
Container vs Serverless architecture design

Jiří Šebek NSS



2

Container Serverless

Advantage



3

Differences



4

Differences

Java RMI, XML-RPC, REST API, SOAP, CORBA ...

Java Core Sockets



5

Historical evolution of development

At very starting we used to 
build monoliths, three-tier 
applications.

They were very heavy 
weight.

They are very slow to 
deploy.

Had trouble testing them.

After monolith, we broke 
these down into 
microservices.

They focused on being 
composable.

We deploy them with 
Docker containers.

The next step in the evolution.

Functions are small, discrete, 
reusable pieces of code that we 
can deploy.

Not stateful.

Makes use of our existing services 
or third party resources.

Executes in milliseconds. Based 
upon AWS Lambda’s default.

Serverless functions do not replace our monolith or microservice, they work best alongside our existing 
systems building integrations and helping events flow between our ecosystem.



6

Differences

Java RMI, XML-RPC, REST API, SOAP, CORBA ...

Java Core Sockets



7

Monolitic architecture – Java Core 

Sockets

Sockets provide the communication 
mechanism between two computers using
TCP

Example in repository



8

TCP vs UDP

TCP

UDP



9

TCP vs UDP

TCP is Connection-oriented whereas, UDP is Connectionless protocol.

TCP is highly reliable for transferring useful data as it takes the acknowledgment of 
information sent. It resends the lost packets if any. Whereas in the case of UDP if the 
packet is lost it won’t request for retransmission and corrupt data is received by the 
destination computer. So, UDP is an unreliable protocol.

TCP is slower as compared to UDP since TCP establishes the connection before
transmitting data, and ensures the proper delivery of packets. On the other hand, 
UDP does not acknowledge whether the data transmitted is received or not.

Header size of UDP is smaller then TCP and TCP header contains options, padding, 
checksum, flags, data offset, acknowledgment number, sequence number, source 
and destination ports, etc.

Both TCP and UDP can check for errors, but only TCP can correct the error since it
has both congestion and flow control.



10

Monolitic architecture – Java Core 

Sockets

Advantages:

Sockets are flexible and sufficient.

Sockets cause low network traffic. Unlike HTML forms and CGI scripts 
that generate and transfer whole web pages for each new request, Java 
applets can send only necessary updated information.

Disadvantages:

Security restrictions are sometimes overbearing.

Socket based communications allows only to send packets of raw data 
between applications. Both the client-side and server-side have to 
provide mechanisms to make the data useful in any way.



11

Differences

Java RMI, XML-RPC, REST API, SOAP, CORBA ...

Java Core Sockets



12

Java RMI

RMI allows us to write distributed objects
using Java (easier then with sockets)

Similar to XML-RPC

Difference between RPC and RMI is that RMI 
involves objects. Instead of calling
procedures remotely by use of a proxy 
function, we instead use a proxy object.

Example in repository



13

Java RMI



14

REST API

RMI allows us to write distributed objects
using Java (easier then with sockets)

Example in repository

For client-side download one of the software

- Insomnia https://insomnia.rest/

- Postman https://www.getpostman.com/



16

REST API

Insomnia



17

Differences

Java RMI, XML-RPC, REST API, SOAP, CORBA ...

Java Core Sockets



18

Serverless architecture

+ No server management

+ Pay-as-you-go 

+ Inherent scalability

+ Quick deployments and updates

+ Code run closer to the client

- Complicated testing and debugging

- Not build for long running operations

- Performace

- Vendor lock-in

https://www.cloudflare.com/learning/serverless/why-use-serverless/

https://www.cloudflare.com/learning/serverless/why-use-serverless/


19

Azure Functions

Complicated testing and debugging

➢ local development and testing
https://docs.microsoft.com/en-us/azure/azure-functions/functions-
develop-local

➢ Visual Studio Code & Azure Function extension

Not build for long running operations

➢ Durable Functions
https://docs.microsoft.com/en-us/azure/azure-
functions/durable/durable-functions-overview

https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-local
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview

