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Plan 

Online learning and prediction 

single agent learns to select the best action 

Learning in normal form games 

the same algorithms used by multiple agents 

Learning in extensive form games 

generalizing these ideas to sequential games 

DeepStack 
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Introduction 

How may simple learning agents achieve equilibrium outcomes? 

 

Best Response Dynamics (Fictitious play) 

best response to average empirical play 

needs to know the game 

No-Regret Dynamics 

each player uses no-regret algorithm 

may now only their own actions and received rewards 
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Best response dynamics 

Fictitious play 

Players maintain empirical distribution of past opponent’s actions 

 
𝜎 −𝑖

𝑇 =
1

T
 𝜎−𝑖

𝑡

𝑇

𝑡=1

                            

In each round, each player plays BR to these distributions 

 
𝜎𝑖

𝑡 = arg max
𝑎𝑖∈𝐴𝑖

𝑈𝑖(𝑎𝑖, 𝜎 −𝑖
𝑡 ) 
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(often in form of frequencies 𝜂𝑖
𝑇) 



Result of FP in case of convergence 

Theorem: If the empirical action frequencies of fictitious play 

converge (𝜎 𝑡  → 𝜎∗) they converge to the Nash equilibrium of the 

game. 

Proof: For contradiction assume 𝜎∗ is not a NE. 

Then there exists player 𝑖 and actions 𝑎𝑖 , 𝑎𝑖
′ ∈ 𝐴𝑖  𝜎

∗(𝑎𝑖) > 0, 

such that 𝑈𝑖 𝑎𝑖
′, 𝜎−𝑖

∗ > 𝑈𝑖 𝑎𝑖 , 𝜎−𝑖
∗ . 

Choose 𝜖, such that 0 < 𝜖 <
1

2
(𝑈𝑖 𝑎𝑖

′, 𝜎−𝑖
∗ − 𝑈𝑖 𝑎𝑖 , 𝜎−𝑖

∗ ). 

Since (𝜎 𝑡  → 𝜎∗), there is 𝑇,such that for all 𝑡 > 𝑇  
∀𝑎−𝑖 ∈ 𝐴−𝑖  ∶   |𝜎 −𝑖

𝑡 (𝑎−𝑖)  − 𝜎−𝑖
∗ (𝑎−𝑖)| < 𝜖. 

For all 𝑡 > 𝑇, we have 𝑈𝑖 𝑎𝑖 , 𝜎 −𝑖
𝑡 =  𝑈𝑖 𝑎𝑖 , 𝑎−𝑖𝑎−𝑖

𝜎 −𝑖
𝑡 𝑎−𝑖 ≤

 𝑈𝑖 𝑎𝑖 , 𝑎−𝑖𝑎−𝑖
𝜎−𝑖

∗ 𝑎−𝑖 + 𝜖 <  𝑈𝑖 𝑎′𝑖 , 𝑎−𝑖𝑎−𝑖
𝜎−𝑖

∗ 𝑎−𝑖 − 𝜖 ≤
 𝑈𝑖 𝑎𝑖 , 𝑎−𝑖𝑎−𝑖

𝜎 −𝑖
𝑡 𝑎−𝑖 = 𝑈𝑖 𝑎′𝑖 , 𝜎 −𝑖

𝑡 .  

Hence 𝑎𝑖 is not played after T, which contradicts 𝜎∗(𝑎𝑖) > 0. 7 



Convergence of FP 

Theorem: The empirical frequencies of FP converge to NE in 

constant-sum games 

two player games where each player has up to two actions 

games solvable by iterated strict dominance 

identical interest games 

potential games 
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Why it may not converge? 

Shapley’s example in a modified rock-paper-scissors: 

 

 

 

Unique NE is the uniform strategy for both players. 

Let 𝜂1
0 = (1,0,0) and 𝜂2

0 = 0,1,0 . 

Play may be (P,R),(P,R)… for 𝑘 steps until column switches to S. 

Then (P,S) follows until row switches to R (for 𝛽𝑘 steps, 𝛽 > 1). 

Then (R,S) follows until column switches to P (for 𝛽2𝑘 steps). 

The play cycles among all 6 non-diagonal profiles with periods of ever-

increasing length, hence, the empirical frequencies cannot converge. 
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R S P 

R 0, 0 1, 0 0, 1 

S 0, 1 0, 0 1, 0 

P 1, 0 0, 1 0, 0 



Convergence of FP 

Theorem (Brandt, Fischer, Harrenstein, 2010): In symmetric 

two-player constant-sum games, FP may require exponentially 

many rounds (in the size of the representation of the game) 

before an equilibrium action is eventually played. This holds 

even for games solvable via iterated strict dominance. 

Proof: 

 

 

With 𝜖 = 2−𝑘, FP may take 2𝑘 rounds to play the equilibrium 

action 𝑐 for the first time. 

(a,a),(b,b),…,(b,b) 
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a b c 

a 0 -1 -𝜖 

b 1 0 -𝜖 

c 𝜖 𝜖 0 

2𝑘 − 1  times 



No-Regret Learning Summary 

Immediate regret at time 𝑡 for not choosing action 𝑖 

    𝑟𝑡 𝑖 = 𝑢𝑡 𝑖 − 𝜎𝑡 ⋅ 𝑢𝑡 

Cumulative external regret for playing 𝜎0, 𝜎1 …𝜎𝑇 

    𝑅𝑇 = 𝑚𝑎𝑥𝑖∈𝐴  𝑟𝑡(𝑖)𝑇
𝑡=0 = 𝑚𝑎𝑥𝑖∈𝐴  𝑢𝑡(𝑖)𝑇

𝑡=0 −  𝜎𝑡 ⋅ 𝑢𝑡𝑇
𝑡=0  

Average external regret for playing 𝜎0, 𝜎1 …𝜎𝑇 

  𝑟 𝑇 =
1

𝑇
𝑅𝑇 

 

An algorithm has no regret if for any 𝑢0, 𝑢1 …𝑢𝑇produces 𝜎0, 𝜎1 …𝜎𝑇 

such that 𝑟 𝑇 → 0 as 𝑇 → ∞. 
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From External to Swap Regret 

Cumulative swap regret for playing 𝜎0, 𝜎1 …𝜎𝑇 

    𝑅𝑇 = 𝑚𝑎𝑥𝛿:𝐴→𝐴   𝜎𝑡 𝑖 (𝑢𝑡 𝛿(𝑖) − 𝑢𝑡(𝑖))𝑖∈𝐴  𝑇
𝑡=0  
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From External to Swap Regret 

Theorem (Blum & Mansour 2007):If there is a no-external-regret 

algorithm for a setting, there is also a no-swap-regret algorithm.  

Proof: Polynomial black-box reduction. 
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𝑢𝑡 

𝑢𝑡 

𝑢𝑡 

𝑢𝑡 



From External to Swap Regret 

Proof: Average expected reward of the overall algorithm 

 1

𝑇
  𝑝𝑡 𝑖

𝑛

𝑖=1

𝑢𝑡(𝑖)

𝑇

𝑡=1

 

Algorithm 𝑀𝑗 choses 𝑞𝑗
1, … , 𝑞𝑗

𝑇 and gets 𝑝1 𝑗 𝑢1, … , 𝑝𝑇 𝑗 𝑢𝑇. Thus 

 
 ∀𝑘 ∈ 𝐴: 

1

𝑇
  𝑞𝑗

𝑡 𝑖  (𝑝𝑡 𝑗

𝑛

𝑖=1

𝑢𝑡 𝑖

𝑇

𝑡=1

) ≥
1

𝑇
 𝑝𝑡 𝑗 𝑢𝑡 𝑘

𝑇

𝑡=1

− 𝑟 j 

Fix an arbitrary 𝛿: 𝐴 → 𝐴 and sum over all 𝑗 ∈ 𝐴: 

 1

𝑇
   𝑞𝑗

𝑡 𝑖 𝑝𝑡 𝑗  𝑢𝑡 𝑖

𝑛

𝑗=1

𝑛

𝑖=1

𝑇

𝑡=1

≥
1

𝑇
  𝑝𝑡 𝑗 𝑢𝑡 𝛿 𝑗

𝑛

𝑗=1

𝑇

𝑡=1

−  𝑟 𝑗

𝑛

𝑗=1

 

15 



From External to Swap Regret 

We are done if we ensure 

 
𝑝𝑡 𝑖 =  𝑞𝑗

𝑡 𝑖 𝑝𝑡(𝑗)

𝑛

𝑗=1

 

This is true if 𝑝𝑡 is the eigenvector of matrix given by 𝑞𝑗
𝑡 for 𝜆 = 1. 

Equivalently, 𝑝𝑡 are the stationary distribution of Markov chain. 

Such vector 𝑝𝑡 always exists and can be easily found!  
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From External to Swap Regret 

Corollary: Let 𝑟𝑀 𝑡 → 0 be the external regret convergence 

bound for a base algorithm used in the black-box reduction with 

𝐴  actions. Than the swap regret of the overall algorithm is 

𝑟𝑠𝑤 𝑇 ≤ 𝐴 𝑟𝑀 𝑇 . 

Corollary: The black-box reduction with Hedge for all actions 
produces an algorithm with 𝑟𝑠𝑤 𝑇 ≤ 2 𝐴 ln |𝐴| /𝑇. 
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No-Regret Dynamics – full information 

Definition: 

1) Each player 𝑖 choses independently a mixed strategy 𝜎𝑖
𝑡 using 

a no-regret algorithm. 

2) Each player receives for all 𝑎𝑖 ∈ 𝐴𝑖 rewards  
𝑢𝑖

𝑡 𝑎𝑖 = 𝐄𝑎−𝑖~𝜎−𝑖
[𝑈 𝑎𝑖 , 𝑎−𝑖 ] 
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No-Regret Dynamics – full information 

Theorem: If after T iterations of no-regret dynamics each player 
has external regret lower then 𝜖 than 𝜎 =

1

𝑇
 𝜎𝑡𝑇

𝑡 , where 

𝜎𝑡 =  𝜎𝑖
𝑡𝑘

𝑖=1 , is an 𝜖-coarse correlated equilibrium of the game. 

I.e., for any 𝑎𝑖
′ ∈ 𝐴𝑖 

𝐄𝑎~𝜎 𝑈𝑖 𝑎 ≥ 𝐄𝑎~𝜎 𝑈𝑖 𝑎𝑖
′, 𝑎−𝑖 − 𝜖 

Corollary: If we run Hedge in a game with less than |𝐴| actions 

for each player for 𝑇 iterations, the resulting average strategy is 
an ( 𝑙𝑛(|𝐴|)/𝑇)-coarse correlated equilibrium of the game. 

Corollary: If we run regret matching+ in a game with less than 

|𝐴| actions for each player for 𝑇 iterations, the resulting average 
strategy is an ( |𝐴|/𝑇)-coarse correlated equilibrium of the 

game. 
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Minimax Theorem 

Note: In zero-sum games, coarse correlated equilibria are Nash. 

Theorem (Minimax Theorem): For any matrix game 𝐺 

 
max

𝑥
min
𝑦

𝑥𝑇𝐺𝑦 = min
𝑦

max
𝑥

𝑥𝑇𝐺𝑦 

Proof: For contradiction assume that for some 𝛼 > 0 

 
max

𝑥
min
𝑦

𝑥𝑇𝐺𝑦 < min
𝑦

max
𝑥

𝑥𝑇𝐺𝑦 − 𝛼 . 

Set 𝜖 =
𝛼

2
 and let both players run Hedge for time 𝜏 = 2 ln 𝑛 /𝜖2. 

Let 𝑥 , 𝑦  be the empirical frequencies of their play and 𝑣 the 

average reward of the maximizer. 
max

𝑥
min
𝑦

𝑥𝑇𝐺𝑦 ≥ min
𝑦

𝑥 𝑇𝐺𝑦 ≥ 𝑣 − 𝜖 ≥ max
𝑥

𝑥𝑇𝐺𝑦 − 2𝜖 ≥ min
𝑦

max
𝑥

𝑥𝑇𝐺𝑦 − 𝛼 
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No-Regret Dynamics 

Theorem: If after T iterations of no-regret dynamics each player 
has swap regret lower then 𝜖 than 𝜎 =

1

𝑇
 𝜎𝑡𝑇

𝑡 , where 𝜎𝑡 =

 𝜎𝑖
𝑡𝑘

𝑖=1 , is an 𝜖-correlated equilibrium of the game. I.e., for any 

player 𝑖 and switching function 𝛿: 𝐴 → 𝐴 
𝐄𝑎~𝜎 𝑈𝑖 𝑎 ≥ 𝐄𝑎~𝜎 𝑈𝑖 𝛿(𝑎𝑖), 𝑎−𝑖 − 𝜖 
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No-Regret Dynamics – bandit case 

Definition: 

1) Each player 𝑖 choses independently a mixed strategy 𝜎𝑖
𝑡 using 

a no-regret algorithm and independently samples 𝑎𝑖~𝜎𝑖
𝑡. 

2) Each player receives single reward 𝑢𝑖
𝑡 𝑎𝑖 = 𝑈 𝑎𝑖 , 𝑎−𝑖  
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No-Regret Dynamics – bandit case 

Theorem: For any 𝑝 ∈ 0,1  there are parameters for Exp3.P, 

such that if both players use Exp3.P to choose their actions for 𝑇 
time steps then 𝜎 =

1

𝑇
 𝜎𝑡𝑇

𝑡 , where 𝜎𝑡 =  𝜎𝑖
𝑡𝑘

𝑖=1 , is an 𝜖-coarse 

correlated equilibrium of the game with probability at least 𝑝 and 

 
𝜖 = 5.15

𝐴

𝑇
 ln

𝐴

1 − 𝑝
. 

Proof sketch: It is enough to run Exp3.P for long enough so that 

both players have regret lower then 𝜖 at once with high 

probability. It can be achieved by using Exp3.P convergence 
bound with 𝛿 = 1 − 𝑝. 
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