Statistical Data Analysis – a course map

Jiří Kléma

Department of Computer Science, Czech Technical University in Prague

http://cw.felk.cvut.cz/wiki/courses/b4m36san/start

B4M36SAN

- Purpose
 - This course mainly aims at the statistical methods that help to understand, interpret, visualize and model potentially high-dimensional data. It works with R environment.
- Interactions with other courses

Teachers

Doc. Jiří Kléma (klema@fel.cvut.cz) CTU, Dept. of Computer Science

Dr. Tomáš Pevný (pevnytom@fel.cvut.cz) CTU, Dept. of Computer Science, CISCO Technical Leader

Doc. Zdeněk Míkovec (xmikovec@fel.cvut.cz) CTU, Dept. of Computer Graphics and Interactions

Ing. Anh Vu Le (lequyanh@fel.cvut.cz) CTU, Dept. of Computer Science

Ing. Jan Blaha (blahaj22@fel.cvut.cz) CTU, Dept. of Computer Science

IDA Highlights

publications

organizing conferences

software projects

The key terms

- Multivariate statistical analysis
 - concerned with data that consists of sets of measurements on a number of individuals,
 - statistical approach based on stochastic data models
 - * a certain model is assumed (a class of models),
 - * its parameters are learned based on data,
 - more than independent testing of the individual variables
 (i.e., univariate tests known from introductory statistical courses),
 - intertwined variables, examined simultaneously,
 - not only the extensions of univariate and bivariate procedures,
 - examples: multivariate analysis of variance, multivariate discriminant analysis.

The key terms

Applied statistics

- in general, rather a branch of study than a course,
- in here, the course could be understood as an opportunity to bring the (previously learned) methods to practice,
- in labs, stress on applications and their implementation in R.
- Statistical inference/learning
 - close interaction with (statistical) machine learning,
 - sometimes it is difficult to distinguished these two fields
 - * as their goals are interchangeable,
 - the most striking distinctions
 - * different schools statistics is a subfield of mathematics, machine learning is a subfield of computer science,
 - * different eras for centuries versus modern,
 - * different degree of assumptions larger versus smaller.

B4M36SAN and quotes/jokes

:: Data do not give up their secrets easily. They must be tortured to confess.

Jeff Hopper, Bell Labs

:: All models are wrong, but some models are useful. George Box, Princeton University

:: There are two kinds of statistics . . .

...the kind you look up and the kind you make up.

Rex Stout, writer

:: What is the difference between statistics, ML, Al and data mining? unknown author

Changes in this and previous year

- Mainly as a reaction to feedback from students,
- conceptual changes in lectures
 - no lectures aimed at a particular branch of study,
 - (generalized) linear models as an universal multivariate data analysis tool.
- practical changes in labs
 - before 2020: 9 small assignments, nearly all the labs aimed at them
 - now: only 4+1 assignments
 - * there will be more supervised exercises in the labs,
 - * weakness is that the assignments do not cover all the course content,
 - * the final assignment can be motivated by your branch of study (basically, data science, cybersecurity, bioinformatics, HCI).
 - * submissions in R as well as Python.
 - labs concluded with a solved problem
 - * exactly the same form as exam questions.

Syllabus

#	Lect	Content
1.	JK	Introduction, course map, review of the basic stat terms/methods.
2.	JK	Multivariate regression (continuous, linear regression, p-vals, overfitting)
3.	JK	Multivariate regression (non-linear, polynomial and local regression).
4.	JK	Discriminant analysis (categorical, LDA, logistic regression).
5.	JK	Generalized linear models, special cases.
6.	JK	Dimension reduction (PCA and kernel PCA).
7.	JK	Dimension reduction (other non-linear methods).
8.	JK	Spare lecture.
9.	TP	Anomaly detection.
10.	TP	Robust statistics.
11.	ZM	Empirical studies, their design and evaluation. Power analysis.
12.	JK	Clustering (basic methods).
13.	JK	Clustering (advanced methods, spectral clustering).

R package

■ R – the platform selected for labs

- the leading tool for statistics,
- one of the main tools in data analysis and machine learning,
- it is free, open-source and platform independent,
- a large community of developers and users
 - ightarrow a great variety of libraries, tutorials, mailing lists,
- easy to integrate with other languages (C, Java, Python),
- we actually use it,
- bottlenecks in memory management, speed, and efficiency,

alternatives

- Python with its data analysis libraries (more general use),
- Matlab (popular at FEL for its forte in control, Simulink etc.),
- Julia a compiled language, modern features (GPU, parallel computing), simple to learn.

The key prerequisities – a brief review

- probability, independence, conditional probability, Bayes theorem,
- random variables, random vector,
- their description, distribution function, quantile function,
- categorical and continuous random variables,
- characteristics of random variables,
- the most common probability distributions,
- random vector characteristics, covariance, correlation, central limit theorem,
- measures of central tendency and dispersion, sample mean and variance,
- point and interval estimates of population mean and variance,
- maximum likelihood estimation, EM algorithm,
- statistical hypotheses testing,
- parametric and non-parametric tests,
- multiple comparisons problem, family wise error rate and false discovery rate.

Exam – the prerequisities make a part of it

- Sample questions (see the course web page for a larger list)
 - Explain in your own words the meaning of *p-value*. Assume that a p-value of a test is 0.028. What is the probability that its H_0 does not hold? Does it have any connection with the level of significance α ?

Exam – the prerequisities make a part of it

- Sample questions (see the course web page for a larger list)
 - Explain in your own words the meaning of *p-value*. Assume that a p-value of a test is 0.028. What is the probability that its H_0 does not hold? Does it have any connection with the level of significance α ?
 - $-p = P(observation_like_this_or_more_extreme|null) = P(o|H_0)$
 - $-P(H_0|o) = \frac{P(o|H_0)P(H_0)}{P(o)} = \frac{P(o|H_0)P(H_0)}{P(o|H_0)P(H_0) + P(o|H_a)(1 P(H_0))}$
 - $-H_0$ probability decreases with decreasing p-value of a correct statistical test, however, it is also a function of unexpectedness of the alternative hypothesis and the effect size (both can be hidden variables),
- an illustrative example: Did the sun just explode?
 - https://xkcd.com/1132/
 - $-\ H_0$: the sun did not change, H_a : the sun has gone nova,
 - $-P(H_0) = .999$, $P(o|H_0) = .028$, $P(o|H_a) = 0.972 \dots P(H_0|o) = .97$.

The main references

- :: Resources (slides, scripts, tasks) and reading
 - G. James, D. Witten, T. Hastie and R. Tibshirani: **An Introduction to Statistical Learning with Applications in R.** Springer, 2014.
 - T. Hastie, R. Tibshirani and J. Friedman: **The Elements of Statistical Learning: Data Mining, Inference, and Prediction.** Springer, 2009.
 - A. C. Rencher, W. F. Christensen: Methods of Multivariate Analysis. 3rd Edition, Wiley, 2012.
 - research papers referenced in the individual lectures . . .