligations of each participant in the
interaction

■ Glue - describes how the activities of the roles
are coordinated

■ Glue || role-1 || role-2 || . . . || role-n

Simple Pipe
connector pipe =
 port source = in!x --> source
 port sink = out?y --> sink
 glue = source.in?x --> sink.out!x --> glue

Simple Client/Server
connector C-S-connector =
 role Client = (request!x --> result?y --> Client) | 
 role Server = (invoke?v --> return!w --> Server) 

 glue = (Client.request?x --> Server.invoke!x -->
 Server.return?y --> Client.result!y --> glue)

Another Pipe
connector Pipe =
 role Writer = write --> Writer | close -->

 role Reader = let ExitOnly = close -> 
 in let DoRead = (read --> Reader
  read-eof --> ExitOnly)
 in DoRead | ExitOnly

glue = let ReadOnly = Reader.read --> ReadOnly
  Reader.read-eof --> Reader.close --> 
  Reader.close --> 
 in let WriteOnly = Writer.write --> WriteOnly
 Writer.close --> 
 in Writer.write--> glue 
 Reader.read --> glue 
 Writer.close --> ReadOnly 
 Reader.close --> WriteOnly

Shared Data
connector shared_memory =
 role User1 = set --> User1 | get --> User1 |
 role User2 = set --> User2 | get --> User2 |
 glue = User1.set --> glue  User2.set --> glue 
 User1.get --> glue  User2.get --> glue 

Wright Components

■ Port - logical point of interaction between a
component and its environment (I.e. the rest
of the system) - Defines the expectations of
the component.

■ A component may have multiple ports
■ Computation - describes the relationship

between the ports

Example
system System
 component Split =
 port input = getchar?x --> input
 port output1 = putchar!x --> output1
 port output2 = putchar!x --> output2
 computation = input.getchar?y --> output1.putchar!y
 --> input.getchar?y --> output2.putchar!y -->
 computation
component filter =
 port inport = get?x --> inport
 port outport = put!x --> outport
 computation = inport.get?x --> outport!x --> computation

component Merger
 port input1 = get?c --> input1
 port input2 = get?c --> input2
 port output = put!c --> output
 computation = input1.get?c --> output.put!c -->
 input2.get?d --> output.put!d --> computation

Wright Configuration
■ Describe the system structure
■ Instances - instantiate some

components and connectors of
given types

■ Attachments - bind the port of a
component to the role of a
connector

■ Hierarchical

Instances
 s : Split
 l, u : Filter
 m: Merger
 p1, p2, p3, p4: Pipe;
Attachments
 s.output1 as p1.source
 s.output2 as p2.source
 l.inport as p1.sink
 u.inport as p2.sink
 l.outport as p3.source
 u.output as p4.source
 m.input1 as p3.sink
 m.input2 as p4.sink

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18

