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What are the advantages?

You can detect new types of fruit.



Definition of anomaly

Anomaly detection refers to the problem of finding patterns in data
that do not conform to expected behavior1.

An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a

different mechanism2.

1 V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: a survey,
2009
2 D. M. Hawkins, Identification of Outliers, 1980



Formal definition of outliers / anomalies?

Outliers
▶ have different statistical properties,
▶ or they are in low-density regions,
▶ or they are far from majority.

;
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Definition of outliers influences the method.



Formal definition of outliers / anomalies?

Outliers
▶ have different statistical properties,
▶ or they are in low-density regions,
▶ or they are far from majority.

;

Definition of outliers is application dependent.



Types of anomalies

concentrated scattered



Types of anomalies

local global



Taxonomy

▶ supervised vs. unsupervised
▶ model centric vs. data centric



K-nearest neighbor — motivation

Outliers are far from points / they have "empty" neighbourhood.

S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers
from large data sets, 2000



K-nearest neighbor — calculation

1. For sample {xi}Ni=1 calculate its distance to k th nearest
neighbor.

2. Return fraction p of samples as outliers.
Variants differs by calculating score:
▶ mean distance to all,
▶ distance to mass.

S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers
from large data sets, 2000



K-nearest neighbor — example

S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers
from large data sets, 2000



Local outlier factor — motivation

Outliers have low density with respect to its k neighborhood.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying
density-based local outliers, 2000.



Local outlier factor — calculation

1. For every {xi}Ni=1 estimate the local density, ldk(xi ), as an
inverse of average robust distance to k nearest neighbor.

2. Compare density of xi with that of its k nearest neighbors, Pk ,

lof k(xi ) =
1
k ∑

x∈Pk

ldk(x)

ldk(xi )
.

3. The robust distance is calculated as

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying
density-based local outliers, 2000.



Local outlier factor — example

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying
density-based local outliers, 2000.



Angle-based outlier detection — motivation

▶ Angles are more stable than distances in high dimensions.
▶ Object o is an outlier if most other objects are located in

similar directions, it is on the border.
▶ Object o is an inlier if most other objects are located in

varying directions, it is in the middle.

N. Pham, R. Pagh, A Near-linear Time Approximation Algorithm for
Angle-based Outlier Detection in High-dimensional Data, 2012.



Angle-based outlier detection — motivation

abod(xi ) = var
k,l ̸=i

⟨xi −xk ,xi −xj⟩
∥xi −xk∥∥xi −xj∥

.



Angle-based outlier detection

;



Angle-based outlier detection — example



Parzen window estimator — motivation

Estimate probability density and identify points in areas of low
density.

E. Parzen, On Estimation of a Probability Density Function and Mode, 1962



Parzen window estimator — calculation

The density in point x is estimated from training points {xi}Ni=1 as

f (x) =
1
hN

N

∑
i=1

k

(
x−xi
h

)
,

where k is the kernel (e.g. Gaussian kernel k(x) = 1√
2π
e−

x2
2 ).



Parzen window estimator — example

Estimate probability density in each point.

E. Parzen, On Estimation of a Probability Density Function and Mode, 1962



Parametric anomaly detection — motivation

Robustly fit a known distribution and identify points with low
probability.



Parametric anomaly detection

Multivariate Gaussian distribution
▶ Assumes that data follows

x ∼ |Σ|−1(2π)−
d
2 e−(x−µ)TΣ(x−µ)

Mixture of multivariate Gaussian distributions
▶ Assumes that data follows

x ∼
m

∑
j=1

wj |Σj |−1(2π)−
d
2 e−(x−µj )

TΣj (x−µj )



Parametric anomaly detection — example



Flow models

▶ Fits a samples to a normal distribution transformed by a
bijection

▶ p(x) = |f −1(x)|pz(f −1(x)

▶ Masked autoregressive models, flow models

https: // lilianweng. github. io/ posts/ 2018-10-13-flow-models/

https://lilianweng.github.io/posts/2018-10-13-flow-models/


Density level estimation

Find the area of minimal volume, such that α fraction of
probability mass is outside.



Density level estimation

arg min
f ∈F ,λ

Vol(Uf ,λ ) = |{x |f (x)≥ λ}|

subject to ∫
X

f (x)p(x)dx ≥ 1−α

where F is a class of probability density functions defined on H .



One-class support vector machines — motivation

Estimates the support of the probability distribution allowing at
most ν false positive rate.

B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. Smola, R. C. Williamson,
Estimating the support of a high-dimensional distribution, 2001



One-class support vector machines — calculation

training:

arg min
w∈Rd ,ρ

1
2
∥w∥2−ρ +

1
νN

N

∑
i=1

ξi

subject to

⟨w ,xi ⟩ ≥ ρ−ξi

ξi ≥ 0.

classification:

f (x) = ⟨w ,xi ⟩−ρ > 0

Finds the hyper-plane separating the data from the origin with the
highest margin, allowing at most ν misclassified points.



One-class support vector machines — calculation

training:

arg min
w∈Rn,ρ

1
2

n,n

∑
i ,j=1

αiαjk(xi ,xj)−ρ+
1

νN

N

∑
i=1

ξi

subject to

n

∑
j=1

αik(xj ,xi ) ≥ ρ−ξi

ξi ≥ 0.

classification:

f (x) = αik(xj ,x)−ρ > 0

k(xi , .) is a feature map induced by the chosen kernel,
most popular choice is k(x ,x ′) = e−γ∥x−x ′∥2 .



One-class support vector machines — Example



Density detection as classification

▶ Turn the anomaly detection into classification problem.
▶ Classify the normal samples with respect to baseline measure,

the noise.



Density detection as classification



Generative adversarial networks



Principal component analysis

▶ Assumes the data are located on a hyperplane.
▶ Projects data on k-components with most variance, P
▶ Computes the reconstruction error as

∥xTPPT−x∥2



Principal component analysis



(Variational) autoencoder

▶ view h = xTP as an encoder enc(x)
▶ view hPT as an decoder dec(x), then
▶ the reconstruction error ∥dec(enc(x))−x∥2 becomes anomaly

score
▶ enc(x) and dec(x) are arbitrary parametrized functions (neural

networks)
▶ Variational autoencoder adds regularization on latent

DKL(enc(x)∥N(0, I ))



Variational autoencoder



Isolation Forest — motivation

Anomalous points should be close to the root in randomly
constructed tree.

F. T. Liu, K. M. Ting, Z. H. Zhou, Isolation Forest, 2008



Isolation Forest — Example



Isolation Forest — calculation

The anomaly score a sample x is defined as

s(x) = 2−
E(h(x))
c(n) ,

where
▶ h(x) is depth of list containing x

▶ c(n) is the average path length of unsuccessful search in
binary search tree with n items

c(n) = 2H(n−1)−2
n−1
n

▶ H(i)≈ ln(i)+0.5772156649



Frac: Supervised approach to anomaly detection —
motivation

A dependency structure among features is violated for anomalies.

K. Noto, C. Brodley, D. Slonim, FRaC: Feature-modeling approach for
semi-supervised and unsupervised anomaly detection, 2012



Frac: Supervised approach to anomaly detection —
calculation

▶ Build a predictor of each feature xi on rest x∼xi .
▶ Score is proportional to the probability of estimation error

s(x) =
1
d

d

∑
i=1

logpi (xi −oi (x∼i )),

where
▶ pi (e) is the probability of i th- estimator making error e
▶ oi (x∼i ) output of i th estimator of xi from x∼i .



Frac: Supervised approach to anomaly detection —
motivation
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Experimental comparison

Comparing different methods is difficult due to lack of
benchmarking problems.



Experimental comparison

Lower average rank is better.



Anomaly detection on data-streams

▶ Most prior art adapts batch-based algorithms by floating
window or by alternating models.

▶ Some methods assumes continuity of data streams.



Experimental comparison

continuous two histograms
dataset AUC time AUC time
covertype 0.972 4.42 0.989 3.00
http - 3 0.992 7.51 0.994 5.24
http 0.991 8.40 0.993 6.00
shuttle 0.980 0.49 0.994 0.41
smtp 0.970 1.34 0.994 1.06
smtp -3 0.871 1.35 0.886 1.11
smtp + http 0.989 9.65 0.993 7.99



Tips for successful anomaly dataction

▶ Understand the domain:
▶ types of anomalies
▶ rate of anomalies

▶ You will not get away from labelling.



Tips for successful anomaly dataction

▶ Understand the domain:
▶ types of anomalies
▶ rate of anomalies

▶ You will not get away from labelling.



Explaining the anomaly

Explaining why anomaly happened might be an invaluable
information to the analyst.



The main idea

▶ Outliers should be separable in
▶ in few dimensions
▶ with a large margin.

▶ They should be separable by a tree of small height.
▶ Training multiple trees increases robustness.



Explaining the anomaly

Summary of the Explainer algorithm

labels← anomalyDetector(data)
SRF ←{∅}
for all data(labels ==anomaly) do
T ← createTrainingSet(size)
t← trainTree(T )
SRF ← t

end for
extractFeatures(SRF )
extractRules(SRF )



Training the tree

1. Select dimension removing

▶ most normal samples
▶ with highest margin.

2. Repeat until sample is
separated.

3. Path to leaf with
anomalous sample
indicates separating
features.
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Extracting the features

▶ To increase robustness, train multiple trees.
▶ Each tree provides set of features.
▶ Pick the most frequent ones.

Min provides explanation using the minimal set of features.
Max returns all features in which the anomaly can be

detected.



Example of explanation
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Features provided by the explainer
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Summary

▶ Anomaly / outlier detection is not a magic bullet.
▶ Know strength and weaknesses of algorithm you chose.
▶ Learn about domain (type of anomalies).
▶ Anomalies might not be anomalies of interest.
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