Multivariate Analysis of Variance

Jiří Kléma

Department of Computer Science,
Czech Technical University in Prague

http://cw.felk.cvut.cz/wiki/courses/b4m36san/start

Agenda

- Explain ANOVA
- relationship between continuous variables and a categorical variable * categorical variable $=$ treatment, factor,
- relationship with t-test for two groups,
- posthoc tests to find out which groups contributed most,
- relationship with linear regression,
- Generalize towards MANOVA
- procedure for comparing multivariate sample means,
- two-way modification, non-parametric.

Categorical dependent vs continuous independent variable

- Review t-test for two groups
- a test in which the test statistic follows a Student's t-distribution ...
- under the null hypothesis,
- consider a two sample t-test, $H_{0}: \mu_{1}=\mu_{2}, H_{a}: \mu_{1} \neq \mu_{2}$
- the two populations should follow a normal distribution,
- variances of the two populations assumed equal \rightarrow Student's t-tests,
- variances can differ \rightarrow Welch's test (see below),

$$
t_{o b s}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \sim t_{d f}
$$

- \bar{X}_{i}, s_{i}^{2} and $n_{i} \ldots$ sample means, variances and sizes,
$-d f \leq n_{1}+n_{2}-2$, the exact formula complicated,
- reject H_{0} if $\left|t_{o b s}\right| \geq t_{d f, 1-\alpha / 2}$.

t-distribution

Statlect: The Digital Textbook

Statlect: The Digital Textbook

T-test for multiple groups

- Concern a categorical variable with many levels \rightarrow multiple groups
- the hypotheses of interest

$$
\begin{aligned}
& * H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{g} \\
& * H_{a}: \mu_{i} \neq \mu_{j} \text { for at least one } i \neq j
\end{aligned}
$$

- conduct a two-sample t-test for a difference in means for each pair of groups
- the number of comparisons grows quadratically with the number of groups/levels,
- for $\alpha=0.05$ for each comparison
- there is a 5\% chance that each comparison will falsely be called significant,
- the overall probability of Type I error is elevated above 5\%,
- we falsely reject at least one of the partial null hypothesis with probability

$$
1-(1-\alpha)^{\binom{g}{2}}
$$

- e.g., for $\mathrm{g}=4$ it makes $0.26 \gg \alpha$,
- multiple comparisons must be corrected.

Multiple comparisons must be corrected

- often we control family-wise error rate (FWER)
- the probability of making one or more false discoveries (type I errors) when performing multiple hypotheses tests,
- the most simple FWER control is the Bonferroni correction,
- test each hypothesis at level $\alpha_{\text {indiv }}=\alpha_{\text {overall }} / m$,
* m stands for the number of individual pair tests,
* follows from Bonferroni inequality for independent tests

$$
\alpha_{\text {overall }}=1-(1-\alpha)^{m} \leq m \alpha_{\text {indiv }}
$$

* in our case with 4 groups $m=\binom{4}{2}=6$,
* the B. inequality obviously holds

$$
0.26=1-0.95^{6}<0.05 * 6=0.3
$$

- however, this adjustment may be too conservative * insufficient power, often does not reject H_{0} although H_{a} is true.

Analysis of variance (ANOVA)

- compares means for multiple (usually $g \geq 3$) independent populations
- parametric and unpaired, one-way,
- relationship between a categorical factor F and a continuous outcome Y,
- extends a two sample t-test to multiple groups,

Subject	F	Y
1	f_{1}	y_{1}
2	f_{2}	y_{2}
\ldots		
N	f_{N}	y_{N}

	1	\ldots	g	
Subject	1	y_{11}	\ldots	$y_{g 1}$
	2	y_{12}	\ldots	$y_{g 2}$
	\ldots	\ldots	\ldots	\ldots
	n_{i}	$y_{1 n_{1}}$	\ldots	$y_{g n_{g}}$

- $y_{i j} \ldots$ observation for subject j in group i,
- $n_{i} \ldots$ number of subjects in group i,
- $N=n_{1}+n_{2}+\ldots+n_{g} \ldots$ total sample size .

Analysis of variance (ANOVA)

■ assumptions

- the subjects are independently sampled
* employ repeated measures ANOVA otherwise,
- the data are normally distributed in each group
* $E\left(Y_{i .}\right)=\mu_{i}$, e.g., no group sub-populations with different means,
* residuals of the model below show the normal distribution

$$
y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}=\mu_{i}+\epsilon_{i j}
$$

* employ non-parametric Kruskal-Wallis test otherwise,
- the data are homoscedastic
* the variability in the data does not depend on group membership,
* there is a common variance $\operatorname{var}\left(Y_{i j}\right)=\sigma^{2}$,
- the hypotheses of interest
$-H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{g}$,
$-H_{a}: \mu_{i} \neq \mu_{j}$ for at least one $i \neq j$.

Analysis of variance (ANOVA)

- method
- partition $S S_{\text {total }}$, the total variation in a response variable,
- distinguish within groups variability $S S_{\text {error }}$,
- and between groups variability $S S_{\text {treat }}$,

$$
\begin{aligned}
S S_{\text {total }} & =\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{. .}\right)^{2}= \\
& =\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\left(y_{i j}-\bar{y}_{i .}\right)+\left(\bar{y}_{i .}-\bar{y}_{. .}\right)\right)^{2}= \\
& =\underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i .}\right)^{2}}_{S_{\text {error }}}+\underbrace{\sum_{i=1}^{g} n_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}}_{S S_{\text {treat }}}
\end{aligned}
$$

* $\bar{y}_{i .}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} y_{i j} \ldots$ group i sample mean,
* $\bar{y}_{. .}=\frac{1}{N} \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} y_{i j} \ldots$ grand mean.

Analysis of variance (ANOVA)

- method
- in a similar manner, partition the number of degrees of freedom that stand behind the observed sums of the squared deviations

$$
D F_{\text {total }}=N-1=D F_{\text {error }}+D F_{\text {treat }}=(N-g)+(g-1)=N-1
$$

- decide whether group averages differ more than based on random variability observed in the dependent variable under the null hypothesis,
- employ mean square variability, both within groups and between groups

$$
M S_{\text {error }}=\frac{S S_{\text {error }}}{D F_{\text {error }}}=\frac{S S_{\text {error }}}{N-g} \quad M S_{\text {treat }}=\frac{S S_{\text {treat }}}{D F_{\text {treat }}}=\frac{S S_{\text {treat }}}{g-1}
$$

Analysis of variance (ANOVA)

- method
- compare the variance between the groups and within the groups,

$$
F_{\text {obs }}=\frac{M S_{\text {treat }}}{M S_{\text {error }}} \sim F_{g-1, N-g}
$$

- if $F_{\text {obs }}$ is small (close to 1), then variability between groups is negligible compared to variation within groups and the grouping does not explain much variation in the data,
- if $F_{o b s}$ is large, then variability between groups is large compared to variation within groups and the grouping explains a lot of the variation in the data
- decision rule based on $F_{\text {obs }}$
- reject H_{0} if $F_{o b s} \geq F_{\alpha, g-1, N-g}$,
- fail to reject H_{0} if $F_{o b s}<F_{\alpha, g-1, N-g}$.

Post-hoc ANOVA tests

- after performing ANOVA (and rejecting the null hypothesis)
- we only assume that there is some difference in group means,
- a post-hoc test identifies which particular groups stand behind the test outcome,
- Tukey's HSD (honest significant difference) test
- a t-test that controls for family-wise error rate (FWER),
- compares all pairs of group means,
- identifies all pairs whose difference is larger than expected standard error,
- observed test statistics related to the studentized range distribution,

$$
q_{o b s}=\frac{\bar{y}_{i .}-\bar{y}_{j .}}{\sqrt{\frac{M S_{\text {error }}}{n^{*}}}} \sim q_{g, N-g}
$$

$-n^{*} \ldots$ number of observations per group (their harmonic mean if not equal),

- always positive, sort the means before its application.

ANOVA vs linear regression

- Is there any link between testing of linear models and ANOVA?

$$
\begin{gathered}
F_{\text {ANOVA }}=\frac{S S_{\text {treat }} /(g-1)}{S S_{\text {error }} /(N-g)} \\
F_{L R}=\frac{(T S S-R S S) / p}{R S S /(m-p-1)}
\end{gathered}
$$

ANOVA vs linear regression

- Is there any link between testing of linear models and ANOVA?

$$
\begin{gathered}
F_{\text {ANOVA }}=\frac{S S_{\text {treat }} /(g-1)}{S S_{\text {error }} /(N-g)} \\
F_{L R}=\frac{(T S S-R S S) / p}{R S S /(m-p-1)}
\end{gathered}
$$

- the same principle,
- exactly the same outcome for single independent categorical variable.

ANOVA extensions/alternatives

- up to now we talked about ANOVA that
- is parametric,
- deals with independent measurements,
- is one-way (with a single factor),
- concerns a single target variable only,
- other options
- non-parametric analysis (Wilcoxon test \rightarrow Kruskal-Wallis analysis),
- compares all possible group means (repeated measures ANOVA, Friedman test if non-parametric too),
- main effects ANOVA and factorial ANOVA,
- multivariate ANOVA (MANOVA).

There is a big name behind every test ...

Sir Ronald Fisher (1890-1962), evolutionary biologist and statistician

Statistical Methods for
Research Workers
R. A. FISHER, M.A.

Fellow of Gonville and Caius College, Cambridge
Chief Satatisticiun, Rothamsted Experiment Station

OLIVER AND BOYD
EDINBURGH: TWEEDDALE COURT LONDON: 33 PATERNOSTER ROW, E.C. 1925

His work considered to define modern statistics

Multivariate analysis of variance (MANOVA)

- p variables measured on each subject, objects categorized into g disjoint groups.
- $y_{i j k} \ldots$ an observation for variable k from subject j in group i,
- $\mathbf{y}_{\mathbf{i j}} \ldots$ a vector of dependent variables for subject j in group i,
- assumptions
- the subjects are independently sampled,
- the data are multivariate normally distributed in each group,
- the data from all groups have common covariance matrix Σ,
- the data from group i has common mean vector μ_{i} of length p,
- the hypotheses of interest
$-H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{\mathrm{g}}$,
- $H_{a}: \mu_{\mathrm{ik}} \neq \mu_{\mathrm{jk}}$ for at least one $i \neq j$ and at least one variable k.

Multivariate analysis of variance (MANOVA)

- method
- the analogy of $S S_{\text {total }}$ in ANOVA is a $p \times p$ cross products matrix \mathbf{T},
- similarly to ANOVA, it can be decomposed into the Error Sum of Squares and Cross Products E, and the Hypothesis Sum of Squares and Cross Products \mathbf{H}.

$$
\begin{aligned}
& \mathbf{T}=\sum_{\mathrm{i}=1}^{\mathrm{g}} \sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{i}}}\left(\mathbf{y}_{\mathrm{ij}}-\overline{\mathbf{y}}_{. .}\right)\left(\mathbf{y}_{\mathrm{ij}}-\overline{\mathbf{y}}_{. .}\right)^{\prime}= \\
& =\sum_{\mathbf{i}=1}^{\mathrm{g}} \sum_{\mathbf{j}=\mathbf{1}}^{\mathbf{n}_{\mathbf{i}}}\left\{\left(\mathbf{y}_{\mathbf{i j}}-\overline{\mathbf{y}}_{\mathbf{i} .}\right)+\left(\overline{\mathbf{y}}_{\mathbf{i} .}-\overline{\mathbf{y}}_{. .}\right)\right\}\left\{\left(\mathbf{y}_{\mathrm{ij}}-\overline{\mathbf{y}}_{\mathbf{i} .}\right)+\left(\overline{\mathbf{y}}_{\mathbf{i} .}-\overline{\mathbf{y}}_{. .}\right)\right\}^{\prime}= \\
& =\underbrace{\sum_{\mathrm{i}=1}^{\mathrm{g}} \sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{i}}}\left(\mathbf{y}_{\mathrm{ij}}-\overline{\mathbf{y}}_{\mathbf{i} .}\right)\left(\mathbf{y}_{\mathrm{ij}}-\overline{\mathbf{y}}_{\mathrm{i} .}\right)^{\prime}}_{\mathrm{E}}+\underbrace{\sum_{\mathrm{i}=1}^{\mathrm{g}} \mathbf{n}_{\mathbf{i}}\left(\overline{\mathbf{y}}_{\mathbf{i} .}-\overline{\mathbf{y}}_{. .}\right)\left(\overline{\mathbf{y}}_{\mathbf{i} .}-\overline{\mathbf{y}}_{. .}\right)^{\prime}}_{\mathbf{H}}
\end{aligned}
$$

* $\overline{\mathbf{y}}_{i .}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{y}_{i j} \ldots$ sample mean vector for group i,
$* \overline{\mathbf{y}}_{. .}=\frac{1}{N} \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} \mathbf{y}_{i j} \ldots$ grand mean vector of length p.

Multivariate analysis of variance (MANOVA)

- explanation of the elements of \mathbf{T}, \mathbf{E} and \mathbf{H}
- the element $\mathbf{t}_{k, l}$ is

$$
\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j k}-\bar{y}_{. . k}\right)\left(y_{i j l}-\bar{y}_{. l}\right)
$$

- for $k=l$ it is the total sum of squares for variable k, and measures the total variation in the k th variable, for $k \neq l$, this measures the dependence between variables k and l across all of the observations,
- the element $\mathbf{e}_{k, l}$ is

$$
\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j k}-\bar{y}_{i . k}\right)\left(y_{i j l}-\bar{y}_{i . l}\right)
$$

- for $k=l$ it is the error sum of squares for variable k, and measures the within treatment variation for the k th variable, for $k \neq l$ it measures the dependence between variables k and l after taking into account the treatment,

Multivariate analysis of variance (MANOVA)

- explanation of the elements of \mathbf{T}, \mathbf{E} and \mathbf{H}
- the element $\mathbf{h}_{k, l}$ is

$$
\sum_{i=1}^{g} n_{i}\left(\bar{y}_{i . k}-\bar{y}_{. . k}\right)\left(\bar{y}_{i . l}-\bar{y}_{. . l}\right)
$$

- for $k=l$ it is the treatment sum of squares for variable k, and measures the between treatment variation for the k th variable, for $k \neq l$, this measures dependence of variables k and l across treatments.
- consequently, if the hypothesis sum of squares and cross products \mathbf{H} is large relative to the error sum of squares and cross products matrix \mathbf{E} we wish to reject H_{0}.

Multivariate analysis of variance (MANOVA)

- Wilk's lambda test statistics for MANOVA (several other statistics exist too)
- the determinant of the error matrix \mathbf{E} is divided by the determinant of the total matrix $\mathbf{T}=\mathbf{H}+\mathbf{E}$, we will reject the null hypothesis if Wilk's lambda is small/close to zero as then \mathbf{H} is large relative to \mathbf{E} too.

$$
\Lambda^{*}=\frac{|\mathbf{E}|}{|\mathbf{H}+\mathbf{E}|}
$$

- can also be computed using the eigenvalues $\hat{\lambda}$ of $\mathbf{E}^{-1} \mathbf{H}(s=\min (p, g-1))$

$$
\Lambda^{*}=\prod_{i=1}^{s} \frac{1}{1+\hat{\lambda}_{i}}
$$

- the distribution of Λ^{*} is not tractable, we can only have approximations,
- e.g., Bartlett's approximation can be used if N is large

$$
-\left(N-1-\frac{p+g}{2}\right) \ln \Lambda^{*}>\chi_{p(g-1), \alpha}^{2}
$$

A typical case in which MANOVA helps

- Mechanical engineering domain
- 90 samples of three different alloys (A, B, C),
- samples differ in flexibility and strength,
- flexibility and strength correlated, strength in C slightly increased,
- goal: decide (detect) the influence of alloy on flexibility and strength.

A typical case in which MANOVA helps

- ANOVA outcome:

		Sum Sq	Mean S	value	$\operatorname{Pr}(>F)$
alloy	2	0.14	0.0712	0.068	0.935
Residuals	87	91.69	1.0539		
> summary (aov(strength ~ alloy,alloys))					
	Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$				
alloy	2	1.051	0.5254	1.759	0.178
Residuals	87	25.989	0.2987		

- MANOVA outcome:

```
> summary(manova(cbind(flexibility,strength) ~ alloy, alloys))
    Df Wilks approx \(F\) num Df den \(\operatorname{Df} \operatorname{Pr}(>F)\)
alloy \(20.8577 \quad 3.4313 \quad 4 \quad 1720.00998\) **
Residuals 87
```


Summary

- MANOVA compares multivariate sample means
- it deals with multiple dependent variables at the same time,
- MANOVA advantages over ANOVA
- better chance to discover which factor is truly important,
- protects against Type I errors in multiple independent ANOVA runs,
- increased power, it can reveal differences not discovered by ANOVA tests,
- MANOVA cautions
- a complicated design, more difficult to disambiguate,
- one degree of freedom is lost for each dependent variable that is added,
- unsuitable if the dependent variables are perfectly correlated or uncorrelated,
- typically followed by significance tests on individual dependent variables.

The main references

:: Resources (slides, scripts, tasks) and reading

- STAT 505 course on Applied Multivariate Statistical Analysis, PennState University, https://onlinecourses.science.psu.edu/stat505/.
- G. James, D. Witten, T. Hastie and R. Tibshirani: An Introduction to Statistical Learning with Applications in R. Springer, 2014.
- A. C. Rencher, W. F. Christensen: Methods of Multivariate Analysis. 3rd Edition, Wiley, 2012.
- T. Hastie, R. Tibshirani and J. Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2009.

