Container Vs SErVErESS architecture design

Ji¥i Sebek

Container

Serverless

Advantage

A container image is a lightweight, stand-
alone, executable package of a piece of
software that includes everything needed
to runit: code, runtime, system tools,
system libraries, settings.

Functions are blocks of code, ideally small and
single-purpose. They are coordinated &
scheduled by a Functions-as-a-service (FaaS)
platform such as AWS Lamda, Azure Functions &
Google Cloud Functions

With Faas(Serverless), developers never think about
infrastructure. No-Ops Model.

A container can contain multiple-functions, or just one
function.

A container can run an entire application
like a Database, DBMS & provide multiple
outputs.

Functions have a clear and defined purpose with
minimal API. Function takes a clearly defined
shortinput & provides a reasonably short
output.

Containers are preferred for complex software which can
run for several minutes/hours.

Functions are preferred for simple applications.

A container can live forever & scale
horizontally — multiple containers can be
created across servers

Functions are essentially ephemeral —lives for
few seconds or minutes & is created on demand
Containers can scale on demand supporting both
Scale-up & Scale-out mode.

Containers are preferred for webscale apps that span across
multiple servers.

Functions are preferred mobile/web apps which are invoked
by user. Eg: Fetch a PDFfile, Apply specific filter on a picture
etc.

Containers are billed based on the block
of reserved resources +consumption of
storage & N/W

Functions are hilled on actually consumed
resources

Functions an finer, atomic unit of compute: Runtime,
Storage & data transferred. This allows for a refined
consumption models

Differences

g @ 3 Cllent -
pv x o b 4
N @escsccssnns dece@reccscccccnnes
Fronthead a £ nedes| v v v
4 java) &2 &£ B
¢ Authentication API Product
’ Servi Gatewa
Backhead 5 ‘) . (a ervice . y Databa7se
’
1 I . 1 o ubernates v v
& = Purchase Search
DataBase = f\ Function $ function
R (a & - — h -
docker ¥

Purchase
Database

Differences

..5, 2 Client Y
‘j‘;v:a. /) e N ([~ =S e s :. R -
Fronthead & £, nedes v z M
. — = \ .
BE javay Fid : B
‘ 3 > v Authentication API Product
Backhead 5 4 & ’ (f\ Service Gateway Database
A ® A4 A
= — = @sesssnsenses ' (R e
1 . I) . 1 ® kues v v
S - /_) y ~ Purchase $ Search
DataBase = 5 Function function
= e & : .
: docker Geessnsanse :

Purchase
Database

Java Core Sockets

Java RMI, XML-RPC, REST API, SOAP, CORBA ...

Histericall evelution of development

At very starting we used to After monolith, we broke
build monoliths, three-tier these down into
applications. microservices.

They were very heavy They focused on being
weight. composable.

They are very slow to We deploy them with
deploy. Docker containers.

Had trouble testing them.

The next step in the evolution.

Functions are small, discrete,
reusable pieces of code that we
can deploy.

Not stateful.

Makes use of our existing services
or third party resources.

Executes in milliseconds. Based
upon AWS Lambda’s default.

Serverless functions do not replace our monolith or microservice, they work best alongside our existing

systems building integrations and helping events flow between our ecosystem.

Differences

..5, 2 Client Y
‘j‘;v:a. /) e N ([~ =S e s :. R -
Fronthead & £, nedes v z M
. — = \ .
BE javay Fid : B
‘ 3 > v Authentication API Product
Backhead 5 4 & ’ (f\ Service Gateway Database
A ® A4 A
= — = @sesssnsenses ' (R e
1 . I) . 1 ® kues v v
S - /_) y ~ Purchase $ Search
DataBase = 5 Function function
= e & : .
: docker Geessnsanse :

Purchase
Database

Java Core Sockets

Java RMI, XML-RPC, REST API, SOAP, CORBA ...

Moenoelitic architecture — Java Core

Seckets

Sockets provide the communication
mechanism between two computers using
TC P Server Client
Socket Socket
Example in repository S
Binii
Listi;n o
Aoc,:ept
Sen‘d/ I | Send/
Recv Recv

S

NCR VS UDP

I am sending the data.

<Error occurred..! Please re-send the data.

Ok. I am Re-transmitting the data.

Data Received.

I am sending the data.

TCP is Connection-oriented whereas, UDP is Connectionless protocol.

TCP is highly reliable for transferring useful data as it takes the acknowledgment of
information sent. It resends the lost packets if any. Whereas in the case of UDP if the
packet is lost it won’t request for retransmission and corrupt data is received by the
destination computer. So, UDP is an unreliable protocol.

TCP is slower as compared to UDP since TCP establishes the connection before
transmitting data, and ensures the proper delivery of packets. On the other hand,
UDP does not acknowledge whether the data transmitted is received or not.

Header size of UDP is smaller then TCP and TCP header contains options, padding,
checksum, flags, data offset, acknowledgment number, sequence number, source
and destination ports, etc.

Both TCP and UDP can check for errors, but only TCP can correct the error since it
has both congestion and flow control.

Moenoelitic architecture — Java Core

Seckets

Advantages:
Sockets are flexible and sufficient.

Sockets cause low network traffic. Unlike HTML forms and CGI scripts
that generate and transfer whole web pages for each new request, Java
applets can send only necessary updated information.

Disadvantages:
Security restrictions are sometimes overbearing.

Socket based communications allows only to send packets of raw data
between applications. Both the client-side and server-side have to
provide mechanisms to make the data useful in any way.

s

Differences

..5, 2 Client Y
‘j‘;v:a. /) e N ([~ =S e s :. R -
Fronthead & £, nedes v z M
. — = \ .
BE javay Fid : B
‘ 3 > v Authentication API Product
Backhead 5 4 & ’ (f\ Service Gateway Database
A ® A4 A
= — = @sesssnsenses ' (R e
1 . I) . 1 ® kues v v
S - /_) y ~ Purchase $ Search
DataBase = 5 Function function
= e & : .
: docker Geessnsanse :

Purchase
Database

Java Core Sockets

Java RMI, XML-RPC, REST API, SOAP, CORBA ...

RMI allows us to write distributed objects
using Java (easier then with sockets)

Similar to XML-RPC

Difference between RPC and RMI is that RMI
involves objects. Instead of calling
procedures remotely by use of a proxy
function, we instead use a proxy object.

Example in repository

(S —

Application (Client) (Server)

Stub Skeleton

RMI

Remote Reference Layer
support

Transport layer

RMI allows us to write distributed objects
using Java (easier then with sockets)

Example in repository
For client-side download one of the software
- Insomnia https://insomnia.rest/

- Postman https://www.getpostman.com/

s

REST AP

nsomnia

@ Insomnia (local) - GET bt -
Application Edit View Window Tools Help

Insomnia / c TIMEOms | SIZE268

Preview v

Echo with message: message

Differences

..5, 2 Client Y
‘j‘;v:a. /) e N ([~ =S e s :. R -
Fronthead & £, nedes v z M
. — = \ .
BE javay Fid : B
‘ 3 > v Authentication API Product
Backhead 5 4 & ’ (f\ Service Gateway Database
A ® A4 A
= — = @sesssnsenses ' (R e
1 . I) . 1 ® kues v v
S - /_) y ~ Purchase $ Search
DataBase = 5 Function function
= e & : .
: docker Geessnsanse :

Purchase
Database

Java Core Sockets

Java RMI, XML-RPC, REST API, SOAP, CORBA ...

Serverless architecture

+ No server management

+ Pay-as-you-go

+ Inherent scalability

+ Quick deployments and updates

+ Code run closer to the client

- Complicated testing and debugging

- Not build for long running operations
- Performace

- Vendor lock-in

https://www.cloudflare.com/learning/serverless/why-use-serverless/

https://www.cloudflare.com/learning/serverless/why-use-serverless/

Azure Functions

Complicated testing and debugging

> local development and testing
https://docs.microsoft.com/en-us/azure/azure-functions/functions-
develop-local

> Visual Studio Code & Azure Function extension

Not build for long running operations

> Durable Functions
https://docs.microsoft.com/en-us/azure/azure-
functions/durable/durable-functions-overview

https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-local
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview

