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Agenda

m Linear regression
a model with single predictor and its extension toward multiple linear re-
gression,
parameters, interpretation, hypotheses testing,

special issues: qualitative predictors, outliers, collinearity,
m linear model selection and regularization

subset selection,
regularization = shrinkage, lasso, ridge regression,
choosing the optimal model, estimating test error,

= moving beyond linearity

basically via basis expansion,
polynomial regression, step functions,
splines, local regression,

generalized additive models.




Moving Beyond Linearity

m [ he truth is never linear! Or almost never!
m When the linearity assumption is not good enough ...

polynomials

x expansion up to the n-th degree polynomial,

step functions

x cut the predictor into distinct regions, construct stepwise models,
splines

x piecewise polynomials with constraints,

local regression
* fit many local (typically linear) models along the range of the predictor.

generalized additive models
x extension of linear regression to non-linear elements.

m offer a lot of flexibility,

= without losing the ease and interpretability of linear models.




Polynomial regression
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Polynomial regression

s Create new variables X; = X, Xy = X?, etc. and then treat as multiple
linear regression,

= not really interested in the coefficients,

m more interested in the fitted function values at any value x

N

flwo) = Bo + Bro + oz + - -+ + + B840
= Since f(z) is a linear function of the §;

pointwise-variances Var|[f(z)] at any value 2 can be estimated,

in the previous figure, f(zo) = 2se[f(x0)] is shown,

m we either fix the degree d at some reasonably low value, else use cross-
validation to choose d.




Step functions

= cut the independent variable into distinct regions, construct stepwise models,
m example of dummy variables:

Co(X)=1(X < 35), Ci(X) =135 < X <5b0), ..., Cg(X)=I1(X > 35)
m linear model with the dummy variables as predictors

yi = Po + B1C1(;) + BoCo(;) + - - - + BrCr () + €
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Step functions

m Easy to work with, creates a series of dummy variables representing groups,
m useful way of creating interactions that are easy to interpret,

m for example, interaction effect of Year and Age:
I(Year < 2005) - Age, I(Year > 2005) - Age
= would allow for different linear functions in each age category.
m In R: I(year < 2005) or cut(age, c(18, 25, 40, 65, 90)),
m choice of cutpoints or knots can be problematic,

m For creating nonlinearities, smoother alternatives such as splines are available.




Piecewise polynomials

m Instead of a single polynomial in X over its whole domain,

m we can rather use different polynomials in regions defined by
knots = the points where the models/coefficients change,

= an example of a piecewise cubic polynomial (without constraints)

Bor + Briz; + Borx? + Bzl + ¢ if 3 < ¢
Boa + Brow; + Poox? + Boxs + 6 if 1 > ¢

?

m better to add constraints to the polynomials, e.g. continuity,

0 have the "maximum” amount of continuity

degree-d spline is a piecewise degree-d polynomial with the constraints of
continuity as well as continuity in derivatives up to degree d-1 at each knot.




Piecewise polynomials
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Difficult predictive tasks and risk of overfitting ...

Take A Break

m Guess the most difficult predictive task

1. where and when a major earthquake strikes,
2. tornado warnings for timely evacuation,

3. presidential elections.




Difficult predictive tasks and risk of overfitting ...

Take A Break

m Guess the most difficult predictive task

1. where and when a major earthquake strikes,
2. tornado warnings for timely evacuation,

3. presidential elections.

s Fukushima 2011 nuclear disaster [Silver: The signal and the noise]
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Linear splines

m A linear spline with knots at &, , k =1, ..., K is a piecewise linear polynomial
continuous at each knot,

m we can represent this model as
yi = Po+ Bibi(w) + Baba(wi) + - -+ + Br1br1(xi) + €

m where the by are

bl(%’) L
bryi(xi) = (i = &)y k=1,..., K

= where the (), means positive part, i.e.

@_&M{%—& if 2> &

0 otherwise




Linear splines
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Cubic splines

m A cubic spline with knots at &, , kK =1, ..., K is a piecewise cubic polynomial
with continuous derivatives up to order 2 at each knot,

m we can represent this model with truncated power basis functions
yi = Po + Bibi(w) + Baba(w;) + - -+ + Brysbr3(xi) + €

m where the by are

bi(x;) = x;
ba(;) =
b3(xi) = x;
bprs(zi) = (i — &), k=1,....K

m where

0 otherwise

3 {(CEZ — 51{:)3 if x; > fk




Cubic splines
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Natural cubic splines

= A natural cubic spline extrapolates linearly beyond the boundary knots

this adds 4 = 2 x 2 extra constraints,

allows to put more internal knots for the same degrees of freedom as a
regular cubic spline.

—— Natural Cubic Spline
S — Cubic Spline
N :
S s
O N 1
N !
[ -« ,
S i s S~
g 3 _
= - i S S s
S TT0T g s \
S iy
i S
N ~
N
1 N N
3 - AN
' \__*
: AN
[ | I




Natural cubic splines

m Fitting splines in R with the package splines

bs (x,

ns(x,
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Knot placement

m One strategy is to decide K, the number of knots, and then place them at
appropriate quantiles of the observed X,

m a cubic spline with K knots has K + 4 parameters or degrees of freedom,
= a natural spline with /K knots has K degrees of freedom,

= below comparison of a degree-14 polynomial (poly(age, deg=14)) and a
natural cubic spline (ns(age, df=15)), each with 15df.

= Natural Cubic Spline
—— Polynomial
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Smoothing splines

= Consider this criterion for fitting a smooth function g(x) to some data

m
minimize Z (i — g())* + A / g"(t)*dt
€5 4
the first term is RSS, and tries to make g(x) match the data at each z;,
the second term is a roughness penalty and controls how wiggly g(x) is,
roughness is modulated by the tuning parameter A > 0
* the smaller \, the more wiggly the function, eventually interpolating v;
when \ = 0,
* As A — 00, the function g(x) becomes linear,

m the solution is a natural cubic spline, with a knot at every unique value of z;

however, smoothing splines avoid the knot-selection issue, leaving a single
A to be chosen,

in R, the function smooth.spline() fits a smoothing spline,

this function enables to specify the number of effective dfs instead of A.




Smoothing splines
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Local regression

s Build separate linear fits over the range of X by weighted least squares,

= employ a sliding weight function (kernel), in R call loess().

Local Regression
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Blue — the model used to generate the data; orange — the local regression estimate of the model, red — a local fit
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Local regression

m Local regression at X = x

1. gather the fraction s = k/m of training points whose x; are closest to z,

2. assign a weight K,y = K (x;, z() to each observation in this neighborhood,
all but these k nearest neighbors get weight zero,

3. fit a weighted least squares regression of the y; on the x; using the afore-
mentioned weights

Z Kio(y; — Bo — Bry)?
i—1

4. the fitted value at xg is given by f(:co) = By + Bixo.
m a memory-based lazy procedure

learning happens when a new observation appears,

we need all the training data when computing a prediction.




Generalized additive models

m Allows for flexible nonlinearities in several variables,

m the additive structure of linear models retained
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Generalized additive models

m Can fit a GAM simply using, e.g. natural splines

lm(wage ~ ns(year, df = 5) + ns(age, df = 5) + education)
m coefficients not that interesting; fitted functions are,
m the previous plot was produced using plot.gam(),

m can mix terms, some linear, some nonlinear
and use anova() to compare models,

m Can use smoothing splines or local regression as well
gam(wage ~ s(year, df = 5) + lo(age, span = .5) + education)
m low-order interactions can be included in GAM in a natural way

using, e.g. bivariate smoothers or interactions of the form
ns (age,df=5) :ns(year,df=5).




The main references

:: Resources (slides, scripts, tasks) and reading

m G. James, D. Witten, T. Hastie and R. Tibshirani: An Introduction to
Statistical Learning with Applications in R. Springer, 2014.

s K. Markham: In-depth Introduction to Machine Learning in 15 hours
of Expert Videos. Available at R-bloggers.




