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Introduction

m Logistic regression

is a linear model too,
logit link function was introduced to map between binary outcome and
linear predictor,

m A similar approach could be applied to other types of outcome variables

Poisson regression as another example will be given,
[ (GLMS)

will eventually cover a whole class of these models,
the same principle for the entire family of exponential distributions,
GLMs differ in link function and probability distribution

* the former "links” the linear predictor and the parameters for probability
distribution,

x the latter generates the dependent variable.




Poisson distribution

= Poi
for

04—

sson regression assumes the response variable Y has a Poisson distribution
each level of X

an event happening a certain number of times (k) within a given interval
of time or space,
example: machine malfunctions per year, male grizzly bears per hectare,

often referred to as count data too.
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Can we use linear regression for a Poisson outcome?

m yes, we can

for large As, the Poisson distribution can be approximated with the Normal

distribution (Poisson(\) =~ N(pz = \,0 = V/\)),
m however, linear regression

can easily predict negative counts,

assumes that variance does not change with mean, count data are charac-
terized by heteroscedasticity,

assumes that error distribution is not skewed, count data are skewed,

assumes linearity between the mean count and the predictors, the relation-
ship can be arbitrary.

8 IS more appropriate.




isson regression

Linear vs Po
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Poisson regression

s Recall that with linear regression

pi = Po+ brxa + -+ -+ Bpxip
yi ~ N (i, €)

m in Poisson regression

lOg i = 60 =+ leil T ﬁpxip
y; ~ Poisson(i;)

m logistic regression has a similar form

ni = Bo+ b + -+ + Bpip
1

o 1+e

y; ~ Bernoulli(q;)

qi




Anscombe’s quartet ...

Take A Break

s What would you say about the following model?

summary (lm(y ~ x,d))

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 x
X 0.4999 0.1178 4.243 0.00216 x*x

Residual standard error: 1.236 on 9 degrees of freedom
Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
F-statistic: 18 on 1 and 9 DF, p-value: 0.002165




Anscombe’s quartet ...

Take A Break

s What would you say about the following model?

A
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Generalized linear models

s GLM is a flexible generalization of ordinary linear regression,
m it consists of three elements

a n=X"g,

a link function g such that E(Y | X) = u= g '(n),

a particular distribution for modeling Y from among those which are
considered exponential families of probability distributions,

m for previously known regression types

linear: identity function + normal distribution,
Poisson: log function + Poisson distribution,

logistic: logit function 4 binomial distribution.

= and many other (custom) pairs.




Generalized linear models — exponential family

m GLMs assume that the outcome y has an exponential conditional distribution

let us deal with one-parameter distributions only to simplify

foly) = exp <y9 _¢b(€> + c(y, ¢)>

y € R, ¢ is an known dispersion, € is the only canonical parameter,

the main restriction: y and 6 interact only in one multiplicative term,

= easy to show that Poisson(u) = ”yg!_u falls in fa(y)

we only need to know that ;¥ = exp(y log u),
e H

= exp (ylog p — p —log(y!)),

thus 6 = log p, b(0) = p, c(y, ¢) = —log(y!), ¢ =1,
also p1 = e’ b(0) = el b'(0) = el




Generalized linear models — learning

s GLMs maximize log likelihood to optimize models

for exponential family it has a convenient form

00) = log fyly) — 22 ;”(6)

as it holds [ fy(y)dy = 1 we can also use

o4
E{=]=0
()
therefore we may assume

+c(Y;9)

o Y-V o (5%) _E(Y) - b(0)

20 & 90 &

E(Y)=p="0(0)




Generalized linear models — learning

= However, we have to optimize parameters 3 not 6

3 relationship to 6 is mediated through link function g

g(p)=X"p

g can be an arbitrary monotone increasing and differentiable function

p=g (XD
still, it is convenient, if we choose the link function, so that
glp) =10

given 1 = b'(6) it implies that

g(p) = )" (p)




Generalized linear models — learning

s Maximum likelihood estimation with a general link function ¢

05y, X) =3 10 b(0:) _ 3 Yi(g o V) (X7 B) . b((got) (X))

¢
s maximum likelihood estimation with the canonical link function ¢

7 7

YiXi B — b(X{ B)
¢

(3, X) =)

¢(0) is strictly concave (given ¢ > 0),

as a consequence the ML estimator is unique,

= in Poisson regression we have already shown that b(6) = e’ and thus the
canonical link for this family must be

g(p) = (1)) = g(p) = log()




Linear models — evaluation and comparisons

s We have already seen than linear models can be compared with F tests

we compared our model with the intercept-only model to test whether at
least one predictor in our model is useful

o (TSS — RSS)/p

RSS/(m —p—1)
m is the sample size, p is the number of predictors, T'S'S quantifies the
error of the intercept-only model, RSS quantifies the error of our model,

s the formula could be generalized to compare a pair of linear models

model; has p; predictors that of py predictors in model,

(RSS1 — RSSy)/(dfy — dfs)

I —
RS Sy /dfs




Linear models — evaluation and comparisons

m Since dfi =m —p; — 1 and dfy = m — py — 1 it also holds

(RSS, — RSS5)/(pa — p1)
RSSy/(m —ps — 1)

m in R the test can be performed with anova()

F:

anova(lm(...),1m(...)) for a pair of models,
or anova(lm(...),Im(...),...,1Im(...)) for multiple models,

where size of the models grows and adjoining models are compared,
m the nested models could also be tested with aov ()

where summary (aov(lm(y ~ x1 + ... + xp,d))) does the same as
anova(lm(y ~1,d)),1lm(y~x1,d)),...,Im(y~x1 + ... + xp,d)).




Generalized linear models — evaluation and comparisons

m [ he same principle for GLMs, variance replaced by

it relates log likelihoods of our model (6,,) and the saturated model (6;)
D(0,,) = 2(£(05; Y, X) = £(01; Y, X))
saturated model fits the data perfectly

% it has as many parameters as samples,
x it does not have to have zero log likelihood anyway,

the smaller the deviance, the better the model,
= eventually, deviances of two (or more) nested models can be compared with

anova(glm(...),...,glm(...),test="LRT"),
which is (a series of ) the likelihood ratio test(s)

* Hy: both the (adjoining) models fit the data equally well,
x H,: the larger model significantly outperforms the nested model,




Generalized linear models — evaluation and comparisons

m If a pair of models is not nested deviances could be misleading

saturated models may change (e.g., if we change GLM family),

different parametric spaces make likelihood ratio tests impossible,
m these models can be compared e.g. in terms of their AlC
Akaike information criterion
AIC(0;Y,X) =2p—20(6;Y,X)

AlIC is a minimization criterion,
an estimator of out-of-sample prediction error,

a means for model selection (Y and X must be kept unchanged),
= to relate non-nested models in R

use compareGLM(glm(...),...,glm(...)),

calculates more quality measures (AlIC, BIC, etc.).




Example: Household Size in the Philippines

m [he goal: predict the number of people sharing a house as a function of the
age of the household head and location/island,

= the dataset: 1,500 households, three variables of interest (age, location, total).

llocos Region

Central Luzon

The first five observations from the Philippines Household case study.

Metro Manila

X1 location age total numLT5 roof
1 CentralLuzon 65 0 0  Predominantly Strong Material
2  MetroManila 75 3 0  Predominantly Strong Material
3 DavaoRegion 54 4 0  Predominantly Strong Material
- 4  Visayas 49 3 0  Predominantly Strong Material
5 MetroManila 74 3 0  Predominantly Strong Material
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Example: Household Size in the Philippines

m Let us start with exploratory data analysis (EDA)
in order to propose the right GLM,

m let us plot the distribution of the target variable and also its distribution
conditioned by age

conclusion #1: count target variable whose mean is influenced by age and
can be modelled with a Poisson distribution (1 = E(total) ~ Var(total)).
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Example: Household Size in the Philippines

= [he canonical link function for Poisson regression is log function

is the relationship between age and the household size exponential?

conclusion #2: a different link or age non-linear transformations needed,
m Location does not influence the shape of age vs household size relationship
conclusion #3: no location:age interaction term needed.
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Example: Household Size in the Philippines

s Based on EDA: log(u) = By + 81 X age + (B2 x age® + 33 x location
m let us construct the model in R
m.full <- glm(total ~ age + age2 + location,

family = poisson, data = fHH1)
coef (summary(m.full))

Estimate | Std. error |z value| p-value

(Intercept) | -0.3843 | 1.821e-01 | -2.111 | 3.480e-02
age 0.0704 |6.905e-03 | 10.19 |2.197e-24
age?2 -0.0007 | 6.420e-05| -10.94 | 7.126e-28

locDavao | -0.0194 | 5.378e-02 | -0.360 | 7.185e-01
locllocos | 0.0610 |5.266e-02 | 1.158 |2.468e-01
locManila | 0.0545 |4.720e-02 | 1.154 |2.484e-01
locVisayas | 0.1121 |4.175e-02 | 2.685 |7.247e-03




Example: Household Size in the Philippines

= Let us check how our model works (in comparison with alternative models)

we will test the drop in deviance in nested models.

m.null <- glm(total ~ 1, family = poisson, data = fHH1)

m.age <- glm(total ~ age, family = poisson, data = fHH1)
m.age2 <- glm(total ~ agetage2, family = poisson, data = fHH1)
anova(m.null,m.age,m.age2,m.full,test = "Chisq")

ResidDf Resid DevDf Deviance Pr(>Chi)

m.null 1499 2362.5

m.age 1498 2337.1 1 25.399 4.661e-07 *x*x
m.age?2 1497 2200.9 1 136.145 < 2.2e-16 **x*
m.full 1493 2187.8 4 13.144 0.01059 x*

m Is Poisson regression helpful?

it clearly is as AIC(m.full)=6575 < AIC(1m.full)=6731.




Summary

s GLM is a broader class of models that generalizes multiple linear regression

all GLMs have similar forms for their likelihoods, MLEs, and deviances,
easier to find model estimates and their corresponding uncertainty,

OLS (ordinary least squares) replaced by IRLS (iteratively reweighted least
squares),

m assumptions less strict than in multiple linear regression

observations still must be independent,
the distribution of residuals can be from the exponential family,

the homogeneity of variance does not need to be satisfied,
s GAM is a more recent concept emphasizing non-linear transformations

as we could see, non-linear transformations can be aplied in GLMs too.
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:: Resources (slides, scripts, tasks) and reading

m P. Roback and J. Legler: Beyond Multiple Linear Regression: Applied
Generalized Linear Models and Multilevel Models in R. Chapman
and Hall/CRC, 2021.

m P. Rigollet: Statistics for Applications. MIT Open Courseware, lecture on
GLMs.




