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Introduction

s Study multivariate relationships with categorical dependent variable

independent variables are continuous,
but can be categorical too,
dependent variables take values in an unordered set C

* eye colore{brown, blue,green}, emaile{spam, ham},
m the main goals are to

into the target categories

x given a feature vector X € X and a nominal response Y taking values
in C, the goal is to build a function f: X — C,

* often, the mapping is probabilistic f, : X x C — [0, 1],
the role of the individual independent variables

x assess the strength of their relationships with the target variable.




Example: Credit Card Default

m Simulated dataset, an individual may default on his credit card payment.

o
o _]
Te)
N -_1
o :
o 1
O - 1
S | 3 !
S !
O N 1
o |
o 1
o '
%) .
o '
S 8- o g
c - £ S 7
O o (_U O <
£ 8- © e
O = m = —_
£ S
o
S _
o '
§ — o S ' X
Y 3 7 ; ! I
o o | o | -
I I I I I I I | I |
0 500 1000 1500 2000 2500 No Yes No Yes
Balance Default Default

3/33 B4AM36SAN Discriminant analysis



Can we use linear regression?

m the target variable Y expressing default can be coded

0 if No
1 if Yes

= perform a linear regression of Y on X and classify as Yes if Y > 0.5

in this case of a binary outcome, linear regression does a good job as a
classifier, and is equivalent to linear discriminant analysis (discussed later),

since in the population E(Y|X = z) = Pr(Y = 1|X = z), we might
think that regression is perfect for this task,

however, linear regression might in general

x produce probabilities less than zero or bigger than one,

* be sensitive to outliers,
x “mask out” some classes in problems with multinomial targets,

8 IS more appropriate.




Linear versus logistic regression

= Consider a simple linear model Y = 3y + 51 Balance (left),

= introduce a non-linear transformation (right).
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The orange marks indicate the response Y, either 0 or 1. Linear regression does not estimate Pr(Y = 1|X) well. Logistic regression seems well

suited to the task.




Logistic regression

s Let's write p(X) = Pr(Y = 1|X) for short,

m logistic regression uses the form

ePothiXi+..GpXp 1
p(X) = 1 + ePotBiI X1+ 5pX) - 1 4+ e~ (Bo+B1 X1+ 5pXp)

= no matter what values (; or X; take, p(X) will have values between 0 and 1,

m a bit of rearrangement gives

X
Zog(1 f<p(>X)) = Bo+ L1 X1+ ... B, X,

= this monotone transformation is called the or transf. of p(X),

m we use maximum likelihood to estimate the parameters [,

(B, B) =[] pxi) ] (1—p(x))

\] yl:l W] yl-:O




Logistic regression — motivation

= In linear regression

the outcome thresholds the distance to the decision boundary

the distance can easily be computed,

= transform this distance to probability p(X') with the following requirements

the objects lying on the boundary have p(X) = 0.5,

distant objects have p(X) — 0 (in one direction) or p(X) — 1 (in the
other direction),

the transformation is most sensitive around the decision boundary,

= transformation steps

start with the linear model, its limitations are known,

distance has no ceiling — turn probability into odds to remove the range
restrictions,

however, we need to consider direction from the decision boundary too,

apply log transform to remove the floor restriction.




Logistic regression — making predictions

= In R glm function can be applied to learn logistic models

allow the linear model to be related to the
response variable via a link function, and allow for responses whose error
distribution is different from a normal distribution,

s fit the default model for balance

Coefficient | Std. error | Z-statistic| p-value
Intercept | -10.6513 | 0.3612 -29.5 | < 0.0001
balance | 0.0055 0.0002 24.9 < 0.0001
s fit another default model for student
Coefficient | Std. error | Z-statistic| p-value
Intercept -3.5041 0.0707 -4955 | < 0.0001
student[Yes| | 0.4049 0.1150 3.52 0.0004




Logistic regression — making predictions

m Coefficient interpretation in simple models?

simpler for a binary predictor such as student (Pr(de fault = yes|student =
yes) =p(sT)),
compare log-odds for the student and non-student groups,

(5") y P i
p{s — othr g, P\s Po 1_p<f ) P
= p(s™) = p(s) i)
1—=p(s™)
e = 04049 _ 1 5 gives the between the groups,

m where is the decision boundary and what is its shape?




Logistic regression — making predictions

m Coefficient interpretation in simple models?

simpler for a binary predictor such as student (Pr(de fault = yes|student =
yes) =p(sT)),
compare log-odds for the student and non-student groups,

(s T o I <
P\5 — othr g, P\> — e 1_p<f ) _ P
= p(s™) = p(s) i)
1—=p(s™)
e = 04049 _ 1 5 gives the between the groups,

m where is the decision boundary and what is its shape?

more clear for a continuous predictor (Pr(default = y|balance) = p(b))

p(b) = 0.5 — pb) log(ﬂ) BB =0 b= 20— $1937

1 —p(b) L —p(b) Bi




Logistic regression — making predictions

= Now fit the default model with several predictors

Coefficient | Std. error | Z-statistic| p-value

Intercept | -10.8690 | 0.4923 -22.08 | < 0.0001
balance 0.0057 | 0.0002 24.74 | < 0.0001
income 0.0030 | 0.0082 0.37 0.7115
student[Yes| | -0.6468 | 0.2362 -2.74 0.0062

= why is coefficient for student negative, while it was positive before?




Confounding

= Students tend to have higher balances than non-students (right)
— so their marginal default rate is higher than for non-students,
m but for each level of balance, students default less than non-students (left),

= multiple logistic regression can tease this out.
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Example: South African Heart Disease

= 160 cases of MI (myocardial infarction) and 302 controls (all male in age range
15-64), from Western Cape, South Africa in early 80s,

= overall prevalence very high in this region: 5.1%,

= measurements on seven predictors (risk factors), shown in scatterplot matrix,
m goal is to identify relative strengths and directions of risk factors,

m part of an intervention study aimed at educating the public on healthier diets,

= and logistic regression

160 cases, 302 controls — m = 0.35, yet the prevalence is m = 0.051,

with case-control samples, the regression parameter [3; estimates are ac-
curate (if our model is correct),

only the constant term [ is incorrect, simple transformation helps

BS = B() + log

AN

7

— log

T
1 — 1 —7




Example: South African Heart Disease

= Scatterplot matrix, the response is color coded (Ml=red,controls=turquoise),

m famhist is a binary variable, with 1 indicating family history of MI.
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Example: South African Heart Disease

Call: glm(formula

= chd ~

Coefficients: Estimate Std. Error z value
(Intercept) -4.1295997 0.9641558 -4.283
sbp 0.0057607 0.0056326 1.023
tobacco 0.0795256 0.0262150 3.034
1d1 0.1847793 0.0574115 3.219
famhistPresent 0.9391855 0.2248691 4.177
obesity -0.0345434 0.0291053 -1.187
alcohol 0.0006065 0.0044550 0.136
age 0.0425412 0.0101749 4.181

Signif. codes: O

Null deviance:

Residual deviance:
AIC: 499.17

**k*x 0.001 **x 0.01 *x 0.05 .

596.11
483 .17

on 461

., family = binomial, data

Pr(>|zl)
1.84e-05
0.30643
0.00242
0.00129
2.96e-05
0.23529
0.89171
2.90e-05

0.1 1

degrees of freedom

on 454 degrees of freedom

= heart)

* %k Xk
* %k

* %k
* *k xk

* %k




Logistic regression with more than two classes

m So far, logistic regression with two classes only,

m it is easily generalized to more than two classes

in symmetric form, there is a linear function for each class

ePok 01 X1+ By Xp
Pr(Y = k|X) =

Zf:l eB0j+81 X1440pj Xp

this option is used e.g., in the R package gimnet,
in asymmetric form, one of the outcomes is selected as a pivot,
K-1 models are trained

- PrY = iX) B Xt B
Vi=1...K —1 — pP0it B X 1+ Bpi Xp
Z PrY =KX) *
it can easily be shown that
Pr(Y =iX) = Pr(Y = K|X) =
1+ Zj el 1+ Z] el

m multiclass logistic regression is also referred to as




A Scientific comics ...
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Discriminant analysis

= [ he distribution of X in each of the classes modeled separately,

= Bayes theorem flips things around and helps to obtain Pr(Y|X)
Pr(X=x|Y =k)Pr(Y =k)
Pr(X =x)

Pr(Y =k X =x) =

m this approach is quite general,

= when we use normal (Gaussian) distributions for each class

this option leads to

T fr(X)
Zfﬂ 7 f(X)
where fi(x) = Pr(X = x|Y = k) is the density for X in class £,
where m, = Pr(Y = k) is is the marginal or prior probability for class k.

PrY =kX=x) =




Linear discriminant analysis for p=1

s Plug the Gaussian density model into Bayes formula

(Pr(x) = Pr(Y = k|X = z))

L ()
g
Tk 27me

pr(T) =

NG
K 1 _1 U’u]
Zj:l T 27706 2( )
m note, that we assume Vk o5 = o here,

= happily, there are simplifications and cancellations,

m maximize the instead

2
k
op(x) = :C'LLQ — 'qu + log(7y)
o 20

m this is a linear function of x,

m for K = 2 classes and m = m9 = (.5, the decision boundary is at

f1 + 2
T =
2




Estimating the parameters

m Typically these parameters are unknown, we estimate them from data,

s example below with j1; = —1.5, o = 1.5, m = 1 = 0.5 and 0% = 1
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Linear discriminant analysis for p > 1

. 1l )Ty
= Density: f(x) = (2ﬂ)p/;|2|1/26 Lx—p) 'S~ (x—p)

= discriminant function: §;(x) = x' X1l — %ukz_l,uk + log (),

m despite its complex form a linear function of x.
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lllustration: p = 2 and K = 3 classes

m [ hree classes with the same priors, class-specific mean vectors and a common
covariance matrix,

= ellipses in the left represent 95% confidence regions for each of the classes,
dashed lines Bayes optimal decision boundaries,

= in the right LDA decision boundaries learned from a sample with 20 observa-
tions per class.
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Fisher’s Iris data

= Three classes/species: setosa,

m 4 continuous features, 50 samples per class,

m LDA correctly classifies all but 3 training samples.
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Fisher’s discriminant plot

m LDA can be viewed in K-1 dimensional discriminant plot,

m it classifies to the closest centroid, they span a K - 1 dimensional plane,

s for K > 3 dimensionality reduction to visualize the discriminant rule.
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From §,.(x) to class probabilities

m Turn discriminant scores into class probability estimates

. k()

Pr(Y =klX =2) = -
2655(37)

[=1

= classifying to the largest d;(x) amounts to classifying to the class for which
Pr(Y = k|X = x) is largest,

s when K = 2, classify to class 2 if Pr(Y =2|X =x) > 0.5, else to class 1,

m and classification accuracy can be employed then

True Default Status

No Yes | Total
Predicted No | 9644 252 | 9896
Default Status  Yes 23 81 104
Total | 9667 333 | 10000




Evaluation of a discriminative model

= [ his approach is often insufficient for

skewed classes (imbalanced class sizes),

unequal losses (different misclassification costs),

m for unequal losses, change the decision threshold from 0.5 to some other value
from [0,1]

example: when predicting defaults in earlier Credit dataset, we would make
nearly 80% error on the true Yes cases,

sensitivity is very low — changing the threshold adapts to a different loss
function.




Unequal losses: Credit data

True Default Status

No Yes | Total
Predicted No 0644 252 OR96

Default Status  Yes 23 81 104
Total | 9667 333 | 10000

m Credit data with skewed classes, observations for LDA

2;’65%502 errors — a 2.75% misclassification rate!

overfitting not a big concern here since n = 10000 and p = 4!,

if we always classified to class No in this case, we would make 13880 errors,

or only 3.33%,
of the true No's, we make g=0- = 0.2% errors (false positive rate),

of the true Yes's, we make 222 = 75.7% errors (false negative rate)!




Unequal losses: Credit data

= Let us change threshold in: if Pr(Y = default| X = x) > thres then default

threshold 0.5 optimizes the overall error rate,

lower thresholds better fit the smaller class of defaulting customers (prob-
ably most interesting for a credit company).
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Receiver operating characteristics (ROC)

m Displays the errors for all possible thresholds

a popular way to evaluate probabilistic classifiers,
a better tool for imbalanced datasets than classification accuracy,

the overall performance of a classifier is given by the area under the ROC
curve (AUC, AUROC), a number from (0, 1), 0.5 for random votes,

AUROC represents the probability that a random positive example is po-
sitioned to the right of a random negative example on the scale given by
the probabilistic classifier.

number of true positives TP

T'PR = sensitivity = =
Y~ Yotal number of positives P

number of false positives  F'P

FPR =1 — specificity = =
P Y~ Yotal number of negatives NN




Receiver operating characteristics (ROC): Credit data

m AUC is 0.95, which is close to the maximum of 1,

m the LDA classifier can be considered very good.
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Other forms of discriminant analysis

m Consider different models in the general Bayes formula below

T fr(X)

Zf:l m; fi(x)

= when fj(x) are Gaussian densities, with the same covariance matrix 3 in each
class

Pr(Y =k|X =x) =

linear discriminant analysis,
m with Gaussians but different Xy in each class
quadratic discriminant analysis,

= with fi.(x) = []}_, fjr(x;) (conditional independence assumption) in each
class

naive Bayes classifier,

for Gaussian this means the Xy are diagonal.




Quadratic discriminant analysis

X
]

The Bayes optimal decision boundary in purple dashed line, LDA black dotted, QDA green solid. Left: the covariance matrices truly match,
LDA is close to optimal solution, QDA suffers from higher variance. Right: the orange class has a positive correlation between predictors, the
blue class negative, class covariance matrices differ, the optimal boundar is quadratic, LDA suffers from higher bias.
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Summary

m Logistic regression

linear decision boundary, direct outcome on feature importance,

very popular especially when K = 2,
m LDA has a linear decision boundary too, it is useful when

the number of samples is small, or the classes are well separated, and
Gaussian assumptions are reasonable,

K > 2, because it also provides low-dimensional views of the data,
s QDA constructs a non-linear (quadric) decision boundary

applies to a wider range of problems, more parameters, easier to overfit,
= naive Bayes is useful when the dimension is very large,

m other classification algorithms
kNN, SVM, decision trees, neural networks,

m none of the methods dominates the others in every situation.




The main references

:: Resources (slides, scripts, tasks) and reading

m G. James, D. Witten, T. Hastie and R. Tibshirani: An Introduction to
Statistical Learning with Applications in R. Springer, 2014.

s K. Markham: In-depth Introduction to Machine Learning in 15 hours
of Expert Videos. Available at R-bloggers.




