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Comparison: k-means and hierarchical single-link

= single linkage tends to generate longer non-compact clusters,

m k-means makes compact clusters, complete linkage is outlier sensitive,
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Carnegie Mellon University, course: Statistics 36-350: Data Mining




Spectral clustering — motivation

m clustering algorithms assume certain cluster shapes

— unexpected shapes cause difficulties (eg. linearly non-separable clusters),

— “classical pairwise similarity” can be insufficient.
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R, kernlab package, specc function demo
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Spectral clustering — context

= frequent solution is a ,

= a domain independent clustering algorithm, the transformation tuned for the domain

explicit transformation

* get the object coordinates in the new feature space,
« traditional clustering in the new space,

x illustrative, but impractical,
implicit transformation

x via similarity resp. kernel function K : X x X — R,
* purely a function of object pairs, no object coordinates in the new space,

* very natural for clustering, similarity/distance its essential part anyway,

* kernel trick analogy (SVM classification),
- kernel k-means (see the next slide),

* an implicit high-dimensional space, clusters (classes) potentially easily separable,

x kernel PCA — kernel matrix — diagonalize — a low-dimensional feature space.




Kernel k-means

= apply k-means in the transformed feature space induced by a kernel function

the original objects: x1, 2o, ..., 2,

the transformed objects: ®(x1), P(z3), ..., P(x,,) (not explicitly calculated),

the kernel function: k(z;, z;) = (P(x;), D(z;)),

cluster centers in the transformed space: p, = ﬁ D uec, P(xi) (not explicitly known),

only (squared) distances between objects and cluster centers need to be known:
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Example: spirals — connectivity kernel, Gaussian kernel

m connectivity kernel

the object pair distance given by the max edge on the path connecting the objects,

if there are more paths, the one minimizing the criterion above is taken,

e.g., this kernel makes k-means behave similar to single linkage hierarchical clustering,
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s Gaussian (RBF) kernel

s(z, x;) = exp(—||zi — x]|/0?),

Fischer et al.: Clustering with the Connectivity Kernel

o set to have a “tight” object neighborhood,

an implicit feature space (infinite dimension).
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Famous statistical blunders ...

Take A Break

US presidential elections, 1936 Draft lottery, 1970 Financial crisis, 2008

FD Roosevelt - Alf Landon Vietnam war Gaussian copula function
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Spectral clustering in a nutshell

input: a set of objects, © o 0

described as a graph,

edges encode similarity,

graph decomposed into components = clusters, @’ \
graph partitioned by its spectral properties.

Azran: A Tutorial on Spectral Clustering




Graph theory — basic terms

vertex (object) similarity (affinity)

- Suw = <U,,’U>,

vertex degree (volume), degree matrix

—dy = ZUmzl Suvs
— D =diag(dy, ... .,dy),

size and degree of a vertex set (cluster)

— |A] ...the number of vertices in A,

—vol(A) =) ,cadu,

an edge cut between two components

—cut(A,B) =) caD ven Suv-

Azran: A Tutorial on Spectral Clustering
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Spectral clustering as an approximated minimum graph cut

m clustering ~ partition the similarity graph into components,

m can be solved as an optimization problem

search for a minimum edge cut in the similarity graph S to make it disconnected
x min cut(A, A),

AcCS
* a computationally feasible problem, but rather unsatisfactory partitions,
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mincut, incorrect RatioCut, Ncut, correct
a ‘reasonable” size of the components needs to be required
* minimize one of the balanced cut criteria,
# RatioCut(A, B) = cut(A, B)(rg + ),
_ 1 1
* Ncut(A, B) = cut(A, B)(ml(A) + vol(B)),
* the dark side of the coin: NP-hard problems,

m spectral clustering provides a relaxed and feasible solution to the balanced cut problem.




Spectral clustering — algorithm

w inputs: X = [zi]mwn = {21,...,2n} CR" Kk

1. select the similarity function

linear, RBF, polynomial, etc.

a general rule assigning functions to problems does not exist,
2. compute the similarity (adjacency) matrix S = [s;;]mxm
(a new implicit feature space originates),
3. construct a “reasonable” similarity graph by editing S
S is a complete graph, vertices ~ objects, similarities ~ edges,
remove long (improper) edges,
4. derive the Laplace matrix £ out of the similarity matrix &
unnormalized: £L=D — S,
normalized: £,, =D L =7 — D 'S,
5. project into an explicit space of k first eigenvectors of L,
V = [v]mxk, eigenvectors of L as columns,
6. k-means clustering in ) matrix

) rows interpreted as new object positions in k-dimensional space.




Spectral clustering — similarity graph

m reduce the complete graph to an undirected graph concerning local neighborhoods,
= vertices shall have a reasonable degree (< m),
m basic approaches

e-neighborhood

* 5;; > € — vertices 7 and j connected by an edge, otherwise s;; = 0,

k-nearest neighbors

* symmetric: connect ¢ and j if ¢ belongs to k£ nearest neighbors of j or vice versa,
* mutual: connect 7 and j if ¢ belongs to k£ nearest neighbors of j and vice versa,
keep the complete graph

% usually with the RBF or other strictly local kernel.
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Spectral clustering — graph Laplacian

= concern the unnormalized option: L=D — S

= then for Vf € R™
fLf=fDf - fSf=

= dif? =) fifisi =
i-1

ij—1
= %(Z(Z sij) 7 — 2 Z Jifisij + Z(Z sif)f7) =
i—1 =1 ij=1 =1 i1
= % > sylfi = )
ij=1

= measures the variation of function f along the graph

the value f'Lf is low when close vertices agree in their f;,

assumes that near objects shall have close function values (f),

m the discrete Laplace operator encodes the same property,

= an interesting case: f =14 (f; = 1if v; € A otherwise f; =0), A is a graph component.




Spectral clustering — eigenvectors of L

= eigenvectors x of £ matix (Lx = Ax) provide a good graph partitioning indication,
= an ultimate (ideal) case: graph has exactly k components

k smallest eigenvectors ideally split £ clusters,
A== =0< g1 <o <Ay =, .., T

= other (usual) cases: a connected graph, & component candidates exist

the space of k smallest eigenvectors (with nonzero \) allows to form k clusters.

L X, A, X
E=D d1 ..... 512 ..................... S 1I 0 0 1é 0 1
-S:1 -Siy d: 0 0 1) ™= o ™= "1

The ideal case for k = 2.




Spectral clustering — eigenvalues of L

m provided k is unknown, statistic

a k-means gap heuristic analogy,
concern only small eigenvectors before the first jump in eigenvalues,

the number of clusters matches the number of selected eigenvectors.

Histogram of the sample Histogram of the sample Histogram of the sample

10 10 6

5 5
2_
0 I : 0 0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Eigenvalues Eigenvalues Eigenvalues
0.08 * ¥ 0.08| *
0.06 %
0.06 0.06¢
0.04 %
0.04 0.04
* *
0.02 ¥ + * * 0.02 x * ¥ 0.02} g ¥
O e U :
1 2 3 45 6 7 8 9 10 1T 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10

Luxburg: Clustering.




Example: spirals — eigenvectors

m similarity matrix splits the graph into components nearly ideally,

m the second eigenvector of L is a perfect component indicator.
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Spectral clustering — summary

= advantages

does not make strong assumptions on cluster shape,

simple to implement — uses existing algorithms,

does not have a local optima, cannot stuck,

a modular approach applicable in a range of problems

x modify the kernel or similarity graph to adapt to a new problem,
eigengap heuristic to find an optimal cluster number,

successful in a range of real problems,
m disadvantages

can be sensitive to choice of parameters, unclear how to set them,
* kernels (eg. o for RBF), graph similarity (e or k),
computationally expensive on large non-sparse graphs,

* use only after simpler algorithms fail,

not really clear what it does on non-regular graphs (e.g. power law graphs),
= demo

http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html.




Advanced clustering — summary

s Clustering covers a wide range of methods

not merely an instance set partitioning in R" dealing with disjoint clusters,

in general, it discovers arbitrary frequent co-occurrence of events in data,
m unsupervised = subjective approach

“gold true” does not exist (compare with classification),

the outcome is influenced by the employed implicit and explicit knowledge,

A Ui b

Jain: Data Clustering: 50 Years Beyond K-Means, modified

(a)

m tightly related to learning

conceptual clustering — knowledge-based with cluster/concept descriptions,

semi-supervised clustering — both annotated and unannotated instances,




Advanced clustering — summary

m exists in many modifications

bi-clustering

* rather the local (context-sensitive) than global similarity.
m topics not covered

heterogenous data
* that cannot be represented as a constant-size feature vector,

large scale clustering

x efficient NN, incremental clustering, sampling, distributed computing, prior data sum-
marization,

clustering ensembles

* the result obtained by combining multiple partitions.
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Jain: Data Clustering: 50 Years Beyond K-Means, modified




Recommended reading, lecture resources

:: Reading

= von Luxburg: Lectures on Clustering.

PASCAL Bootcamp in Machine Learning, Vilanova (Barcelona), 2007,
http://videolectures.net/bootcamp07_luxburg clu/,




