Generalized linear models

Jiří Kléma

Department of Computer Science, Czech Technical University in Prague

http://cw.felk.cvut.cz/wiki/courses/b4m36san/start

Introduction

- Logistic regression
 - is a linear model too,
 - logit link function was introduced to map between binary outcome and linear predictor,
- A similar approach could be applied to other types of outcome variables
 - Poisson regression as another example will be given,
- generalized linear models (GLMs)
 - will eventually cover a whole class of these models,
 - the same principle for the entire family of exponential distributions,
 - GLMs differ in link function and probability distribution
 - * the former "links" the linear predictor and the parameters for probability distribution,
 - * the latter generates the dependent variable.

Poisson distribution

- ullet Poisson regression assumes the response variable Y has a Poisson distribution for each level of X
 - an event happening a certain number of times (k) within a given interval of time or space,
 - example: machine malfunctions per year, male grizzly bears per hectare,
 - often referred to as count data too.

$$\lambda > 0, \lambda = E(Y) = Var(Y)$$

$$Pr(Y = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Can we use linear regression for a Poisson outcome?

- yes, we can
 - for large λ s, the Poisson distribution can be approximated with the Normal distribution (Poisson(λ) $\approx N(\mu = \lambda, \sigma = \sqrt{\lambda})$),
- however, linear regression
 - can easily predict negative counts,
 - assumes that variance does not change with mean, count data are characterized by heteroscedasticity,
 - assumes that error distribution is not skewed, count data are skewed,
 - assumes linearity between the mean count and the predictors, the relationship can be arbitrary.
- Poisson regression is more appropriate.

Linear vs Poisson regression

Roback and Legler: Poisson Regression.

Poisson regression

Recall that with linear regression

$$\mu_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$
$$y_i \sim \mathcal{N}(\mu_i, \epsilon)$$

in Poisson regression

$$\log \mu_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$
$$y_i \sim Poisson(\mu_i)$$

logistic regression has a similar form

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

$$q_i = \frac{1}{1 + e^{-\eta_i}}$$

$$y_i \sim Bernoulli(q_i)$$

Anscombe's quartet ...

■ What would you say about the following model?

```
summary(lm(y \sim x,d))
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 *
x 0.4999 0.1178 4.243 0.00216 **
```

```
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
```


Anscombe's quartet ...

What would you say about the following model?

Generalized linear models

- GLM is a flexible generalization of ordinary linear regression,
- it consists of three elements
 - a linear predictor $\eta = X^T \beta$,
 - a link function g such that $E(Y \mid X) = \mu = g^{-1}(\eta)$,
 - a particular **distribution** for modeling Y from among those which are considered exponential families of probability distributions,
- for previously known regression types
 - linear: identity function + normal distribution,
 - Poisson: log function + Poisson distribution,
 - logistic: logit function + binomial distribution.
- and many other (custom) pairs.

Generalized linear models – exponential family

- ullet GLMs assume that the outcome y has an exponential conditional distribution
 - let us deal with one-parameter distributions only to simplify

$$f_{\theta}(y) = \exp\left(\frac{y\theta - b(\theta)}{\phi} + c(y, \phi)\right)$$

- $y \in \mathbb{R}$, ϕ is an known dispersion, θ is the only canonical parameter,
- the main restriction: y and θ interact only in one multiplicative term,
- lacksquare easy to show that $Poisson(\mu) = rac{\mu^y e^{-\mu}}{y!}$ falls in $f_{ heta}(y)$
 - we only need to know that $\mu^y = \exp(y \log \mu)$,

$$-rac{\mu^{y}e^{-\mu}}{y!} = \exp{(y\log{\mu} - \mu - \log(y!))}$$
 ,

— thus
$$\theta = \log \mu$$
, $b(\theta) = \mu$, $c(y, \phi) = -\log(y!)$, $\phi = 1$,

$$-$$
 also $\mu=e^{\theta}$, $b(\theta)=e^{\theta}$, $b'(\theta)=e^{\theta}$.

Generalized linear models – learning

- GLMs maximize log likelihood to optimize models
 - for exponential family it has a convenient form

$$\ell(\theta) = \log f_{\theta}(y) = \frac{Y\theta - b(\theta)}{\phi} + c(Y; \phi)$$

- as it holds $\int f_{\theta}(y) dy \equiv 1$ we can also use

$$\mathbb{E}\left(\frac{\partial \ell}{\partial \theta}\right) = 0$$

— therefore we may assume

$$\frac{\partial \ell}{\partial \theta} = \frac{Y - b'(\theta)}{\phi} \to \mathbb{E}\left(\frac{\partial \ell}{\partial \theta}\right) = \frac{\mathbb{E}(Y) - b'(\theta)}{\phi}$$

$$\mathbb{E}(Y) = \mu = b'(\theta)$$

Generalized linear models - learning

- lacktriangle However, we have to optimize parameters eta not heta
 - eta relationship to heta is mediated through link function g

$$g(\mu) = X^T \beta$$

 $-\ g$ can be an arbitrary monotone increasing and differentiable function

$$\mu = g^{-1}(X^T \beta)$$

— still, it is convenient, if we choose the canonical link function, so that

$$g(\mu) = \theta$$

- given $\mu = b'(\theta)$ it implies that

$$g(\mu) = (b')^{-1}(\mu)$$

Generalized linear models - learning

lacktriangle Maximum likelihood estimation with a general link function g

$$\ell_n(\beta; \mathbf{Y}, \mathbf{X}) = \sum_i \frac{Y_i \theta_i - b(\theta_i)}{\phi} = \sum_i \frac{Y_i(g \circ b')^{-1} (X_i^T \beta) - b((g \circ b')^{-1} (X_i^T \beta))}{\phi}$$

lacktriangle maximum likelihood estimation with the canonical link function g

$$\ell_n(\beta; \mathbf{Y}, \mathbf{X}) = \sum_i \frac{Y_i X_i^T \beta - b(X_i^T \beta)}{\phi}$$

- $-\ell(\theta)$ is strictly concave (given $\phi>0$),
- as a consequence the ML estimator is unique,
- \blacksquare in Poisson regression we have already shown that $b(\theta)=e^{\theta}$ and thus the canonical link for this family must be

$$g(\mu) = (b')^{-1}(\mu) \to g(\mu) = \log(\mu)$$

Linear models - evaluation and comparisons

- We have already seen than linear models can be compared with F tests
 - we compared our model with the intercept-only model to test whether at least one predictor in our model is useful

$$F = \frac{(TSS - RSS)/p}{RSS/(m - p - 1)}$$

- -m is the sample size, p is the number of predictors, TSS quantifies the error of the intercept-only model, RSS quantifies the error of our model,
- the formula could be generalized to compare a pair of nested linear models
 - model₁ has p_1 predictors that make a subset of p_2 predictors in model₂

$$F = \frac{(RSS_1 - RSS_2)/(df_1 - df_2)}{RSS_2/df_2}$$

Linear models – evaluation and comparisons

■ Since $df_1 = m - p_1 - 1$ and $df_2 = m - p_2 - 1$ it also holds

$$F = \frac{(RSS_1 - RSS_2)/(p_2 - p_1)}{RSS_2/(m - p_2 - 1)}$$

- in R the test can be performed with anova()
 - anova(lm(...), lm(...)) for a pair of models,
 - or anova(lm(...),lm(...),...,lm(...)) for multiple models,
 - where size of the models grows and adjoining models are compared,
- the nested models could also be tested with aov()
 - where summary(aov(lm(y \sim x1 + ... + xp,d))) does the same as
 - anova(lm(y \sim 1,d)),lm(y \sim x1,d)),...,lm(y \sim x1 + ... + xp,d)).

Generalized linear models – evaluation and comparisons

- The same principle for GLMs, variance replaced by deviance
 - it relates log likelihoods of our model $(heta_m)$ and the saturated model $(heta_s)$

$$D(\theta_m) = 2(\ell(\theta_s; \mathbf{Y}, \mathbf{X}) - \ell(\theta_m; \mathbf{Y}, \mathbf{X}))$$

- saturated model fits the data perfectly
 - * it has as many parameters as samples,
 - * it does not have to have zero log likelihood anyway,
- the smaller the deviance, the better the model,
- eventually, deviances of two (or more) nested models can be compared with
 - anova(glm(...),...,glm(...),test="LRT"),
 - which is (a series of) the likelihood ratio test(s)
 - $*H_0$: both the (adjoining) models fit the data equally well,
 - * H_a : the larger model significantly outperforms the nested model,

Generalized linear models – evaluation and comparisons

- If a pair of models is not nested deviances could be misleading
 - saturated models may change (e.g., if we change GLM family),
 - different parametric spaces make likelihood ratio tests impossible,
- these models can be compared e.g. in terms of their AIC
 - Akaike information criterion

$$AIC(\theta; \mathbf{Y}, \mathbf{X}) = 2p - 2\ell(\theta; \mathbf{Y}, \mathbf{X})$$

- AIC is a minimization criterion,
- an estimator of out-of-sample prediction error,
- a means for model selection (Y and X must be kept unchanged),
- to relate non-nested models in R
 - use compareGLM(glm(...),...,glm(...)),
 - calculates more quality measures (AIC, BIC, etc.).

- The goal: predict the number of people sharing a house as a function of the age of the household head and location/island,
- the dataset: 1,500 households, three variables of interest (age, location, total).

The first five observations from the Philippines Household case study.

X1	location	age	total	numLT5	roof
1	CentralLuzon	65	0	0	Predominantly Strong Material
2	MetroManila	75	3	0	Predominantly Strong Material
3	DavaoRegion	54	4	0	Predominantly Strong Material
4	Visayas	49	3	0	Predominantly Strong Material
5	MetroManila	74	3	0	Predominantly Strong Material

- Let us start with exploratory data analysis (EDA)
 - in order to propose the right GLM,
- let us plot the distribution of the target variable and also its distribution conditioned by age
 - conclusion #1: count target variable whose mean is influenced by age and can be modelled with a Poisson distribution $(\mu = E(total) \approx Var(total))$.

- The canonical link function for Poisson regression is log function
 - is the relationship between age and the household size exponential?
 - conclusion #2: a different link or age non-linear transformations needed,
- Location does not influence the shape of age vs household size relationship
 - conclusion #3: no location:age interaction term needed.

- Based on EDA: $\log(\mu) = \beta_0 + \beta_1 \times \text{age} + \beta_2 \times \text{age}^2 + \beta_3 \times \text{location}$
- let us construct the model in R

```
m.full <- glm(total \sim age + age2 + location, family = poisson, data = fHH1) coef(summary(m.full))
```

	Estimate	Std. error	z value	p-value
(Intercept)	-0.3843	1.821e-01	-2.111	3.480e-02
age	0.0704	6.905e-03	10.19	2.197e-24
age2	-0.0007	6.420e-05	-10.94	7.126e-28
IocDavao	-0.0194	5.378e-02	-0.360	7.185e-01
locllocos	0.0610	5.266e-02	1.158	2.468e-01
locManila	0.0545	4.720e-02	1.154	2.484e-01
locVisayas	0.1121	4.175e-02	2.685	7.247e-03

- Let us check how our model works (in comparison with alternative models)
 - we will test the drop in deviance in nested models.

```
m.null <- glm(total \sim 1, family = poisson, data = fHH1) m.age <- glm(total \sim age, family = poisson, data = fHH1) m.age2 <- glm(total \sim age+age2, family = poisson, data = fHH1) anova(m.null,m.age,m.age2,m.full,test = "Chisq")
```

	ResidDf	Resid	DevDf	Deviance	Pr(>Chi)	
m.null	1499	2362.5				
m.age	1498	2337.1	1	25.399	4.661e-07	***
m.age2	1497	2200.9	1	136.145	< 2.2e-16	***
m.full	1493	2187.8	4	13.144	0.01059	*

- Is Poisson regression helpful?
 - it clearly is as AIC(m.full)=6575 < AIC(lm.full)=6731.

Summary

- GLM is a broader class of models that generalizes multiple linear regression
 - all GLMs have similar forms for their likelihoods, MLEs, and deviances,
 - easier to find model estimates and their corresponding uncertainty,
 - OLS (ordinary least squares) replaced by IRLS (iteratively reweighted least squares),
- assumptions less strict than in multiple linear regression
 - observations still must be independent,
 - the distribution of residuals can be from the exponential family,
 - the homogeneity of variance does not need to be satisfied,
- GAM is a more recent concept emphasizing non-linear transformations
 - as we could see, non-linear transformations can be aplied in GLMs too.

The main references

- :: Resources (slides, scripts, tasks) and reading
 - P. Roback and J. Legler: Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R. Chapman and Hall/CRC, 2021.
 - P. Rigollet: Statistics for Applications. MIT Open Courseware, lecture on GLMs.