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pAgenda

� Linear regression

− a simple model with a single predictor,

− parameters, interpretation, hypotheses testing,

− generalization towards multiple linear regression,

− special issues: qualitative predictors, outliers, collinearity,

� linear model selection and regularization

− subset selection,

− regularization = shrinkage, lasso, ridge regression,

− choosing the optimal model, estimating test error,

� moving beyond linearity

− polynomial regression,

− step functions, splines,

− local regression,

− generalized additive models.
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pLinear regression

� Assumption of linearity

− often simplifying assumption only

∗ true regression functions are rarely linear,

∗ still, the linear model extremely useful, both conceptually and practically,

− the simplification increases ability to learn

∗ helps to cope with the well-known curse of dimensionality,

− the simplification brings interpretability

∗ a reasonable number of parameters with clear meaning,

− good performance preserved in case of moderate violation

∗ linear models can be extended otherwise.
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pLinear regression for the advertising data

� Consider the advertising data shown below, questions we might ask:

− is there a relationship between advertising budget and sales?

− how strong is the relationship between advertising budget and sales?

− which media contribute to sales?

− how accurately can we predict future sales?

− is the relationship linear?

− is there synergy among the advertising media?
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pSimple linear regression using a single predictor X

� We assume a model

Y = β0 + β1X + ε

− where β0 and β1 are two unknown constants (coefficients, parameters),

− they represent the intercept and slope,

− ε is the error term, normally distributed with 0 mean, the same variance
at every X , independent,

� we predict the future values of independent variable using

ŷ = β̂0 + β̂1x

− where the hat symbol denotes an estimated value,

− ŷ indicates a prediction of Y on the basis of X = x.
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pEstimation of the parameters by least squares

� Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X ,

� then ei = yi − ŷi represents the ith residual,

� we define the residual sum of squares (RSS) as

RSS = e21 + e22 + · · · + e2m =

m∑
i=1

(yi − β̂0 − β̂1xi)2

� the least squares approach chooses β̂0 and β̂1 to minimize the RSS

∂RSS

∂β̂1
= 0→ β̂1 =

∑m
i=1 (xi − x̄)(yi − ȳ)∑m

i=1 (xi − x̄)2

∂RSS

∂β̂0
= 0→ β̂0 = ȳ − β̂1x̄

� where x̄ and ȳ are the sample means for X and Y .
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pExample: advertising data

� The least squares fit for the regression of sales onto TV

− a linear fit captures the essence of the relationship,

− although it is somewhat deficient in the left of the plot,

− β̂0: no TV advertising, around 7 (thousand) units sold,

− β̂1: $1,000 more spent on TV associated with selling ∼48 additional units.
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pAssessing the accuracy of the coefficient estimates

� Standard error of an estimator reflects how it varies under repeated sampling

SE(β̂1)
2 =

σ2∑m
i=1 (xi − x̄)2

SE(β̂0)
2 = σ2

( 1

m
+

x̄2∑m
i=1 (xi − x̄)2

)
− where σ2 = V ar(ε),

− residual standard error RSE is σ estimate, RSE =
√
RSS/(m− 2).
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pCoefficient confidence intervals

� Confidence interval (CI)

− 100(1−α)% confidence interval is a range of values that encompasses the
true (unknown) population parameter in 100(1 − α)% repeated sampling
trials like this,

− there is approximately a 95% chance that the interval below will contain
the true value of β1 (under a scenario where we got repeated samples like
the present sample) [

β̂1 − 2SE(β̂1), β̂1 + 2SE(β̂1)
]

− a more precise (and general) CI estimate is based on 1− α/2 quantile of
a t-distribution with (m-2) degrees of freedom[

β̂1 − t1−α/2,m−2SE(β̂1), β̂1 + t1−α/2,m−2SE(β̂1)
]

− for the advertising data, the 95% CI for β1 is [0.042, 0.053].
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pHypothesis testing

� The most common hypothesis test

− H0: there is no relationship between X and Y ,

− HA: there is some relationship between X and Y ,

� mathematically this corresponds to testing

− H0 : β1 = 0 versus HA : β1 6= 0,

� the test stems from the standard error and t-statistic given by

t =
β̂1 − 0

SE(β̂1)

− the statistic will have a t-distribution with m-2 degrees of freedom,

− the corresponding p-value is the probability of observing any value equal
to |t| or larger,

− both under the H0 assumption, i.e., assuming β1 = 0.
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pAssessing the overall accuracy of the model

� R-squared gives the fraction of variance explained by the model

R2 =
TSS −RSS

TSS
= 1− RSS

TSS

− where TSS =
∑m

i=1 (yi − ȳ)2 stands for the total sum of squares,

− and RSS =
∑m

i=1 (yi − ŷi)2 stands for the residual sum of squares,

� while RSE mentioned earlier gives an absolute measure of its lack of fit,

� it can be shown that in this simple linear regression setting R2 = r2,

− where r is the correlation between X and Y.

r =

∑m
i=1 (xi − x̄)(yi − ȳ)√∑m

i=1(xi − x̄)2
√∑m

i=1(yi − ȳ)2
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pAdvertising data results: X=TV, Y=Sales

Coefficient Std. error t-statistic p-value

Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

Quantity Value

RSE 3.26
R2 0.612

F-statistic 312.1

12/42 B4M36SAN Linear regression



pMultiple linear regression

� Here, a following model is assumed

Y = β0 + β1X1 + β2X2 + · · · + βpXp + ε

� interpretation of the regression coefficients

− βj represents the average effect on Y of a one unit increase in Xj, hold-
ing all other predictors fixed,

− it perfectly fits the balanced design where the predictors are uncorrelated,

− correlations among predictors cause problems

∗ the variance of all coefficients tends to increase, sometimes dramatically,

∗ interpretations become hazardous, when Xj changes, everything else
changes,

− example: Y = number of tackles by a football player in a season; W and H
are his weight and height; fitted regression model is Ŷ = b0+.50W−.10H;
how do we interpret β̂2 < 0?

− claims of causality should be avoided for observational data.
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pEstimation of the parameters for multiple regression

� No principal changes from the simple model,

� the prediction formula is

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂pxp

� the parameter estimates obtained by RSS minimization

RSS =

m∑
i=1

(yi − ŷi)2 =

m∑
i=1

(yi − β̂0 − β̂1xi1 − · · · − β̂pxip)2

� ordinary least squares estimation

− the most simple approach,

� generalized least squares

− allow efficient β estimation when heteroscedascity or correlations are present.
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pCategorical predictors

� So far, categorical and continuous independent variables treated separately

− often we need to study them concurrently, employ them in regression,

� for binary predictors we create a new 0/1 variable Xi with the resulting model

yi = β0 + β1xi + εi =

{
xi = 1 : β0 + β1 + εi

xi = 0 : β0 + εi

− interpretation: β0 is the average outcome in the zero group, β0 + β1 is
the average outcome in the positive group, β1 is the average difference in
outcomes between groups,

� however, a -1/1 dummy variable could be introduced too

yi = β0 + β1xi + εi =

{
xi = 1 : β0 + β1 + εi

xi = −1 : β0 − β1 + εi

− the predictions will be identical, β values and interpretation change.
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pCategorical predictors

� for predictors with l levels we typically create l − 1 dummy variables,

� e.g., ethnicity ∈{Asian, Caucasian, African American} could be captured by

xi1 =

{
1 if ith person is Asian

0 if ith person is not Asian
xi2 =

{
1 if ith person is Caucasian

0 if ith person is not Caucasian

� the level with no dummy variable (African American) is known as the baseline,

� the dummy variables appear in the regression equation

yi = β0+β1xi1+β2xi2+εi =


β0 + β1 + εi if ith person is Asian

β0 + β2 + εi if ith person is Caucasian

β0 + εi if ith person is African American

− interpretation: β0 is the average outcome in the baseline group, β1 is the
average outcome increase in the first group, β2 is the average outcome
increase in the second group (both wrt baseline).
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pInteraction in the advertising data?

� Regular linear model is additive

− e.g., the average effect on sales of a one-unit increase in TV is always βTV ,
regardless of the amount spent on radio,

� however, there is an interaction between TV and radio spending

− when advertising is split between the two media, the additive linear model
tends to underestimate sales → there is synergy between the predictors.

Sales

Radio

TV
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pModeling interactions

� Add an interaction term into the model, in the case of advertising problem

sales = β0 + β1 × TV + β2 × radio + β3 × (TV× radio) + ε

� in this model, the effect of TV changes with the value of radio (and vice versa)

sales = β0 + (β1 + β3 × radio)× TV + β2 × radio + ε

sales = β0 + β1 × TV + (β2 + β3 × TV)× radio + ε

� results of this model confirm the role of the interaction

Coefficient Std. error t-statistic p-value

Intercept 6,7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001

radio 0.0289 0.009 3.24 0.0014
TV×radio 0.0011 0.000 20.73 < 0.0001
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pModeling interactions – interpretation and hints

� The p-value for the interaction term TV×radio is extremely low

− indicating that there is strong evidence for Ha : β3 6= 0,

� R2 for the interaction model is 96.8%

− compared to only 89.7% for the model using TV and radio without an
interaction term,

− 96.8−89.7
100−89.7 = 69% of the variability in sales that remains after fitting the
additive model has been explained by the interaction term,

� the coefficient estimates in the table suggest that

− increase in TV advertising of $1,000 is associated with increased sales of
(β1 + β3 × radio)× 1000 = 19 + 1.1× radio units,

� If we include an interaction in a model

− we should also include the main effects (TV and radio in our case), even
if the p-values associated with their coefficients are not significant.
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pSome important questions

1. Is at least one of the p predictors useful in predicting the response?

2. How well does the model fit the data?

3. Do all the predictors help to explain Y , or is only a subset of them useful?

4. Given a set of predictor values, what response value should we predict, and
how accurate is our prediction?

X1

X2

Y
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pIs at least one predictor useful?

� Formally: H0 : β1 = β2 = · · · = βp = 0 vs HA: at least one βj 6= 0,

� this test is performed by computing the F-statistic

F =
(TSS −RSS)/p

RSS/(m− p− 1)

� in fact, we compare fit of the full (RSS) and intercept only model (TSS)

− technically, we compute the ratio between explained and unexplained vari-
ance of the full model,

� provided H0 is true

− E((TSS −RSS)/p) = E(RSS/(m− p− 1)) = σ2 and F is close to 1,

− the test is adjusted to the number of predictors p and the sample size m,

� F-statistic is compared with quantiles of F (p,m− p− 1) distribution.

21/42 B4M36SAN Linear regression



pF-distribution

� χ2 distribution with df degrees of freedom is the distribution of a sum of the
squares of df independent standard normal random variables

− provided that H0 holds, residuals should have normal distribution, zero
mean and equal variance,

− consequently, TSS, RSS as well as their additions and subtractions follow
the χ2 distribution . . .

� F-distribution is any distribution obtained by taking the quotient of two χ2

distributions divided by their respective degrees of freedom,

− consequently, any F-distribution has two parameters corresponding to the
degrees of freedom for the two χ2 distributions,

− given X1 ∼ χ2
df1

and X2 ∼ χ2
df2

X1/df1
X2/df2

∼ Fdf1,df2
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pF-distribution in R

� find the value of Fα,g−1,N−g:

qf(alpha, df1, df2, lower.tail = F),

� find the p-value when knowing the observed F value:

pf(Fobs, df1, df2, lower.tail = F).

Statlect: The Digital Textbook

23/42 B4M36SAN Linear regression



pAdvertising data results: the full model

Coefficient Std. error t-statistic p-value

Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001

radio 0.189 0.0086 21.89 < 0.0001
newspaper -0.001 0.0059 -0.18 0.8599

Correlations TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762

newspaper 1.0000 0.2283
sales 1.0000

Quantity Value

RSE 1.69
R2 0.897

F-statistic 570
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pHow well does the model fit the data?

� We have already seen that R-squared is a good quantifier for model fit, however

− it cannot show us whether the model is biased or not,

− features such as heteroscedasticity, non-linearity or outliers remain hidden,

� residual plot reveals these features

− most often it plots residuals as a function of predicted values,

− namely when having multiple independent variables.

Interpreting Residual Plots to Improve Your Regression (www.qualtrics.com): only the left-most residual plot meets the usual requirements.
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pDeciding on the important variables

� Selection cannot be directly based on the observed predictor p-values

− namely for large p, risk of false discoveries due to multiple comparisons,

� build and compare (a lot of) alternative models

− repetitive application of least squares on various reduced sets of predictors,

− RSS and R2 are not suitable for selecting the best model

∗ at least, among a collection of models with different numbers of predic-
tors,

∗ they are related to the training error,

∗ the model containing all of the predictors will always have the smallest
RSS and the largest R2.

− use a criterion that balances the training error and model size,

∗ to exemplify, Mallow’s Cp, Akaike information criterion (AIC), Bayesian
information criterion (BIC), adjusted R2, and cross-validation (CV).
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pAdjusted R-squared

� Unlike the R2 statistic, it pays a price for unnecessary predictors,

� for a least squares model with p variables

Adjusted R2 = 1− RSS/(m− p− 1)

TSS/(m− 1)

− a maximization criterion (unlike Cp , AIC, and BIC),

− a heuristic criterion, vaguely motivated in statistical theory,

− irrelevant variables bring a small decrease in RSS, this decrease is out-
weighed by decrease in m − p − 1 (neither TSS nor m changes with
p),

− a comparative measure, different meaning than R2 (a measure of fit), can
be e.g. negative.
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pThe ways to choose the optimal model

� Three classes of methods

− subset selection outlined before, search methods could be

∗ all subsets regression is not feasible, O(2p),

∗ forward stepwise selection starts with the null model and gradually
adds the variable that results in the lowest RSS, O(p2),

∗ backward stepwise selection starts with the full model, gradually
removes the variable with the largest p-value in the last model, i.e., the
least significant one, O(p2), cannot be used if p > m,

− dimension reduction – ordinary least squares regression in a L-dimensional
subspace, see the lectures on dimension reduction,

− shrinkage – we fit a model involving all p predictors, but the estimated co-
efficients are shrunken towards zero relative to the least squares estimates,
this shrinkage (also known as regularization) has the effect of reducing
variance and can also perform variable selection.
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p How regression got its name . . .
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pShrinkage Methods

� Ridge regression

− recall that the least squares fitting procedure estimates β0, . . . , βp with
the values that minimize

RSS =

m∑
i=1

(yi − β̂0 −
p∑
j=1

β̂jxij)
2

− in contrast, the ridge regression coefficient estimates are the values that
minimize

m∑
i=1

(yi − β̂0 −
p∑
j=1

β̂jxij)
2 + λ

p∑
j=1

β̂2
j = RSS + λ

p∑
j=1

β̂2
j

− where λ ≥ 0 is a tuning parameter, to be determined separately, typically,
CV is used,

− λ
∑

j β̂
2
j is a shrinkage penalty with the effect of shrinking the βj esti-

mates towards zero.
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pShrinkage Methods

� Ridge regression

− the standard least squares coefficient estimates are scale equivariant

∗ multiplying Xj by a constant c simply leads to a scaling of the least
squares coefficient estimates by a factor of 1/c.

∗ regardless of how the jth predictor is scaled, Xjβ̂j will remain the same,

− in contrast, the ridge regression coefficient estimates can change substan-
tially when multiplying a given predictor by a constant

∗ ridge regression should be applied after standardizing the predictors

x̃ij =
xij√

1
n

∑n
i=1 (xij − x̄j)2
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pRidge regression improvement over least squares

� Bias-variance trade-off

− suppose we have fit a model f̂ (x) to some training data,

− let (x0, y0) be a test observation drawn from the same population,

− if the true model is Y = f (X) + ε (with f (x) = E(Y |X = x)) then

E
(
y0 − f̂ (x0)

)2
= V ar(f̂ (x0)) +

[
Bias(f̂ (x0))

]2
+ V ar(ε)

Bias(f̂ (x0)) = E(f̂ (x0))− f (x0)

− the error can be decomposed into model variance, bias and irreducible
error,

− typically as the flexibility of f̂ increases, its variance increases, and its bias
decreases,

− choosing the flexibility based on average test error amounts to a bias-
variance trade-off.
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pRidge regression improvement over least squares

� Relationship between model flexibility and accuracy

− and the bias of the train error towards more flexible/overfit models.
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pRidge regression improvement over least squares
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pShrinkage Methods

� The lasso

− ridge regression will include all p predictors in the final model

∗ disadvantage, does not help in feature selection,

− lasso overcomes this problem by minimizing

m∑
i=1

(yi − β̂0 −
p∑
j=1

β̂jxij)
2 + λ

p∑
j=1

|β̂j| = RSS + λ

p∑
j=1

|β̂j|

∗ in statistical parlance, the lasso uses an `1 penalty instead of an `2
penalty applied in ridge regression,

− the `1 penalty has the effect of forcing some of the coefficient estimates
to be exactly equal to zero when λ is sufficiently large,

− the lasso yields sparse models and performs variable selection.
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pThe variable selection property of the lasso

� Why is it that the lasso, unlike ridge regression, results in coefficient estimates
that are exactly equal to zero?

� One can show that the lasso and ridge regression coefficient estimates solve
the problems minimize

min
β̂

m∑
i=1

(yi − β̂0 −
p∑
j=1

β̂jxij)
2 subject to

p∑
j=1

|β̂j| ≤ s

and

min
β̂

m∑
i=1

(yi − β̂0 −
p∑
j=1

β̂jxij)
2 subject to

p∑
j=1

β̂2
j ≤ s

� in other words, for every value of λ there is some s such that the alternative
definitions lead to the same regression coefficient estimates.
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pLasso and ridge regression: geometric interpretation

Lasso Ridge regression .
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pSelecting the value of tuning parameter

� which λ value (or equivalently, the value of the constraint s) is the best?

� employ cross-validation

− use fresh/unseen data to estimate the expected generalization error,

− calculate mean squared error MSETe = RSS
m = 1

m

∑m
i=1 (yi − ŷi)2,

� in our case, proceed as follows

− choose a grid of λ values,

− compute the cross-validation error rate for each value of λ,

− select either λmin for which the cross-validation error is smallest,

− or select λ1se, the largest value of λ such that error is within 1 standard
error of the minimum,

� Finally, the model is re-fit

− using all of the available observations,

− and the selected value of the tuning parameter.
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pCross-validation

� the training error can dramatically underestimate the test error

− it is a positively biased estimate of the future generalization error,

� hold-out makes the most easy approach to model testing

− split the available data between train and validation set (70:30 ratio),

− sufficient for large data sets,

� k-fold cross-validation

− randomly split observations into k folds of (approximately) equal size,

− in k gradual runs perform training on k − 1 folds and testing on the
remaining fold (always different),

− eventually, k estimates of the test error are averaged.
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pComparison between λmin and λ1se

λmin corresponds to the green line, always larger than λ1se which is in blue.
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pSummary

� Multiple linear regression

− a simple model with the strong assumption of linearity,

− helps to understand concurrent effects on a target continuous variable,

� model selection and regularization may improve prediction and understanding

− neither ridge regression nor the lasso will universally dominate the other,

− lasso performs better when the response is a function of only a relatively
small number of predictors, however . . .

− . . . the number of predictors related to the response is never known a priori,

− cross-validation can help to decide which approach is better on a particular
data set and select a value of the tuning parameter.
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pThe main references

:: Resources (slides, scripts, tasks) and reading

� G. James, D. Witten, T. Hastie and R. Tibshirani: An Introduction to
Statistical Learning with Applications in R. Springer, 2014.

� K. Markham: In-depth Introduction to Machine Learning in 15 hours
of Expert Videos. Available at R-bloggers.
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