Cluster analysis – advanced and special algorithms

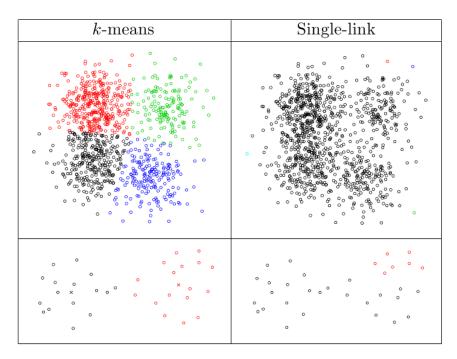
Jiří Kléma

Department of Computer Science, Czech Technical University in Prague

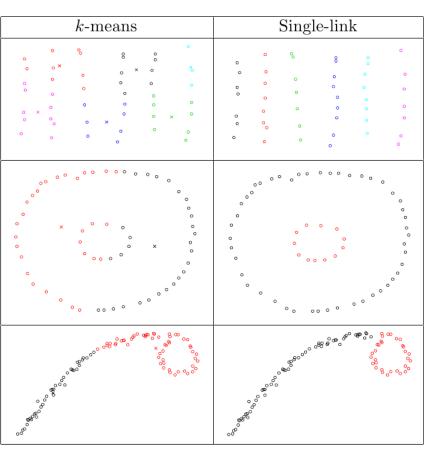
http://cw.felk.cvut.cz/wiki/courses/b4m36san/start

Comparison: k-means and hierarchical single-link

- single linkage tends to generate longer non-compact clusters,
- k-means makes compact clusters, complete linkage is outlier sensitive,



k-means intuitively correct

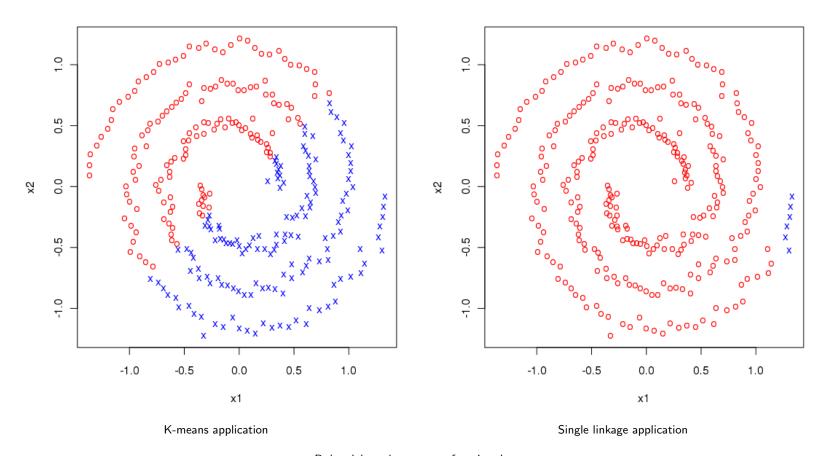


single linkage intuitively correct

Carnegie Mellon University, course: Statistics 36-350: Data Mining

Spectral clustering – motivation

- clustering algorithms assume certain cluster shapes
 - unexpected shapes cause difficulties (eg. linearly non-separable clusters),
 - "classical pairwise similarity" can be insufficient.



R, kernlab package, specc function demo

Spectral clustering – **context**

- frequent solution is a feature space transformation,
- a domain independent clustering algorithm, the transformation tuned for the domain
 - explicit transformation
 - * get the object coordinates in the new feature space,
 - * traditional clustering in the new space,
 - * illustrative, but impractical,
 - implicit transformation
 - * via similarity resp. kernel function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$,
 - * purely a function of object pairs, no object coordinates in the new space,
 - * very natural for clustering, similarity/distance its essential part anyway,
 - * kernel trick analogy (SVM classification),
 - · kernel k-means (see the next slide),
 - * an implicit high-dimensional space, clusters (classes) potentially easily separable,
 - * kernel PCA kernel matrix \rightarrow diagonalize \rightarrow a low-dimensional feature space.

Kernel k-means

- apply k-means in the transformed feature space induced by a kernel function
 - the original objects: x_1, x_2, \ldots, x_m ,
 - the transformed objects: $\Phi(x_1), \Phi(x_2), \ldots, \Phi(x_m)$ (not explicitly calculated),
 - the kernel function: $k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle$,
 - cluster centers in the transformed space: $\mu_v = \frac{1}{|C_v|} \sum_{x_i \in C_v} \Phi(x_i)$ (not explicitly known),
 - only (squared) distances between objects and cluster centers need to be known:

$$||\Phi(x) - \mu_v||^2 = ||\Phi(x) - \frac{1}{|C_v|} \sum_{x_i \in C_v} \Phi(x_i)||^2 =$$

$$= \langle \Phi(x) - \frac{1}{|C_v|} \sum_{x_i \in C_v} \Phi(x_i), \Phi(x) - \frac{1}{|C_v|} \sum_{x_i \in C_v} \Phi(x_i) \rangle =$$

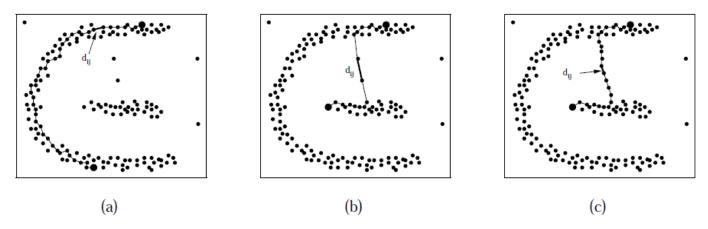
$$= \langle \Phi(x), \Phi(x) \rangle - \frac{2}{|C_v|} \sum_{x_i \in C_v} \langle \Phi(x), \Phi(x_i) \rangle + \frac{1}{|C_v|^2} \sum_{x_i \in C_v, x_j \in C_v} \langle \Phi(x_i), \Phi(x_j) \rangle =$$

$$= k(x, x) - \frac{2}{|C_v|} \sum_{x_i \in C_v} k(x, x_i) + \frac{1}{|C_v|^2} \sum_{x_i \in C_v, x_i \in C_v} k(x_i, x_j)$$

Example: spirals - connectivity kernel, Gaussian kernel

connectivity kernel

- the object pair distance given by the max edge on the path connecting the objects,
- if there are more paths, the one minimizing the criterion above is taken,
- e.g., this kernel makes k-means behave similar to single linkage hierarchical clustering,

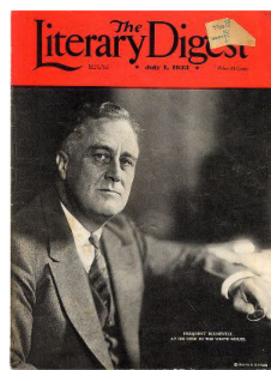


Fischer et al.: Clustering with the Connectivity Kernel

Gaussian (RBF) kernel

- $-s(x_i, x_j) = \exp(-||x_i x_j||/\sigma^2),$
- $-\sigma$ set to have a "tight" object neighborhood,
- an implicit feature space (infinite dimension).

Famous statistical blunders ...



US presidential elections, 1936

FD Roosevelt - Alf Landon

Draft lottery, 1970

Vietnam war

Financial crisis, 2008

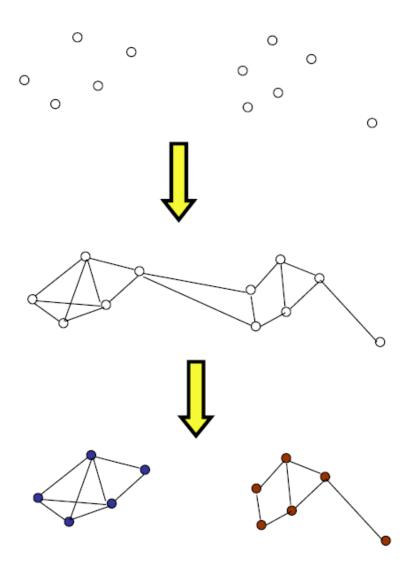
Gaussian copula function

Spectral clustering in a nutshell

input: a set of objects,

- described as a graph,
- edges encode similarity,

- graph decomposed into components = clusters,
- graph partitioned by its spectral properties.



Azran: A Tutorial on Spectral Clustering

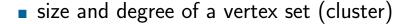
Graph theory – basic terms

vertex (object) similarity (affinity)

$$-s_{uv}=\langle u,v \rangle$$
,

$$-d_u = \sum_{v=1}^m s_{uv},$$

$$-\mathcal{D} = diag(d_1,\ldots,d_m)$$
,

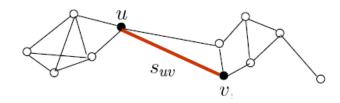


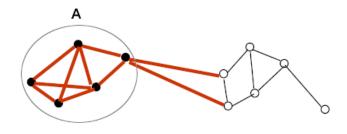
 $-|A|\dots$ the number of vertices in A,

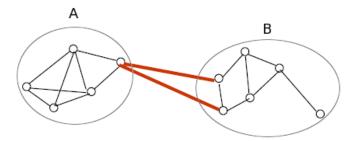
$$-vol(A) = \sum_{u \in A} d_u$$
,

an edge cut between two components

$$- cut(A, B) = \sum_{u \in A} \sum_{v \in B} s_{uv}.$$



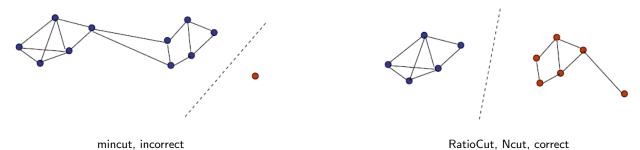




Azran: A Tutorial on Spectral Clustering

Spectral clustering as an approximated minimum graph cut

- ullet clustering \sim partition the similarity graph into components,
- can be solved as an optimization problem
 - search for a minimum edge cut in the similarity graph ${\mathcal S}$ to make it disconnected
 - $* \min_{A \subset S} cut(A, \bar{A})$,
 - * a computationally feasible problem, but rather unsatisfactory partitions,



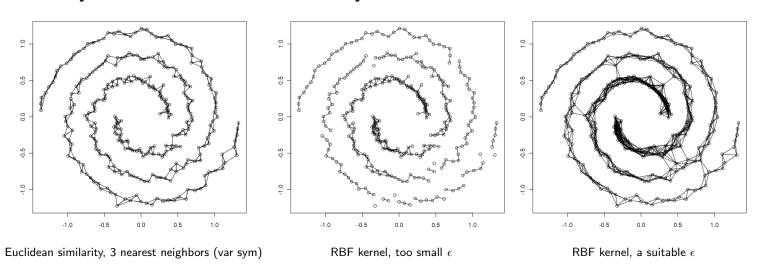
- a "reasonable" size of the components needs to be required
 - * minimize one of the balanced cut criteria,
 - * $RatioCut(A,B) = cut(A,B) \left(\frac{1}{|A|} + \frac{1}{|B|} \right)$,
 - * $Ncut(A,B) = cut(A,B) \left(\frac{1}{vol(A)} + \frac{1}{vol(B)}\right)$,
 - * the dark side of the coin: NP-hard problems,
- spectral clustering provides a relaxed and feasible solution to the balanced cut problem.

Spectral clustering – algorithm

- inputs: $\mathcal{X} = [x_{ij}]_{m \times n} = \{x_1, \dots, x_m\} \subset \mathbb{R}^n$, k
 - 1. select the similarity function
 - linear, RBF, polynomial, etc.
 - a general rule assigning functions to problems does not exist,
 - 2. compute the similarity (adjacency) matrix $\mathcal{S} = [s_{ij}]_{m \times m}$
 - (a new implicit feature space originates),
 - 3. construct a "reasonable" similarity graph by editing ${\cal S}$
 - ${\cal S}$ is a complete graph, vertices \sim objects, similarities \sim edges,
 - remove long (improper) edges,
 - 4. derive the Laplace matrix $\mathcal L$ out of the similarity matrix $\mathcal S$
 - unnormalized: $\mathcal{L} = \mathcal{D} \mathcal{S}$,
 - normalized: $\mathcal{L}_{rw} = \mathcal{D}^{-1}\mathcal{L} = \mathcal{I} \mathcal{D}^{-1}\mathcal{S}$,
 - 5. project into an explicit space of k first eigenvectors of \mathcal{L} ,
 - $-\mathcal{V}=[v_{ij}]_{m\times k}$, eigenvectors of \mathcal{L} as columns,
 - 6. k-means clustering in $\mathcal V$ matrix
 - $-\mathcal{V}$ rows interpreted as new object positions in k-dimensional space.

Spectral clustering – similarity graph

- reduce the complete graph to an undirected graph concerning local neighborhoods,
- vertices shall have a reasonable degree ($\ll m$),
- basic approaches
 - $-\epsilon$ -neighborhood
 - * $s_{ij} > \epsilon \rightarrow$ vertices i and j connected by an edge, otherwise $s_{ij} = 0$,
 - k-nearest neighbors
 - * symmetric: connect i and j if i belongs to k nearest neighbors of j **or** vice versa,
 - * mutual: connect i and j if i belongs to k nearest neighbors of j and vice versa,
 - keep the complete graph
 - * usually with the RBF or other strictly local kernel.



Spectral clustering – graph Laplacian

- lacksquare concern the unnormalized option: $\mathcal{L} = \mathcal{D} \mathcal{S}$
- \blacksquare then for $\forall f \in \mathbb{R}^m$

$$f'\mathcal{L}f = f'\mathcal{D}f - f'\mathcal{S}f =$$

$$= \sum_{i=1}^{m} d_i f_i^2 - \sum_{i,j=1}^{m} f_i f_j s_{ij} =$$

$$= \frac{1}{2} \left(\sum_{i=1}^{m} (\sum_{j=1}^{m} s_{ij}) f_i^2 - 2 \sum_{i,j=1}^{m} f_i f_j s_{ij} + \sum_{j=1}^{m} (\sum_{i=1}^{m} s_{ij}) f_j^2 \right) =$$

$$= \frac{1}{2} \sum_{i,j=1}^{m} s_{ij} (f_i - f_j)^2$$

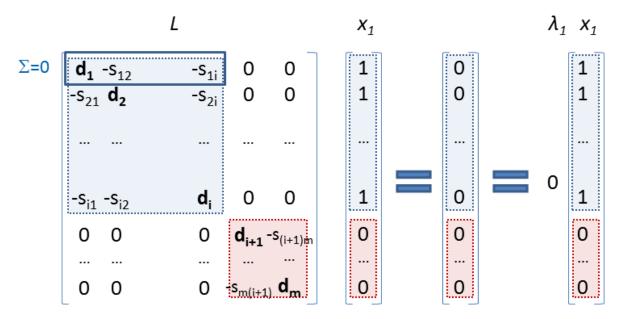
- lacktriangle measures the variation of function f along the graph
 - the value $f'\mathcal{L}f$ is low when close vertices agree in their f_i ,
 - assumes that near objects shall have close function values (f),
- the discrete Laplace operator encodes the same property,
- an interesting case: $f = \mathbb{1}_A$ ($f_i = 1$ if $v_i \in A$ otherwise $f_i = 0$), A is a graph component.

Spectral clustering – eigenvectors of $\mathcal L$

- eigenvectors x of \mathcal{L} matrix ($\mathcal{L}x = \lambda x$) provide a good graph partitioning indication,
- lacktriangle an ultimate (ideal) case: graph has exactly k components
 - -k smallest eigenvectors ideally split k clusters,

$$-\lambda_1 = \cdots = \lambda_k = 0 < \lambda_{k+1} \leq \cdots \leq \lambda_m \to x_1, \ldots, x_k$$

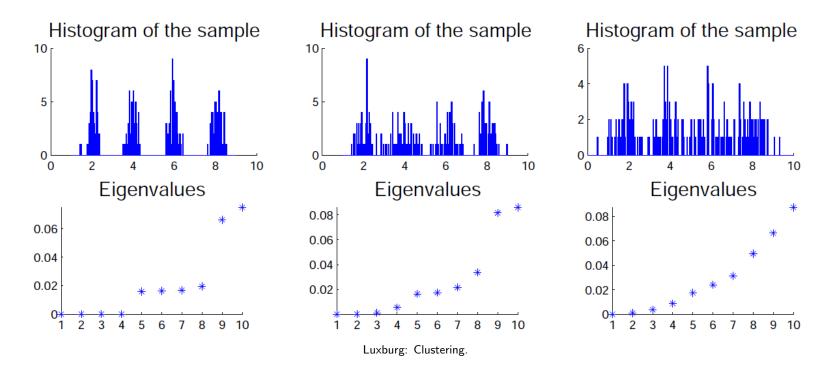
- other (usual) cases: a connected graph, k component candidates exist
 - the space of k smallest eigenvectors (with nonzero λ) allows to form k clusters.



The ideal case for k=2.

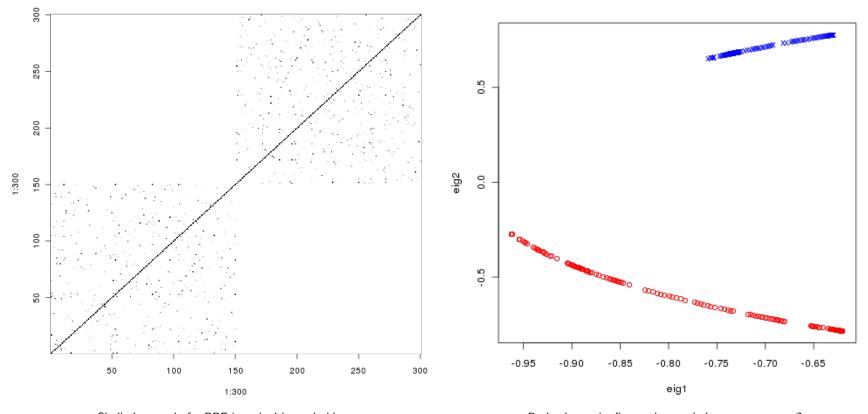
Spectral clustering – eigenvalues of $\mathcal L$

- provided k is unknown, eigengap statistic
 - a k-means gap heuristic analogy,
 - concern only small eigenvectors before the first jump in eigenvalues,
 - the number of clusters matches the number of selected eigenvectors.



Example: spirals – eigenvectors

- similarity matrix splits the graph into components nearly ideally,
- lacktriangle the second eigenvector of $\mathcal L$ is a perfect component indicator.



Similarity matrix for RBF kernel with a suitable σ the instance order is illustrative and keeps the real spiral membership

Projection – the first and second eigenvector space ${\cal S}$ colors give the real spiral membership, k-means clustering is trivial

Spectral clustering – summary

advantages

- does not make strong assumptions on cluster shape,
- simple to implement uses existing algorithms,
- does not have a local optima, cannot stuck,
- a modular approach applicable in a range of problems
 - * modify the kernel or similarity graph to adapt to a new problem,
- eigengap heuristic to find an optimal cluster number,
- successful in a range of real problems,

disadvantages

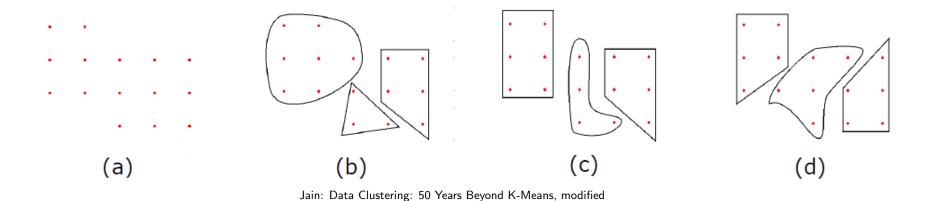
- can be sensitive to choice of parameters, unclear how to set them,
 - * kernels (eg. σ for RBF), graph similarity (ϵ or k),
- computationally expensive on large non-sparse graphs,
 - * use only after simpler algorithms fail,
- not really clear what it does on non-regular graphs (e.g. power law graphs),

demo

 $-\ \mathsf{http://www.ml.uni\text{-}saarland.de/GraphDemo/GraphDemo.html.}$

Advanced clustering – summary

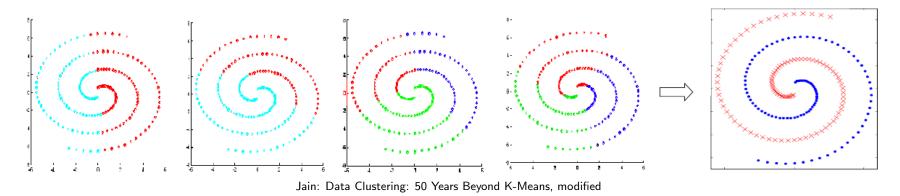
- Clustering covers a wide range of methods
 - not merely an instance set partitioning in \mathbb{R}^n dealing with disjoint clusters,
 - in general, it discovers arbitrary frequent co-occurrence of events in data,
- unsupervised = subjective approach
 - "gold true" does not exist (compare with classification),
 - the outcome is influenced by the employed implicit and explicit knowledge,



- tightly related to learning
 - conceptual clustering knowledge-based with cluster/concept descriptions,
 - semi-supervised clustering both annotated and unannotated instances,

Advanced clustering – summary

- exists in many modifications
 - bi-clustering
 - * rather the local (context-sensitive) than global similarity.
- topics not covered
 - heterogenous data
 - * that cannot be represented as a constant-size feature vector,
 - large scale clustering
 - * efficient NN, incremental clustering, sampling, distributed computing, prior data summarization,
 - clustering ensembles
 - * the result obtained by combining multiple partitions.



Recommended reading, lecture resources

:: Reading

- von Luxburg: Lectures on Clustering.
 - PASCAL Bootcamp in Machine Learning, Vilanova (Barcelona), 2007,
 - http://videolectures.net/bootcamp07_luxburg_clu/,