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pOutline

� motivation, utilization,

� clustering as an optimization task

− complexity,

� k-means algorithm

− direct greedy search,

− (dis)advantages,

� k-means as an instance of EM algorithm

− generalization towards soft clustering,

− EM algorithm and Gaussian distribution mixture,

� hierarchical clustering

− motivation – extras?

− agglomerative and divisive approach,

� density-based clustering, DBSCAN,

� summary, method categorization.
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pClustering – example

� clusters and their prototypes bring new domain knowledge,

� interpretation e.g. in connection with geographic data and visualization,

� “clustering” 210 million Facebook profiles based on friendship connections,
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pClustering – example

� clusters and their prototypes bring new domain knowledge,

� goal: to segment and understand multivariate EEG signal.
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pClustering – example

� application for image segmentation,

� features: (coordinates), (a) color components, (b) brightness for b&w image.

Xiao Zhang: Image Segmentation.
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pClustering – utilization, applications

� clustering for learning

− class discovery in (unannotated) data,

− unsupervised learning,

� data understanding, their structured representation

− taxonomies (biology – organisms, genes),

− rapid access to pieces of information (web search engine output organization),

− outlier detection,

� usage of prototypes

− summarization (original objects completely forgotten),

− compression (vector quantization),

− efficient nearest neighbor search.
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pClustering – formalization

� goal

− split unclassified objects into mutually disjoint subsets, clusters,

− we divide so that the objects

1. are similar inside a cluster,

2. are dissimilar when lying in different clusters,

− disjoint partition of an object set defined in an input space (usually Rn) into k > 1 classes

X . . . a set of m objects, Ω = {C1, . . . , Ck} . . . partition of the set X ,

∀i, j ≤ k, i 6= j Ci 6= ∅, Ci ∩ Cj = ∅, C1 ∪ C2 ∪ · · · ∪ Ck = X ,

� we solve an optimization problem

− inputs

∗ training data,

∗ distance function (dissimilarity function),

∗ (optimization criterion).

− unknown

∗ the number of clusters,

∗ cluster-object links – partition,

∗ (prototypes – cluster ethalons, typical examples).
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pClustering – complexity

� variant of a Bayesian decision-making task

develop a strategy Q : X → D (D stands for decisions) minimizing

argmin
q

∑
x∈X p(x)W (x, q(x)) (W is a loss function),

� how large space to be searched?

− the number of different disjoint partitions: Stirling number of the second kind

S(m, k) =
{
m
k

}
= 1

k!

∑k
j=0 (−1)k−j

(
k
j

)
jm, among others S(m, 2) =

{
m
2

}
= 2m−1 − 1

m\k 1 2 3 4 5 6 7 8

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1701 1050 266 28 1

− the optimization criterion cannot be applied in a näıve way (exhaustive search),

� NP-hard problem, heuristic solutions.
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pK-means – strategy, an ideal run (Borgelt: IDA slides)
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pK-means algorithm

� global homogeneity criterion: W (k) = argmin
Ω

∑k
i=1

∑
xj∈Ci

||xj − µi||2,

� inputs: X = {x1, . . . , xm} ⊂ Rn, k ∈ N,

1. randomly initialize cluster centroids µj (e.g. select k objects),

2. each object xi ∈ X assign to the nearest centroid – ∀i argmin
j=1...k

||xi − µj||2,

3. recompute cluster centroids – centroid is a mean vector of objects assigned to the cluster,

4. repeat steps 2 and 3 until cluster centroids change.

� greedy algorithm

− guaranteed convergence, typically fast,

− finds a locally optimal solution,

− initialization sensitive,

� can further be generalized

− ||.||2 replaced by another distance function d : X × X → R,

− centroid is not the cluster mean, minimizes the sum of cluster distances,

� illustrative demo applets available.
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pK-means – stuck in local optima (Borgelt: IDA slides)
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pDistance function

� typically metric on X , ∀x, y, z ∈ X :

− d(x, y) ≥ 0, d(x, y) = 0⇔ x = y, d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z)

� common functions

− Minkowski metric: d(x, y) =
(∑n

i=1(xi − yi)k
)1

k

∗ selection of k: dH(k = 1) (Manhattan, Hamming, taxi), dE(k = 2) (Euclid), dC(k =

∞) (Chebyshev),

− cosine dissimilarity (documents): d(x, y) = 1− cos(θ) = 1− x·y
|x||y|

− edit (Levenshtein) distance (words, strings, sequences)

∗ minimum number of edits (change, insert, delete) to transform one string into the other.

Minkowski distance, Berka: Dolováńı dat cosine dissimilarity
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pK-means: choice of the number of clusters

� k known a priori,

� k based on the object number only: k ∼
√

m
2 ,

� homogeneity W necessarily monotonously increases with increasing k, a heuristic “elbow”

method:

− run k-means algorithm repeatedly with increasing k,

− a proper k is in the point of sudden non-homogeneity decrease or in a curve elbow,

− Hartigan criterion: H(k) = W (k)−W (k+1)
W (k+1)(m−k−1)

choose the smallest k ≥ 1 with H(k) small enough.
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pK-means: choice of the number of clusters

� Tibshirani (2001): gap statistic

− compares development of W (k), resp log(W (k)), with the referential curve Wref(k),

− instead of log(W (k)) searches minimum in log W (k)
Wref (k),

− Wref(k) can be obtained in two ways

∗ uniform distribution homogeneity “without clusters” (Wunif(k)),

∗ permuted distribution homogeneity – feature values randomly shuffled (Wperm(k)),

∗ the domain is kept in both,

− the method originated in statistics.
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pK-means: choice of the number of clusters

� another k-selection method: EM with theoretically well-founded AIC or BIC criteria.
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p Famous statistical blunders . . .

US presidential elections, 1936 Draft lottery, 1970 Financial crisis, 2008

FD Roosevelt - Alf Landon Vietnam war Gaussian copula function
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pExpectation Maximization (EM) algorithm

� k-means is an EM algorithm specialization,

� maximizes likelihood Pr(X|θ)

θ∗ = argmax
θ

Pr(X|θ) = argmax
θ

∏m
i=1 Pr(xi|θ)

� introduces a latent variable Q, which simplifies maximization of Pr(X|θ)

− E-step:

∗ estimate latent variable (distribution) for the given data and current param values θ,

−M-step:

∗ modify parameters θ so that likelihood is maximized wrt given Q,

� k-means specification

− Q gives binary cluster membership,

− E-step: assign objects and centroids,

− M-step: recalculate cluster centroids.
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pSoft (probabilistic) clustering

� “hard” object membership in a single cluster not needed,

� membership function Pr(Cj|xi) is understood as probability

− it must hold: ∀i = 1, . . . ,m :
∑

j=1,...,k Pr(Cj|xi) = 1

� a soft clustering algorithm – “soft” k-means

− EM principle,

− a model with parameters θ used to calculate Pr(Cj|xi),

− θ most often defines a Gaussian Mixture Model (GMM),

∗ Pr(xi|θ) =
∑k

j=1 αj
1

(2π)n/2|Σj |1/2
e−

1
2(xi−µj)tΣ−1j (xi−µj)

∗ θ = {α1, . . . , αk, µ1, . . . , µk,Σ1, . . . ,Σk},
∑k

j=1 αj = 1

∗ αi . . . a mixture element weight, µi . . . centroid vector, Σi . . . covariance matrix,

− θ can also define a näıve bayes model etc.,

� EM GMM clustering

− Q determines probability that an object was generated by a particular gaussian distribution,

� soft clustering is a special case of fuzzy clustering

− membership Pr(Cj|xi) without constraints needed for probability.
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pEM for GMM clustering

� EM is an iterative algorithm,

� illustration of one step after random initialization.

E-step M-step
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pEM clustering – k-means comparison

� clustering defined as GM optimization in n dimensions,

� the number of elements (distributions) k (can be a part of likelihood maximization resp. AIC),

� partition: object belongs to the distribution with the highest a posteriori prob Pr(Cj|xi),

� assumes a normal object distribution within a cluster,

� more robust, but slower than k-means,

� demo: http://staff.aist.go.jp/s.akaho/MixtureEM.html.
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pEM soft clustering with a näıve bayes (NB) model

� NB classifier, samples with known classes

Pr(Cj|X1 = v1, . . . , Xn = vn) =
Pr(Cj)

∏n
i=1 Pr(Xi = vi|Cj)

Pr(X1 = v1, . . . , Xn = vn)

� EM when classes are not available:

1. initialize: augment the data with the class count column (randomly, class priors),

2. M-step: infer the model from the augmented data, use MLE→ P (Cj) and P (Xi = vi|Cj),

3. E-step: update the augmented data based on the model, use Bayes formula,

4. repeat steps 2 and 3, stop when the changes are small enough.
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pHierarchical clustering – motivation

� taxonomy is more informative than partition

− analyzes on various granularity levels,

− binary tree = dendrogram,

� a reasonable decomposition of the clustering problem to subproblems

− a straightforward and computationally efficient solution.
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pHierarchical clustering – algorithm

� recursive application of the standard clustering step,

� agglomerative approach (bottom-up)

− at the beginning each object makes a cluster,

− iterate with merging the most similar clusters, typically pairs,

� divisive approach (top-down)

− split the object set into clusters, typically two of them,

− iterate with splitting the clusters,

− more difficult to implement – needs an internal clustering algorithm,

− more efficient than agglomerative, namely when the complete dendrogram not needed,

� needs no prior k, constructs a hierarchy.

� a partition results from a dendrogram cut.
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pHierarchical clustering – cluster distance

� the key point is a generalized cluster distance function

− makes a step from the object distance towards the object set distance,

− originally: d : X × X → R,

− now: δ : 2X × 2X → R,

� elemental δ definitions based on d

− concern two most similar objects (single linkage)

δ(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y),

− concern two most distant objects (complete linkage)

δ(Ci, Cj) = max
x∈Ci,y∈Cj

d(x, y),

− average pair distance (average linkage)

δ(Ci, Cj) = 1
|Ci||Cj |

∑
x∈Ci

∑
y∈Cj

d(x, y),

− distance between cluster centroids (centroid)

δ(Ci, Cj) = d(µi, µj),
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pExample: relation between distance function and clustering outcome

� Ex.: 1 dimensional object set 2, 12, 16, 25, 29, 45.

− the objects can be proportionally positioned on x dendrogram axis,

� different generalized distance functions lead to different dendrograms.

Borgelt: IDA slides
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pDensity-based clustering – motivation, the most well-known algorithm

� a cluster is a high density area,

� clusters separated by low density areas

− objects in these areas typically considered to be noise or border points,

� typical features

− can handle clusters of various sizes and shapes,

− resistant to noise,

− do not need k as the input parameter (other parameters needed),

− it could be difficult to deal with clusters of very different density.

Rakesh Verma: The Data Mining Hypertexbook.
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pDensity-based clustering – motivation, the most well-known algorithm

� DBSCAN algorithm

− inputs: the set of objects, ε . . . the size of neighborhood, minPts . . . the minimum number

of points in a dense region, a distance function,

− for each object in the input set, if the object has not yet been classified

∗ find all its neighbors (the objects that fall in its ε-neighborhood),

∗ if their number ≥ minPts

· the object is a core-object, all the density-reachable objects fall into its cluster,

· the objects are either core-objects too or border-objects,

∗ otherwise label the object as noise.

https://en.wikipedia.org/wiki/DBSCAN; https://stats.stackexchange.com/
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pClustering – summary

� Intuitively comprehensible principle, in many contexts, in many domains

− in general identification of any frequent event co-occurrence in data,

� combinatorially difficult optimization problem

− heuristic solutions, local optimality,

� basic steps

− representation definition,

− distance function selection,

− clustering itself,

− abstract representation of partition,

− evaluation, iteration.

� clustering algorithm quality

− scalability – no of objects, dimensions,

− robustness – noise, outliers, feature types, distance function,

− ability to deal with various cluster shapes.
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pClustering – method categorization

� nonhierarchical methods

− aim to deliver the partition that minimizes an optimization criterion,

− apply a global homogeneity criterion,

− cluster membership can be hard (crisp) as well as probabilistic,

− examples: k-means, EM

� hierarchical methods

− generate a cluster hierarchy

∗ binary tree = dendrogram,

− apply a local cluster similarity criterion,

− agglomerative – bottom-up,

− divisive – top-down, divide and conquer,

− examples: AHC (a general principle).
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pRecommended reading, lecture resources

:: Reading

� Hastie et al.: The Elements of Statistical Learning: DM, Inference and Prediction.

− Springer book.

� Jain et al.: Data Clustering: A Review.

− ACM Computing Surveys,

− http://eprints.library.iisc.ernet.in/273/1/p264-jain.pdf.

� Borgelt: Intelligent Data Analysis.

− slides, a detailed intelligent data analysis course, clustering near the end,

− http://www.borgelt.net/courses.html#ida.
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