B4M36SAN Dimensionality reduction

Anh Vu Le & Jan Blaha

Outline

- PCA
 - motivational example (*BreastCancer* dataset)
 - PCA principles with an artificial dataset
 - BreastCancer dataset revisited
- PCA vs LDA

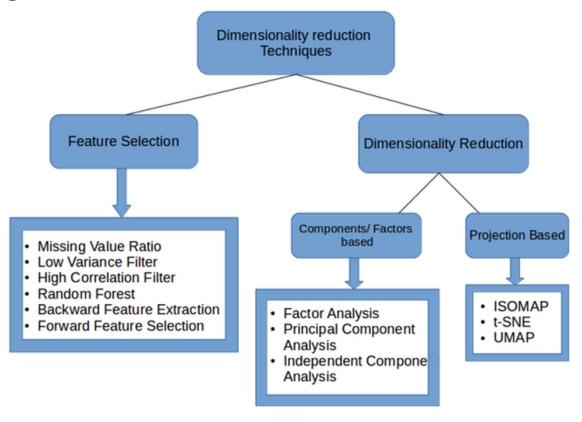
- tSNE
 - gentle introduction

Dimensionality reduction principles

- Benefits of reducing dimensionality
 - faster and often more accurate learning of classifiers
 - removing redundancy
 - visualization

Dimensionality reduction principles

- Benefits of reducing dimensionality
 - faster and often more accurate learning of classifiers
 - removing redundancy
 - visualization

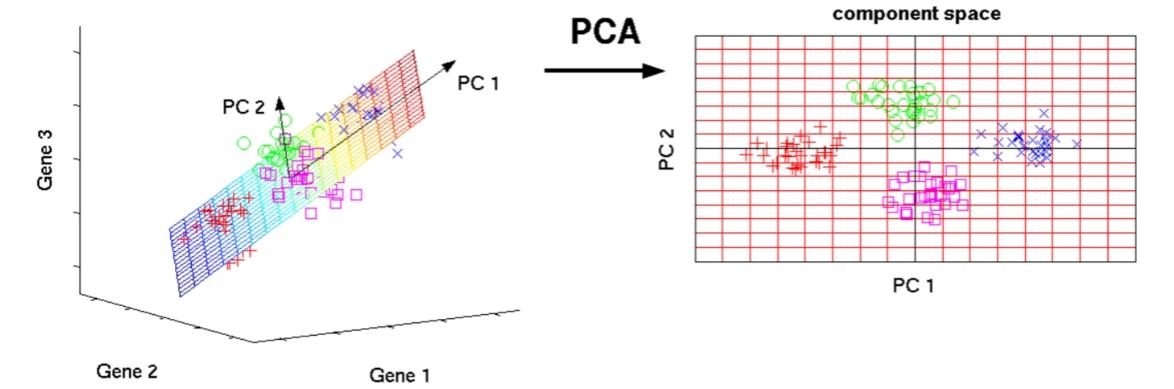


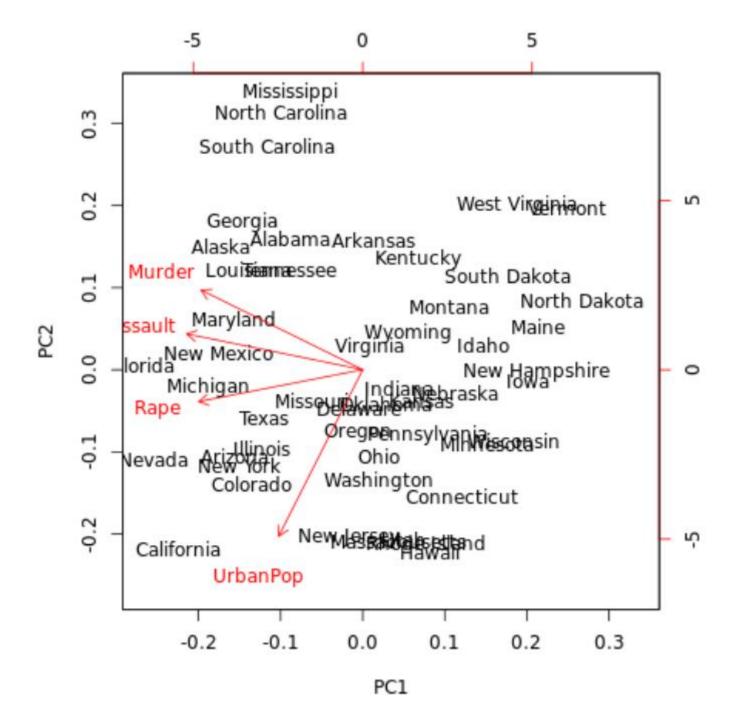
Dimensionality reduction principles

- Benefits of reducing dimensionality
 - faster and often more accurate learning of classifiers
 - removing redundancy
 - visualization
- Cost of reducing dimensionality
 - information loss
 - new axes may be difficult to interpret

Math score	English score	Age
3.5	3.7	17
4.0	3.2	18
2.3	2.1	18
2.0	3.9	17
1.0	2.9	18

original data space





PCA

LDA

max scatter of the **entire data set**

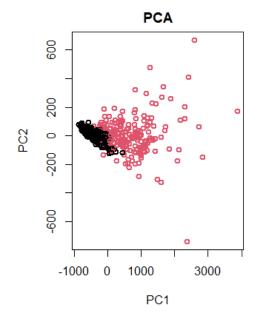
Finds axes/directions of:

max scatter **between**AND
min scatter **within** classes

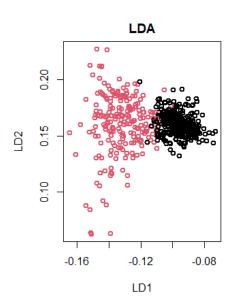
Cov(X)

Eigenproblem leading to the new axes

$$S_w^{-1}S_B$$



Projection (*BreastCancer*)



t-SNE

- PCA focuses on data as whole
 - "Makro" method
 - cannot capture finer details of the topology of the data

Project into a lower dimension while preserving neighborhood relationships

• t-SNE, ISOMAP

