Automated
(Al) Planning

Automated (Al) Planning

Planning via Constraint Satisfaction

Carmel Domshlak

Automated
(Al) Planning

Essential components

e formal language for expressing statements
Logic

@ model theory/semantics for making sense of them

@ proof theory/axiomatics
for deriving new statements from old

@ Originally developed for studying structure of
(mathematical /philosophical) arguments,
and identifying valid arguments.

@ Currently the basis for

programming languages like Prolog

representation languages in Al (e.g., planning languages)

verification

automatic theorem proving

Logical representations of state sets

Automated
(Al) Planning

Propositional
logic

@ n state variables with m values induce a state space
consisting of m' states (2" states for n Boolean state
variables)

@ a language for talking about sets of states (valuations of
state variables):. propositional logic

@ logical connectives ~ set-theoretical operations

Syntax of propositional logic

Automated
(Al) Planning

Let P be a set of atomic propositions (~ state variables).
@ For all p € P, pis a propositional formula. e
@ If ¢ is a propositional formula, then so is —¢.
@ If ¢ and ¢’ are propositional formulae, then so is ¢ \V ¢'.
Q If ¢ and ¢’ are propositional formulae, then so is ¢ A ¢'.
© The symbols L and T are propositional formulae.

The implication ¢ — ¢’ is an abbreviation for =¢ \ ¢'.
The equivalence ¢ < ¢’ is an abbreviation for

(¢ =) N (¢ —).

Semantics of propositional logic

Automated
(Al) Planning

A valuation of P is a function v : P — {0,1}. Define the
notation v |= ¢ for valuations v and formulae ¢ by

QO vEpifandonlyif v(p) =1, forp € P.
@ v ¢ if and only if v [~ ¢
Q@uvEoVveifandonlyifv = ¢ orv = ¢
QuvEopA¢ ifandonlyif v = ¢ and v = ¢
QuET

QuEl

Propositional
logic

Propositional logic terminology

Automated
(Al) Planning

@ A propositional formula ¢ is satisfiable if there is at least
one valuation v so that v = ¢. Otherwise it is Fperian
unsatisfiable.

@ A propositional formula ¢ is valid or a tautology if v = ¢
for all valuations v. We write this as |= ¢.

@ A propositional formula ¢ is a logical consequence of a
propositional formula ¢/, written ¢/ = ¢ if v |= ¢ for all
valuations v with v = ¢'.

@ Two propositional formulae ¢ and ¢’ are logically

equivalent, written ¢ = ¢/, if ¢ = ¢’ and ¢/ £ ¢.

Propositional logic terminology (ctd.)

Automated
(Al) Planning

Propositional
logic

@ A propositional formula that is a proposition p or
a negated proposition —p for some p € P is a literal.

@ A formula that is a disjunction of literals is a clause.
This includes unit clauses [consisting of a single literal,
and the empty clause L consisting of zero literals.

Normal forms: NNF, CNF, DNF

Formulae vs. sets

Automated

(Al) Planning
sets formulae
those % states in which pis true | p € P
FUF EV F Er:goicpos'\tional
ENnF EANF
E\F (set difference) | EA—F
E (complement) | —=F
the empty set () 1
the universal set T

question about sets

question about formulae

ECF?
ECF?
E=F7?

EEF?
E = F and F |~ E?
EEF and F = E?

Propositional Logic: Inference

Automated
(Al) Planning

@ Whether ¢ |= 1) is true can be tested by enumerating all
different interpretations involving the propositional
symbols in ¢ and ¢

Inference in PL

e Bad news: exponential time as there 2" assignments (0/1)
to n propositional symbols
@ This time cannot be improved in worst case (unless

P=NP), but approaches that run much faster in practice
exist

Propositional Logic: Inference

Automated
(Al) Planning

@ Whether ¢ |= 1) is true can be tested by enumerating all
different interpretations involving the propositional
symbols in ¢ and ¢

Inference in PL

e Bad news: exponential time as there 2" assignments (0/1)
to n propositional symbols

@ This time cannot be improved in worst case (unless
P=NP), but approaches that run much faster in practice
exist

@ General idea is to combine case analysis and inference

@ Exhaustive procedure above based exclusively on case
analysis, even worse, deals with full assignments

@ More about this in a few slides ...

Conjunctive Normal Form (CNF) and SAT

Let P be a set of propositional symbols. A propositional (Qgtgﬁ‘;ﬁ:g
formula @ is called a CNF if it has the form

D=1 A Apon

Inference in PL

where each ¢; has the form ¢; = (I1 vV --- V) and each [; is a
literal over P

@ in other words, a conjunction of disjunctions of literals
@ why called “normal form"?

Conjunctive Normal Form (CNF) and SAT

Let P be a set of propositional symbols. A propositional (Qgtgﬁ‘;ﬁ:g
formula @ is called a CNF if it has the form

D=1 A Apon

Inference in PL

where each ¢; has the form ¢; = (I1 vV --- V) and each [; is a
literal over P

@ in other words, a conjunction of disjunctions of literals

@ why called “normal form"?

CNF ~» formula == a set of constraints

@ in CNFs, each constraint ¢; is called a clause, each clause
being a set of literals

SAT is the decision problem of determining whether a given
CNF formula is satisfiable

Constraint Propagation

Automated

(Al) Planning
@ Given a set ® of constraints over variables (e.g., clauses
over propositional variables), infer new constraints
@ Inference: some reasoning (= proof theory) R that is Con=t o

sound
o if R infers ¢ from @, then ® = ¢

o ®U{yp} is logically equivalent to @ ... but ® U {p} can be
“more informative”
e e.g., there may be constraints v that R can infer in one
step from ® U {¢}, but not from ®

@ Typically one computes a fixpoint: propagation

Resolution

Automated
(Al) Planning

Given clauses ¢’ = o U {p} and ¢/ =1 U {—p}, we allow the
inference
eU{p} YU{-p} caae
eVY
That is, ¢ V ¢ can be added as a new clause

@ Since p and —p cannot be simultaneously true, we have to
make true at least one of ¢ and ¥

@ Resolution is complete: @ is unsatisfiable iff {} € RT(®)

k-Resolution and Unit Propagation

Automated

(Al) Planning
@ A full (complete) constraint propagation is exponentially
costly: it solves the original decision problem
@ We need more restricted reasoning that will still give us .
some information/simplification e

@ k-resolution: in

eU{p} YU{-p}

pVY
require that either [U {p}| < k or [U{-p}| <k
@ Unit propagation == 1-resolution is the most wide-spread

techniques in implemented SAT solvers

Unit Propagation

Automated
i . i) (Al) Planning
Fixpoint application of

pufll {1}
P

Constraint
propagation

Procedure unit-propagation

while TRUE do
=P
forall v € @, v = {l} do
forall p € @, [€ ¢ do
o= @' U{g\ {1}
if ' = ® then stop
D =P’

Unit Propagation

Automated

Procedure unit-propagation (8 Flneins

while TRUE do
=9
forall » € @, ¢ = {i} do e
forall € ®, | € ¢ do
o =" U{p\ {I}}
o=\ ¢
forall p € @', | € ¢ do
o=\ p
if ' = @ then stop
d =P

Unit Propagation

Procedure unit-propagation

while TRUE do
d =P

forall v € @, vy = {l} do
forall p € ®, 1 € ¢ do
¥ = o' U {6\ {I})
P =\ ¢
forall p € @', [€ v do
=9\ p
if ®’ = @ then stop
d =P

y

> {{=A, =B, ~C, D}, {~A, B}, {A},{=A, =B, ~C, ~D}, {{~A4, ~B,C}}}
> {{_'A7 B}7 {_‘B’ C}v {_‘Cv A}7 {A7 C}a {_'B7 _‘C}}

Automated
(Al) Planning

Constraint
propagation

Backtracking search

Automated

Backtracking over variable values (A1) Planning

Procedure backtracking-search

bool Solve (®, partial assignment w)
(®',w') := constraint-propagation(®, w)
if &’ is self-contradictory then return FALSE e k"
select a variable v not assigned by w’
if no such variable exists then return TRUE
forall ¢ € dom(v) do

if Solve(®’,w’ U {v := ¢}) then return TRUE

return FALSE |

Davis-Putnam-Logeman-Loveland Algorithm

(DPLL)

Automated

Procedure DPLL (Al) Planning

bool DPLL (®, partial assignment w)
(®',w") := unit-propagation(®,w)
if ' contains empty clause then return FALSE
select a variable v not assigned by w’
if no such variable exists then return TRUE
if DPLL(®',w’ U {v := 1}) then return TRUE
if DPLL(®',’ U {v := 0}) then return TRUE
return FALSE

Backtracking
search

Davis-Putnam-Logeman-Loveland Algorithm

(DPLL)

Automated

Procedure DPLL (Al) Planning

bool DPLL (&, partial assignment w)
(®',w") := unit-propagation(®,w)
if ' contains empty clause then return FALSE
select a variable v not assigned by w’
if no such variable exists then return TRUE
if DPLL(®',w’ U {v := 1}) then return TRUE
if DPLL(®',’ U {v := 0}) then return TRUE
return FALSE

Backtracking
search

> {{Aa B, C}a {_‘Aa _'B}a {_'A7 _'0}7 {{_'Ba _'C}}}
> {{_'Av B}7 {_'B7 0}7 {_'Cv A}7 {A7 C}7 {_'B7 _'C}}

DPLL these days (DPLL++)

Automated

(Al) Planning
@ currently very large SAT problems can be solved
@ criterion for variable selection is critical
@ additional key components e

search

e randomization (in selection) + restarts (?77?)
o clause learning (...)
e engineering issues (e.g., caching)
e from 50 variables, 200 constraints in early 90's to
1000000 variables and 5000000 constraints these days
(from 10'° to 10300000)

Progress of SAT solvers

Automated

(Al) Planning
Instance Posit' 94 |Grasp' 96| Sato' 98 | Chaff' 01
$sa2670-136 40,66s 1,2s 0,95s 0,02s
bf1355-638 1805,21s| 0,11s 0,04s 0,01s

Backtracking
pret150_25 >3000s | 0,21s 0,09s 0,01s search

dubois100 >3000s | 11,85s | 0,08s 0,01s
aim200-2_0-no-1 | >3000s | 0,01s 0Os Os
2dIx_..._bug005 | >3000s | >3000s [>3000s 2,9s
c6288 >3000s | >3000s | >3000s | >3000s

(Marques Silva, 02)

Phase Transition and Computational Hardness

Automated
(Al) Planning

B

*

Percent Satistiable |

Backtracking
search

o
£
=
=
3
=
o
=}
=
=
@
2
©
w
-
=
@
o
=
o
o

3 4 5 6 7
Ratio of Clauses to Variables

(Selman, Levesque, and David Mitchell, 92)

Pathology of backtracking search

Automated
(Al) Planning

Backtrack-style search on hard problems characterized by:

@ Erratic behavior of time complexity distribution
o Distributions have “heavy tails”

Backtracking

e infinite mean ? infinite variance ? search

= m

HEAVY TAILED DISTRIBUTION

Standard Distribution
(finite mean & variance)

Idea: Randomized Restarts

Automated
(Al) Planning
Standard Distribution
(finite mean & variance)
Randomize the backtrack strategy
@ add noise to the heuristic branching (variable choice) =
function
o cutoff and restart search after a fixed number of
backtracks

e critical parameter: cutoff threshold

Idea: Randomized Restarts

Automated

(Al) Planning
Randomize the backtrack strategy
@ add noise to the heuristic branching (variable choice) =
function
o cutoff and restart search after a fixed number of
backtracks
e critical parameter: cutoff threshold
Works?

@ provably eliminates heavy tails
@ practice: rapid restarts with low cutoff can dramatically
improve performance (Gomes and Selman 1998, 1999)

o exploited in most (all?) current SAT solvers

Planning via SAT: Motivation and idea

Automated
(Al) Planning

Motivation observation

@ solvers are developed for many NP-complete classes of
problems

@ progress is not uniform (reasons?)

Framework

@ progress in solving SAT is probably most prominent

Planning via SAT: Motivation and idea

Automated
(Al) Planning

Motivation observation

@ solvers are developed for many NP-complete classes of
problems

@ progress is not uniform (reasons?)

Framework

@ progress in solving SAT is probably most prominent

A\

Idea (Kautz & Selman, 91-96)
@ Maybe we should teach SAT solvers to solve planning?

@ Problem: Strips planning is PSPACE-complete

@ Solution: Bounded-Strips planning is in NP

A\

Planning as Satisfiability

Automated

Transform Planning into a series of SATs (A1) Planning

Procedure planning-as-SAT(II = (P, A, I, G))

b=0
while TRUE do
O(I1,b) := a CNF that is satisfiable iff
there exists a plan with b steps
if DPLL(®(IL, b),0) then
output Plan encoded by a satisfying assignment
b:=b+1

Framework

Questions

Automated

@ What notions of “steps” can we use? (A1) Planning
@ What do we know about the found plan?

@ What should be the connection between the set of plans
for II and the set of satisfying assignments to ®(I1, b)?

@ What can we say about the completeness of the algorithm?

Framework

Strips encodings

Automated
(Al) Planning

How to encode b-step Strips plan existence as a CNF?

Many possible answers. Most (in use to date) share:
o Timesteps 0 <t <b
@ Fact variables p;: is p TRUE or FALSE at t? reodines

@ Action variables a;: is a applied at ¢ or not?

@ The size of the encoding grows linearly in b
e but is it a linear grows in the size of the input?

The Linear Encoding, |

Sequential planning

Automated
(Al) Planning

Problem IT = (P, A, I, G), time steps 0 < ¢t < b

@ Decision variables

pr—forallpe PO<t<b
ap—forallae A,0<t<b—-1

Encodings

Initial State Clauses: “specify initial state”
for all p € P: {po} if p €I, and {—po}, otherwise

@ Goal Clauses: “specify goal values”
for all p e G: {py}

The Linear Encoding, Il

Sequential planning

Automated
(Al) Planning

@ Action Precondition Clauses:
“action implies its preconditions”

foralla € A,p € pre(a),0 <t <b—1: {—a;,p}

Encodings

@ Action Effect Clauses:
“action implies its add/delete effects”
foralla € A,p € add(a),0 <t <b—1: {—a;,pi+1}
foralla € A,p € del(a),0 <t <b—1: {—as, pii1}

The Linear Encoding, Il

Sequential planning

Automated

@ Positive Frame Axioms: (Al) Planning
“if a is applied and p ¢ del(a) was true, then p is still

foralla € A,p & del(a),0 <t <b—1: {—a,—ps,prs1}

@ Negative Frame Axioms:
“if a is applied and p ¢ add(a) was false, then p is still Encodings
false”

foralla € A,p & add(a),0 <t <b—1: {—a,pt, "prs1}

@ Linearity (Exclusion) Constraints:
“apply exactly one action at each time step”
forall a,a’ € A,0<¢t<b—1: {—a,—a}}
forall 0 <¢<b—1: A; (do we really need them?)

Example

Automated
(Al) Planning

@

e P={A, B,C,visB,visC}, I = {A}, G = {visB,visC}
@ Actions

drAB = {{A}, {B, visBY}, {A}}

drAC = {{A},{C,visC},{A}}

drBC = {{B},{C, visCY}, {B}}

Encodings

Blackboard: Linear encoding for b =1

A Basic Parallel Encoding, |

Parallel planning

Automated

(Al) Planning
e Problem IT = (P, A, I,), noops-extended actions A",
time steps 0 <t <b
@ Decision variables
pe—forallpe PO<t<b
a; —forallac AN 0<t<b—1 Encodings

@ Initial State Clauses: “specify initial state”
for all p € P: {po} if p€ I, and {—po}, otherwise

@ Goal Clauses: “specify goal values”
forallp € G: {p»}

A Basic Parallel Encoding, [l

Parallel planning

Automated
(Al) Planning

@ Action Precondition Clauses:
“action implies its preconditions”

foralla € AN,p € pre(a),0 <t <b—1: {=as, p;}

@ Action Interference Clauses:
“do not apply interfering actions in the same time step” e

forall a,a’ € AN a Ja',0<t<b—1: {~a;,—a,}

@ Fact Achievement Clauses:
“fact implies disjunction of its achievers”

forallpe P11 <t <b: {-p}U{ai_1|p € add(a)}

A Basic Parallel Encoding, [l

Parallel planning

Automated
(Al) Planning

@ Action Precondition Clauses:
“action implies its preconditions”

foralla € AN,p € pre(a),0 <t <b—1: {=as, p;}

@ Action Interference Clauses:
“do not apply interfering actions in the same time step” e

forall a,a’ € AN a Ja',0<t<b—1: {~a;,—a,}

@ Fact Achievement Clauses:
“fact implies disjunction of its achievers”

forallpe P11 <t <b: {-p}U{ai_1|p € add(a)}

Do we need anything else?

Linear vs. Parallel Encodings

Automated

(Al) Planning
@ Optimal parallel plans are often shorter than optimal
sequential plans
@ Linearity constraints typically dominate the linear Bl

encodings

So in parallel planning-as-SAT we (typically) need fewer
iterations and (always) consider smaller formulas!

Example

Automated
(Al) Planning

@

e P={A, B,C,visB,visC}, I = {A}, G = {visB,visC}
@ Actions

drAB = {{A}, {B, visBY}, {A}}

drAC = {{A},{C,visC},{A}}

drBC = {{B},{C, visCY}, {B}}

Encodings

Blackboard: Basic parallel encoding for b =1

2-Planning Graphs

Automated
2-planning graphs extend 1-planning graphs by keeping (Al) Planning
track of mutex pairs; pairs that cannot be

simultaneously achieved in i steps:
e action pair mutex at ¢ if actions interfere or their
preconditions mutex at
e atom pair mutex at i if all supporting action pairs are
mutex at ¢ — 1
e a set of atoms C' is mutex at ¢ if it contains a mutex pair e tion
at s

Resulting graph:
o Fy= {p S I}
o A; ={a € AN | Prec(a) C P; and not mutex at i}
° Pi+1 = {p S Add(a) | a < Ai},
with sets of action/atom mutex pairs defined as above.

The Planning Graph Based Encoding, |

Automated

Problem II = (P, A, I, G), noops-extended actions A%, (Al) Planning
time steps 0 <t <b

Fact layers Py, action layers A), fact mutexes (layers)

E Py, action mutexes (layers) EA

Decision variables
pr—forallpe P1<t<b Mt
a; — fOI’ a” a € AN,O S t é b_ 1 information

@ Goal Clauses: “specify goal values”
for allp € G: {py}

@ Action Precondition Clauses:
“action implies its preconditions”
foralla € AN p € pre(a),1 <t <b—1: {—a;,p:}

The Planning Graph Based Encoding, Il

Automated

(Al) Planning
@ Action Mutex Clauses: “do not apply mutex actions in the
same time step”
forall 0 <t <b—1,a,a" € Ay, {a,ad'} € EAy:
{—az, —ai}
o Fact Achievement Clauses: Mutex

information

“fact implies disjunction of its achievers”
forallpe P,1 <t <b: {-p}U{ai_1|p € add(a)}

@ Fact Mutex Clauses:
“do not make two mutex facts TRUE"

forall 1 <t <b,p,p’" € Py, {p,p'} € EPy): {—pe, 0}

Basic Parallel vs. PG-Based Encoding, |

Automated

(Al) Planning
@ PG-Based Encoding == Basic Parallel Encoding pruned
and enhanced by information contained in 2-Planning
Graph
@ Pruned: less decision variables p; and ay, less redundant
exclusion clauses s o

e Example: We don?t need vars for the initial facts since
pre(a) C I holds anyway for all a € A

@ Enhanced: more non-trivial (temporal) exclusion clauses
/ /
{—a¢, —ai} and {—py, —pi}

Example

Automated
(Al) Planning

@

e P={A, B,C,visB,visC}, I = {A}, G = {visB,visC}
@ Actions

drAB = {{A}, {B, visBY}, {A}}

drAC = {{A},{C,visC},{A}}

drBC = {{B},{C, visCY}, {B}}

Blackboard: PG-based encoding for b =1

Basic Parallel vs. PG-Based Encoding, | (Recall)

Automated

(Al) Planning
@ PG-Based Encoding == Basic Parallel Encoding pruned
and enhanced by information contained in 2-Planning
Graph
@ Pruned: less decision variables p; and ay, less redundant
exclusion clauses e

information
e Example: We don?t need vars for the initial facts since
pre(a) C I holds anyway for all a € A

@ Enhanced: more non-trivial (temporal) exclusion clauses
/ /
{—a¢, —ai} and {—py, —pi}

Basic Parallel vs. PG-Based Encoding, Il

Automated

o All new clauses (the pruned {—p;} and {—a;}, and all new [RAFHi"
exclusion clauses) follow from the Basic Parallel CNF &

@ By constructing 2-planning graph and basic our SAT
encoding on it ...
e ...we do some of the reasoning devoted to the SAT solver
with a specialized algorithm instead
e But why this part of work and not all the work?

Mutex
information

Basic Parallel vs. PG-Based Encoding, Il

o All new clauses (the pruned {—p;} and {—a;}, and all new [FAyH—
exclusion clauses) follow from the Basic Parallel CNF &

@ By constructing 2-planning graph and basic our SAT
encoding on it ...
e ...we do some of the reasoning devoted to the SAT solver
with a specialized algorithm instead
e But why this part of work and not all the work?

Mutex
information

@ Potentially exponential savings
e suppose (since) the SAT solver uses, in constraint
propagation, 1-Resolution only
o for exclusion relations we need 2-Resolution!
[Brafman, JAIR-2001]

@ What sort of resolution do we need to capture k-planning
graphs in the constraint propagation procedure?

In Front of the Curtains

Automated
(Al) Planning
Transformation B
Problem A »> Encoding C
%1,,0 e Method D
L2 SN Behind the
Sso v curtains

Search Space E

e What are A, B, C, D, E in our case?
@ What is X?

A Very Simple Encoding

Use a 1-planning graph (Qgtgﬁ‘;ﬁ:g
e Problem IT = (P, A, I,), noops-extended actions A",
time steps 0 <t < b, action layers A(t)
@ Decision variables: ¢; — forall 0 <¢t<b—-1anda € A(t)

@ Goal Clauses: “at least one achiever” S
e for all pE G- {ab7] ‘a c A<b71)7g c add(a)} curtains

@ Action Precondition Clauses:
“action implies disjunction of its precondition achievers”

forall 1 <t <b—1,a¢€ Ay),p € pre(a):
{—a;y U{aj_,la’ € Ay—1),p € add(a’)}

@ Action Interference Clauses: as in basic parallel encoding

Example

Automated
(Al) Planning

(B —©)

@ Behind the

curtains

e P={AB,C}, I={A} G={C}
@ Actions

drAB = {{A},{B},{A}}
drBC = {{B},{C},{B}}

Blackboard: “Very simple” encoding for b = 2

Reminder: DPLL

Automated
(Al) Planning

Procedure DPLL

bool DPLL (&, partial assignment w)
(®',w') := unit-propagation(®, w)
if &’ contains empty clause then return FALSE Behind the

curtains

select a variable v not assigned by w’

if no such variable exists then return TRUE

if DPLL(®',’ U {v := 1}) then return TRUE
if DPLL(®',w’ U {v := 0}) then return TRUE
return FALSE

Behind the Curtains, Unit Propagation, |

propagate a; = TRUE

set a IN at ¢
if t > 0 then forall p € pre(a)
if all a’ € Ay_1),p € add(a’) are OUT at ¢ — 1 then fail
if all ' € A1y, p € add(a’) are OUT at ¢ — 1, except a”
then propagate a” IN at ¢ — 1
forall ' € A that interfere with a
propagate a’ OUT at ¢

Automated
(Al) Planning

Behind the
curtains

Behind the Curtains, Unit Propagation, Il

propagate a; = FALSE

set a OUT at ¢
if t =b— 1 then forall g € add(a) N G
if all &’ € Ay, g € add(a’) are OUT at ¢ then fail
if all a’ € Ay, g € add(a’) are OUT at ¢, except a”
then propagate @’ IN at ¢t — 1

if t <b—1 then
77

Automated
(Al) Planning

Behind the
curtains

Behind the Curtains, DPLL

Automated

@ DPLL makes commitments of the form (A1) Planning
“I' will/won't apply action a at time ¢"

@ The search state is a sequence of such commitments
d0 “I will move the truck from z to y at time 17"
dl UP: “truck at x at time 17", “truck at y at time 18"

dl “I will sell the truck at time 7" Beliicd b
d2 UP: “no truck at time §, ..., 25"
d2 FALSE

dl “I will not sell the truck at time 7"

Behind the Curtains, DPLL

Automated

@ DPLL makes commitments of the form (A1) Planning
“I' will/won't apply action a at time ¢"

@ The search state is a sequence of such commitments
d0 “I will move the truck from z to y at time 17"
dl UP: “truck at x at time 17", “truck at y at time 18"

dl “I will sell the truck at time 7" Behind the
d2 UP: “no truck at time §, ..., 25"

d2 FALSE

dl “I will not sell the truck at time 7"

@ The order of commitments in the sequence is independent
of the time steps ¢

@ ... this is why we also call this undirected search

Branching in Planning: A Big Picture

Automated

(Al) Planning
e Forward: state-space; extend plan head, totally (possibly
weakly) ordered
o Backward: regression-space; extend plan tail; totally
(possibly weakly) ordered Behind the

curtains

@ Temporal: for action a and time 7, create splits
alt] = TRUE / a[i] = FALSE

o POCL: Partial Order Causal Link Planning

@ next ...

	Logic
	Propositional logic
	Inference in PL

	Constraint satisfaction
	Constraint propagation
	Backtracking search

	Planning via SAT
	Framework
	Encodings
	Mutex information

	Behind the curtains

