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pIntroduction

� Logistic regression

− is a linear model too,

− logit link function was introduced to map between binary outcome and
linear predictor,

� A similar approach could be applied to other types of outcome variables

− Poisson regression as another example will be given,

� generalized linear models (GLMs)

− will eventually cover a whole class of these models,

− the same principle for the entire family of exponential distributions,

− GLMs differ in link function and probability distribution

∗ the former ”links” the linear predictor and the parameters for probability
distribution,

∗ the latter generates the dependent variable.
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pPoisson distribution

� Poisson regression assumes the response variable Y has a Poisson distribution
for each level of X

− an event happening a certain number of times (k) within a given interval
of time or space,

− example: machine malfunctions per year, male grizzly bears per hectare,

− often referred to as count data too.

λ > 0, λ = E(Y ) = V ar(Y )

Pr(Y = k) =
λke−λ

k!
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pCan we use linear regression for a Poisson outcome?

� yes, we can

− for large λs, the Poisson distribution can be approximated with the Normal
distribution (Poisson(λ) ≈ N(µ = λ,σ =

√
λ)),

� however, linear regression

− can easily predict negative counts,

− assumes that variance does not change with mean, count data are charac-
terized by heteroscedasticity,

− assumes that error distribution is not skewed, count data are skewed,

− assumes linearity between the mean count and the predictors, the relation-
ship can be arbitrary.

� Poisson regression is more appropriate.
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pLinear vs Poisson regression

Roback and Legler: Poisson Regression.
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pPoisson regression

� Recall that with linear regression

µi = β0 + β1xi1 + · · · + βpxip

yi ∼ N (µi, ε)

� in Poisson regression

log µi = β0 + β1xi1 + · · · + βpxip

yi ∼ Poisson(µi)

� logistic regression has a similar form

ηi = β0 + β1xi1 + · · · + βpxip

qi =
1

1 + e−ηi

yi ∼ Bernoulli(qi)
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p Anscombe’s quartet . . .

� What would you say about the following model?

summary(lm(y ∼ x,d))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0017 1.1239 2.671 0.02559 *

x 0.4999 0.1178 4.243 0.00216 **

Residual standard error: 1.236 on 9 degrees of freedom

Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297

F-statistic: 18 on 1 and 9 DF, p-value: 0.002165

7/24 B4M36SAN GLMs



p Anscombe’s quartet . . .

� What would you say about the following model?
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pGeneralized linear models

� GLM is a flexible generalization of ordinary linear regression,

� it consists of three elements

− a linear predictor η = XTβ,

− a link function g such that E(Y | X) = µ = g−1(η),

− a particular distribution for modeling Y from among those which are
considered exponential families of probability distributions,

� for previously known regression types

− linear: identity function + normal distribution,

− Poisson: log function + Poisson distribution,

− logistic: logit function + binomial distribution.

� and many other (custom) pairs.
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pGeneralized linear models – exponential family

� GLMs assume that the outcome y has an exponential conditional distribution

− let us deal with one-parameter distributions only to simplify

fθ(y) = exp

(
yθ − b(θ)

φ
+ c(y, φ)

)
− y ∈ R, φ is an known dispersion, θ is the only canonical parameter,

− the main restriction: y and θ interact only in one multiplicative term,

� easy to show that Poisson(µ) = µye−µ

y! falls in fθ(y)

− we only need to know that µy = exp(y log µ),

− µye−µ

y! = exp (y log µ− µ− log(y!)),

− thus θ = log µ, b(θ) = µ, c(y, φ) = − log(y!), φ = 1,

− also µ = eθ, b(θ) = eθ, b′(θ) = eθ.
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pGeneralized linear models – learning

� GLMs maximize log likelihood to optimize models

− for exponential family it has a convenient form

`(θ) = log fθ(y) =
Y θ − b(θ)

φ
+ c(Y ;φ)

− as it holds
∫
fθ(y) dy ≡ 1 we can also use

E
(
∂`

∂θ

)
= 0

− therefore we may assume

∂`

∂θ
=
Y − b′(θ)

φ
→ E

(
∂`

∂θ

)
=

E(Y )− b′(θ)
φ

E(Y ) = µ = b′(θ)
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pGeneralized linear models – learning

� However, we have to optimize parameters β not θ

− β relationship to θ is mediated through link function g

g(µ) = XTβ

− g can be an arbitrary monotone increasing and differentiable function

µ = g−1(XTβ)

− still, it is convenient, if we choose the canonical link function, so that

g(µ) = θ

− given µ = b′(θ) it implies that

g(µ) = (b′)−1(µ)
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pGeneralized linear models – learning

� Maximum likelihood estimation with a general link function g

`n(β;Y,X) =
∑
i

Yiθi − b(θi)
φ

=
∑
i

Yi(g ◦ b′)−1(XT
i β)− b((g ◦ b′)−1(XT

i β))

φ

� maximum likelihood estimation with the canonical link function g

`n(β;Y,X) =
∑
i

YiX
T
i β − b(XT

i β)

φ

− `(θ) is strictly concave (given φ > 0),

− as a consequence the ML estimator is unique,

� in Poisson regression we have already shown that b(θ) = eθ and thus the
canonical link for this family must be

g(µ) = (b′)−1(µ)→ g(µ) = log(µ)
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pLinear models – evaluation and comparisons

� We have already seen than linear models can be compared with F tests

− we compared our model with the intercept-only model to test whether at
least one predictor in our model is useful

F =
(TSS −RSS)/p
RSS/(m− p− 1)

− m is the sample size, p is the number of predictors, TSS quantifies the
error of the intercept-only model, RSS quantifies the error of our model,

� the formula could be generalized to compare a pair of nested linear models

− model1 has p1 predictors that make a subset of p2 predictors in model2

F =
(RSS1 −RSS2)/(df1 − df2)

RSS2/df2
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pLinear models – evaluation and comparisons

� Since df1 = m− p1 − 1 and df2 = m− p2 − 1 it also holds

F =
(RSS1 −RSS2)/(p2 − p1)

RSS2/(m− p2 − 1)

� in R the test can be performed with anova()

− anova(lm(...),lm(...)) for a pair of models,

− or anova(lm(...),lm(...),...,lm(...)) for multiple models,

− where size of the models grows and adjoining models are compared,

� the nested models could also be tested with aov()

− where summary(aov(lm(y ∼ x1 + ... + xp,d))) does the same as

− anova(lm(y∼ 1,d)),lm(y∼ x1,d)),...,lm(y∼ x1 + ... + xp,d)).
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pGeneralized linear models – evaluation and comparisons

� The same principle for GLMs, variance replaced by deviance

− it relates log likelihoods of our model (θm) and the saturated model (θs)

D(θm) = 2(`(θs;Y,X)− `(θm;Y,X))

− saturated model fits the data perfectly

∗ it has as many parameters as samples,

∗ it does not have to have zero log likelihood anyway,

− the smaller the deviance, the better the model,

� eventually, deviances of two (or more) nested models can be compared with

− anova(glm(...),...,glm(...),test="LRT"),

− which is (a series of) the likelihood ratio test(s)

∗ H0: both the (adjoining) models fit the data equally well,

∗ Ha: the larger model significantly outperforms the nested model,
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pGeneralized linear models – evaluation and comparisons

� If a pair of models is not nested deviances could be misleading

− saturated models may change (e.g., if we change GLM family),

− different parametric spaces make likelihood ratio tests impossible,

� these models can be compared e.g. in terms of their AIC

− Akaike information criterion

AIC(θ;Y,X) = 2p− 2`(θ;Y,X)

− AIC is a minimization criterion,

− an estimator of out-of-sample prediction error,

− a means for model selection (Y and X must be kept unchanged),

� to relate non-nested models in R

− use compareGLM(glm(...),...,glm(...)),

− calculates more quality measures (AIC, BIC, etc.).
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pExample: Household Size in the Philippines

� The goal: predict the number of people sharing a house as a function of the
age of the household head and location/island,

� the dataset: 1,500 households, three variables of interest (age, location, total).
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pExample: Household Size in the Philippines

� Let us start with exploratory data analysis (EDA)

− in order to propose the right GLM,

� let us plot the distribution of the target variable and also its distribution
conditioned by age

− conclusion #1: count target variable whose mean is influenced by age and
can be modelled with a Poisson distribution (µ = E(total) ≈ V ar(total)).
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pExample: Household Size in the Philippines

� The canonical link function for Poisson regression is log function

− is the relationship between age and the household size exponential?

− conclusion #2: a different link or age non-linear transformations needed,

� Location does not influence the shape of age vs household size relationship

− conclusion #3: no location:age interaction term needed.
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pExample: Household Size in the Philippines

� Based on EDA: log(µ) = β0 + β1 × age + β2 × age2 + β3 × location

� let us construct the model in R

m.full <- glm(total ∼ age + age2 + location,

family = poisson, data = fHH1)

coef(summary(m.full))

Estimate Std. error z value p-value

(Intercept) -0.3843 1.821e-01 -2.111 3.480e-02
age 0.0704 6.905e-03 10.19 2.197e-24

age2 -0.0007 6.420e-05 -10.94 7.126e-28
locDavao -0.0194 5.378e-02 -0.360 7.185e-01
locIlocos 0.0610 5.266e-02 1.158 2.468e-01
locManila 0.0545 4.720e-02 1.154 2.484e-01
locVisayas 0.1121 4.175e-02 2.685 7.247e-03
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pExample: Household Size in the Philippines

� Let us check how our model works (in comparison with alternative models)

− we will test the drop in deviance in nested models.

m.null <- glm(total ∼ 1, family = poisson, data = fHH1)

m.age <- glm(total ∼ age, family = poisson, data = fHH1)

m.age2 <- glm(total ∼ age+age2, family = poisson, data = fHH1)

anova(m.null,m.age,m.age2,m.full,test = "Chisq")

ResidDf Resid DevDf Deviance Pr(>Chi)

m.null 1499 2362.5

m.age 1498 2337.1 1 25.399 4.661e-07 ***

m.age2 1497 2200.9 1 136.145 < 2.2e-16 ***

m.full 1493 2187.8 4 13.144 0.01059 *

� Is Poisson regression helpful?

− it clearly is as AIC(m.full)=6575 < AIC(lm.full)=6731.
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pSummary

� GLM is a broader class of models that generalizes multiple linear regression

− all GLMs have similar forms for their likelihoods, MLEs, and deviances,

− easier to find model estimates and their corresponding uncertainty,

− OLS (ordinary least squares) replaced by IRLS (iteratively reweighted least
squares),

� assumptions less strict than in multiple linear regression

− observations still must be independent,

− the distribution of residuals can be from the exponential family,

− the homogeneity of variance does not need to be satisfied,

� GAM is a more recent concept emphasizing non-linear transformations

− as we could see, non-linear transformations can be aplied in GLMs too.

23/24 B4M36SAN GLMs



pThe main references

:: Resources (slides, scripts, tasks) and reading

� P. Roback and J. Legler: Beyond Multiple Linear Regression: Applied
Generalized Linear Models and Multilevel Models in R. Chapman
and Hall/CRC, 2021.

� P. Rigollet: Statistics for Applications. MIT Open Courseware, lecture on
GLMs.
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