Advanced clustering

B4M36SAN

Outline

- 1. Review of baseline methods
 - K-means, Hierarchical clustering, DBSCAN
- 2. Spectral clustering
 - Principles and intuition, Showcase
 - DIY implementation
- 3. K-means on steroids
 - Relation to LDA and PCA
 - Ensemble clustering

K-means

K-means

Advantages:

+ Fast, easy, simple

Susceptible to:

- Cluster shapes and densities
- Initialization
- Outliers
- Predefined number of clusters*

Hierarchical clustering

Hierarchical clustering

Advantages:

- + More informative hierarchical structure
- + Can vary number of clusters without re-computation

Susceptible to:

- Noise (single link)
- Outliers (complete link)
- Non-spherical clusters (average link)

DBSCAN

DBSCAN

Advantages:

- + Cluster shapes are not an issue
- + Robust towards outliers/noise

Susceptible to:

- Cluster densities
- Parametrization (eps, MinPts)

Datasets

Experiment yourself

Spectral clustering

- Turns data into a graph
- Finds a *min-cut* of the graph
 - The partition forms the clusters
- Simple idea, not so simple steps

Azran: A Tutorial on Spectral Clustering

Spectral clustering

1. select the similarity function

- linear, RBF, polynomial, etc.
- a general rule assigning functions to problems does not exist,
- 2. compute the similarity (adjacency) matrix $S = [s_{ij}]_{m \times m}$
 - (a new implicit feature space originates),
- 3. construct a "reasonable" similarity graph by editing S
 - ${\cal S}$ is a complete graph, vertices \sim objects, similarities \sim edges,
 - remove long (improper) edges,
- 4. derive the Laplace matrix \mathcal{L} out of the similarity matrix \mathcal{S}
 - unnormalized: $\mathcal{L} = \mathcal{D} \mathcal{S}$.
 - normalized: $\mathcal{L}_{rw} = \mathcal{D}^{-1}\mathcal{L} = \mathcal{I} \mathcal{D}^{-1}\mathcal{S}$.
- 5. project into an explicit space of k first eigenvectors of \mathcal{L}_{i}
 - $-\mathcal{V}=[v_{ij}]_{m\times k}$, eigenvectors of \mathcal{L} as columns,
- 6. k-means clustering in \mathcal{V} matrix
 - $-\mathcal{V}$ rows interpreted as new object positions in k-dimensional space.

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \qquad L = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}$$

Why 2nd eigenvector?

- lacksquare concern the unnormalized option: $\mathcal{L} = \mathcal{D} \mathcal{S}$
- \blacksquare then for $\forall f \in \mathbb{R}^m$

2nd eigenvector is *f*, that minimizes this function (without proof)

But what is this function telling?

$$f'\mathcal{L}f = f'\mathcal{D}f - f'\mathcal{S}f =$$

$$= \sum_{i=1}^{m} d_i f_i^2 - \sum_{i,j=1}^{m} f_i f_j s_{ij} =$$

$$= \frac{1}{2} \left(\sum_{i=1}^{m} (\sum_{j=1}^{m} s_{ij}) f_i^2 - 2 \sum_{i,j=1}^{m} f_i f_j s_{ij} + \sum_{j=1}^{m} (\sum_{i=1}^{m} s_{ij}) f_j^2 \right) =$$

$$= \frac{1}{2} \sum_{i,j=1}^{m} s_{ij} (f_i - f_j)^2$$

It's a cost function!

If two points are connected i.e $s_{ij}=1$, it penalizes the difference in their labels

K-means relation to PCA and LDA

- Initialization issues
 - Repeated starts
 - PCA-Part
 - A divisive hierarchical approach based on PCA.
 - Starting from an initial cluster that contains the entire data set, the iteratively select the cluster with the greatest SSE and divide it into two subclusters using a hyperplane that passes through the cluster centroid and is orthogonal to the principal eigenvector of the cluster covariance matrix. This procedure is repeated until K clusters are found

Celebi, M.E., Kingravi, H.A. and Vela, P.A., 2013. A comparative study of efficient initialization methods for the k-means clustering algorithm.

K-means relation to PCA and LDA

LDA

- Assumes data for each class come from (mulitvar.) normal distributions
- Uses Bayes theorem to decide which class a sample belongs to

EM-GMM clustering

- Soft version of K-means
- Also assumes data for each cluster come from (mulitvar.) normal distributions
- \circ The parameters estimated are μ_c , σ_c and ρ_c of the clusters

EM clustering on *Breast cancer* dataset

Demo in the ./extra folder of the course materials

Ensemble clustering

How to generate clusters?

- Using different clustering algorithms
 e.g. K-means, hierarchical clustering, spectral clustering, ...
- Running the same algorithm with different parameters or initializations, e.g.,
 - use different dissimilarity measures
 - use different number of clusters
- Using different samples of the data

How to combine the partitions?

- Median partition based approaches
 - "Averaging" all ensemble partitions
- Co-occurrence based approaches
 - Relabeling/voting based methods
 - <u>Co-association matrix</u> based methods
 - Graph based methods

Voting

Resources

http://www.cse.msu.edu/~cse802/EnsembleClustering_Jinfeng_jain.pptx

https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

https://csdl-images.computer.org/trans/tk/2012/03/figures/ttk20120304131.gif

https://www.researchgate.net/figure/An-example-of-the-Laplacian-matrix-of-a-simple-network-n-4_fig1_305653264

https://images.amcnetworks.com/ifc.com/wp-content/uploads/2015/03/EnemyAtTheGates_MF.jpg

https://gfycat.com/somelonelycaterpillar

<u>Luxburg07_tutorial_spectral_clustering.pdf (mit.edu)</u>

[1209.1960] A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm (arxiv.org)

Rajaraman, Anand, and Jeffrey David Ullman. *Mining of massive datasets*. Cambridge University Press, 2011.