

CTU

LAR 2021, Depth Estimation

Vladimír Petrík
vladimir.petrik@cvut.cz
March 9, 2022

Problem Formulation

- Goal: Compute position of gates in Cartesian coordinates
- Inputs:
- RGB image with segmentation/labeling (see previous lecture)
- Depth map
- Robot odometry (integrated measurements of wheels rotation)

(a) RGB image

(b) Segmentation

(c) Position of gate

Coordinate frames

- robot is equipped with RGBD camera

Coordinate frames

- robot is equipped with RGBD camera
- camera sees the gate

Coordinate frames

- robot is equipped with RGBD camera
- camera sees the gate
- multiple coordinate frames

Coordinate frames

- robot is equipped with RGBD camera
- camera sees the gate
- multiple coordinate frames
- transformations:
- robot has moved from the initial position (T_{0})
- camera is not exactly in the middle $\left(T_{c}\right)$
- gates are at position $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ w.r.t. camera frame

Transformations

- Transformation in 2D is 3×3 matrix (homogeneous coordinates)
$-T=\left(\begin{array}{ll}R(\theta) & x \\ 0 & 0\end{array} 1.1\right), R(\theta)=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$

Transformations

- Transformation in 2D is 3×3 matrix (homogeneous coordinates)
$-T=\left(\begin{array}{cc}R(\theta) & x \\ 0 & 0\end{array} 1.1\right), R(\theta)=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$
- For our coordinates: $\boldsymbol{x}_{w}=T_{o} T_{c} \boldsymbol{x}_{c}$
- \boldsymbol{x}_{w} position of gate in world coordinate system
- \boldsymbol{x}_{c} position of gate in camera coordinate system
- T_{o} computed from odometry data
- T_{c} approximated by unit transformation
- $\theta=0, x=0, y=0$
- optionally can be calibrated

Odometry Computation

- You define where the world coordinate is placed by resetting odometry
- Robot computes relative wheels rotation and integrate it to obtain position w.r.t. call of reset
- Integration is not robust, i.e. the errors are integrated too

```
reset_odometry() -> None # sets world coordinate to the
# current robot position
get_odometry() -> [x,y,a] # gives relative distance travelled from
# the last call of reset
```


Gate Position in Camera Frame

- We will compute gate positions in camera frame, hereinafter
- It simplifies some of the equations
- You can then transform them into world coordinates using: $\boldsymbol{x}_{w}=T_{o} T_{c} \boldsymbol{x}_{c}$

Camera Model

- camera is approximated by pinhole camera model
- all points on a ray project to the same pixel
- from given pixel, you cannot compute Cartesian point (without additional prior knowledge)

(a) Projection of point ${ }^{1}$

(b) Top view

[^0]
Pinhole Camera Model

- $\boldsymbol{u}_{H}=K \boldsymbol{x}$
- \boldsymbol{u}_{H} is pixel in homogeneous coordinates
\Rightarrow if $\boldsymbol{u}_{H}=\left(\begin{array}{lll}u_{H} & v_{H} & w_{H}\end{array}\right)^{\top}$, then pixel coordinates are $\left(\begin{array}{lll}u_{H} / w_{H} & v_{H} / w_{H}\end{array}\right)^{\top}$

Pinhole Camera Model

- $\boldsymbol{u}_{H}=K \boldsymbol{x}$
- \boldsymbol{u}_{H} is pixel in homogeneous coordinates

اf $\boldsymbol{u}_{H}=\left(\begin{array}{lll}u_{H} & v_{H} & w_{H}\end{array}\right)^{\top}$, then pixel coordinates are $\left(\begin{array}{lll}u_{H} / w_{H} & v_{H} / w_{H}\end{array}\right)^{\top}$

- alternatively, we can represent it as: $\lambda(u, v, 1)^{\top}=\lambda \boldsymbol{u}=K \boldsymbol{x}$

Pinhole Camera Model

- $\boldsymbol{u}_{H}=K \boldsymbol{x}$
- \boldsymbol{u}_{H} is pixel in homogeneous coordinates

اf $\boldsymbol{u}_{H}=\left(\begin{array}{lll}u_{H} & v_{H} & w_{H}\end{array}\right)^{\top}$, then pixel coordinates are $\left(\begin{array}{lll}u_{H} / w_{H} & v_{H} / w_{H}\end{array}\right)^{\top}$

- alternatively, we can represent it as: $\lambda(u, v, 1)^{\top}=\lambda \boldsymbol{u}=K \boldsymbol{x}$
- K is camera matrix
- get_rgb_K(self) -> K
$-K=\left(\begin{array}{ccc}f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right)$

Pinhole Camera Model

- $\boldsymbol{u}_{H}=K \boldsymbol{x}$
- \boldsymbol{u}_{H} is pixel in homogeneous coordinates

اf $\boldsymbol{u}_{H}=\left(\begin{array}{lll}u_{H} & v_{H} & w_{H}\end{array}\right)^{\top}$, then pixel coordinates are $\left(\begin{array}{lll}u_{H} / w_{H} & v_{H} / w_{H}\end{array}\right)^{\top}$

- alternatively, we can represent it as: $\lambda(u, v, 1)^{\top}=\lambda \boldsymbol{u}=K \boldsymbol{x}$
- K is camera matrix
- get_rgb_K(self) -> K
$-K=\left(\begin{array}{ccc}f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right)$
- what does λ represent?

Pinhole Camera Model

- $\boldsymbol{u}_{H}=K \boldsymbol{x}$
- \boldsymbol{u}_{H} is pixel in homogeneous coordinates
if $\boldsymbol{u}_{H}=\left(\begin{array}{lll}u_{H} & v_{H} & w_{H}\end{array}\right)^{\top}$, then pixel coordinates are $\left(\begin{array}{lll}u_{H} / w_{H} & v_{H} / w_{H}\end{array}\right)^{\top}$
- alternatively, we can represent it as: $\lambda(u, v, 1)^{\top}=\lambda \boldsymbol{u}=K \boldsymbol{x}$
- K is camera matrix
- get_rgb_K(self) -> K
$-K=\left(\begin{array}{ccc}f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right)$
- what does λ represent?
- λ is non-zero real number
- if you know λ value, you can compute Cartesian coordinate $\boldsymbol{x}=\lambda K^{-1} \boldsymbol{u}$
- otherwise, only ray is computable

How to Get Depth Information?

- We need either prior knowledge of the scene or depth map
- Example of prior knowledge
- width of the gate in pixels and corresponding z-coordinate for several positions
- width of the gate in meters
- height of the gate
- etc.

Using Regression

- what is relation between width in the image (px) and distance in meters?

Using Regression

- what is relation between width in the image ($p x$) and distance in meters?
- $f: w=z: r$
- $z=r f \frac{1}{w}=k \frac{1}{w}$

Using Regression

- what is relation between width in the image (px) and distance in meters?
- $f: w=z: r$
- $z=r f \frac{1}{w}=k \frac{1}{w}$
- How to estimate unknown constant?
- calibration
- measure (at least) two different positions
- use least square estimation

Using Regression

- what is relation between width in the image (px) and distance in meters?
- $f: w=z: r$
- $z=r f \frac{1}{w}=k \frac{1}{w}$
- How to estimate unknown constant?
- calibration
- measure (at least) two different positions
- use least square estimation
- This is an approximated computation (ignoring viewing angle)

Using Prior Knowledge of Fixed Width

- We know radius of gate is fixed

Using Prior Knowledge of Fixed Width

- We know radius of gate is fixed
- From detected pixels $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$, we can compute rays $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$: $\frac{1}{\lambda_{i}} \boldsymbol{x}_{i}=K^{-1} \boldsymbol{u}_{i}$

Using Prior Knowledge of Fixed Width

- We know radius of gate is fixed
- From detected pixels $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$, we can compute rays $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$: $\frac{1}{\lambda_{i}} \boldsymbol{x}_{i}=K^{-1} \boldsymbol{u}_{i}$
- Angle between vectors: $\cos \alpha=\frac{\frac{1}{\lambda_{1} \lambda_{2}}}{\frac{1}{\lambda_{1} \lambda_{2}}} \frac{\boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2}}{\left\|\boldsymbol{x}_{1}\right\|\left\|\boldsymbol{x}_{2}\right\|}$

Using Prior Knowledge of Fixed Width

- We know radius of gate is fixed
- From detected pixels $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$, we can compute rays $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$: $\frac{1}{\lambda_{i}} \boldsymbol{x}_{i}=K^{-1} \boldsymbol{u}_{i}$
- Angle between vectors: $\cos \alpha=\frac{\frac{1}{\lambda_{1} \lambda_{2}}}{\frac{1}{\lambda_{1} \lambda_{2}}} \frac{\boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2}}{\left\|\boldsymbol{x}_{1}\right\|\left\|\boldsymbol{x}_{2}\right\|}$

Depth: $z=\frac{r}{\sin (\alpha / 2)}$

Using Depth Sensor

- Turtlebots are equipped with RGBD sensors
- In addition to RGB image they provide depth information
- get_depth_image() numpy 480×640
- Depth corresponds to distance in meters (x, y need to be computed from ray)

Point Cloud

- Our library:
- We also provide point cloud with topology
- get_point_cloud() numpy 480x640x3
- Channels correspond to x, y, z-coordinates in camera frame
- In general:
- Point clouds are without topology
- Set of points

Troubles with Depth Maps and Point Clouds

- Depth reconstruction is not perfect (black areas in the image ${ }^{2}$)
- In python represented by NaN
- Not every pixel in RGB has reconstructed depth value
- RGB and Depth data are not aligned (you need to calibrate them)

[^1]
How Depth Sensors Work

- Laser projects pattern and camera recognizes it
- Depth information is computed using triangulation

Kinect/Astra/Realsense

- Structured light based sensors
- Projects 2d infra red patterns
- There is one projector and two cameras (RGB + IR)

Comparison of Sensors

	Kinect Xbox 360	Orbbec Astra	Realsense R200	Realsense D435
FOV [deg]:	57×45	60×49.5	59×45.5	69.4×42.5
Range [m]:	$1.5 \ldots 3.5$	0.6 .. 8.0	$0.5 \ldots 3.5$ (4.0)	$0.105 \ldots 10$
Error XY [mm]:	10 (2.5m)	7.2 (3m)	-	-
Error Z [mm]:	10 (2.5m)	12.7 (3m)	10 (2m)	-
Resolution [px]:	640×480	640×480	640×480	1280×720

Our scene

Our RGBD data

- Sensor range is limited - NaNs for too close and too far away points.

Are RGB/DEPTH aligned?

(a) In reality without calibration

(b) In simulation

Figure: Overlay of DEPTH data over the RGB image.

[^0]: ${ }^{1}$ https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_ reconstruction.html

[^1]: ${ }^{2}$ https://commons.wikimedia.org, User:Kolossos

