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Plan 

Online learning and prediction 

single agent learns to select the best action 

Learning in normal form games 

the same algorithms used by multiple agents 

Learning in extensive form games 

generalizing these ideas to sequential games 

DeepStack 
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Introduction 

Online learning and prediction 

learning from data that become available in sequence 

adapting prediction (behavior) after each data point 

optimizing overall precision (not only after all data arrive) 

Applications 

investing in best fond 

web advertisements 

selecting the best (e.g., page replacement) algorithm 
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Introduction 

Why do we care about online learning in games? 

repeated play against an unknown opponent 

(repeated) play of an unknown game 

understanding how equilibria may occur in real world 

computationally efficient equilibrum approximation algorithms 
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𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2 

… 

𝜎𝑇 𝑢𝑇 

𝑎1 0.2 0 0.1 1 0.3 0 

𝑎2 0.5 0.5 0.4 0.5 0.3 1 

𝑎3 0.3 1 0.5 0 0.4 0 

𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇 

Prediction with expert advice 
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Problem definition 

Set of 𝑛 actions (experts)  𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} 
Set of time steps  𝑡 = 1,2, … , 𝑇  

In each step 

Decision-maker selects a mixed strategy 𝜎𝑡 
An adversary selects rewards  𝑢𝑡: 𝐴 → [0,1]  (adaptive vs oblivious) 

Action at ∈ 𝐴 is selected based on 𝜎𝑡 
The decision-maker receives reward 𝑢𝑡(𝑎𝑡)  (learns the whole 𝑢𝑡) 



𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2 

… 

𝜎𝑇 𝑢𝑇 

𝑎1 0.2 0 0.1 1 0.3 0 

𝑎2 0.5 0.5 0.4 0.5 0.3 1 

𝑎3 0.3 1 0.5 0 0.4 0 

𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇 

External Regret 
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Goal: play as well as the best expert 

Immediate regret at time 𝑡 for not choosing action 𝑖 
    𝑟𝑡 𝑖 = 𝑢𝑡 𝑖 − 𝑥𝑡 
Cumulative external regret for playing 𝜎0, 𝜎1…𝜎𝑇 

    𝑅𝑇 = 𝑚𝑎𝑥𝑖∈𝐴 𝑟𝑡(𝑖)𝑇
𝑡=0 = 𝑚𝑎𝑥𝑖∈𝐴 𝑢𝑡(𝑖)𝑇

𝑡=0 −  𝑥𝑡 𝑇
𝑡=0  

Average external regret for playing 𝜎0, 𝜎1…𝜎𝑇 

    𝑟 𝑇 =
1

𝑇
𝑅𝑇 



𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2 

… 

𝜎𝑇 𝑢𝑇 

𝑎1 0.2 0 0.1 1 0.3 0 

𝑎2 0.5 0.5 0.4 0.5 0.3 1 

𝑎3 0.3 1 0.5 0 0.4 0 

𝜎𝑡 ⋅ 𝑢𝑡 𝑥0 = 0.55 𝑥1 = 0.3 𝑥2 = 0.3 𝑥𝑇 

Swap Regret 
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Goal: minimize regret for not playing a 𝛿 𝑎  instead of 𝑎 for some 𝛿: 𝐴 → 𝐴 

Cumulative swap regret for playing 𝜎0, 𝜎1…𝜎𝑇 

    𝑅𝑇 = 𝑚𝑎𝑥𝛿   𝜎𝑡 𝑖 (𝑢𝑡 𝛿(𝑖) − 𝑢𝑡(𝑖))𝑖∈𝐴  𝑇
𝑡=0  

 

Internal regret 

    allows switching only all occurrences of 𝑎𝑖 by 𝑎𝑗 

External ⊂ Swap, Internal ⊂ Swap 



No-regret algorithms 

An algorithm has no regret if for any 𝑢0, 𝑢1…𝑢𝑇produces 
𝜎0, 𝜎1…𝜎𝑇 such that 𝑟 𝑇 → 0 as 𝑇 → ∞. 
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Why not simply to maximize reward? 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑥𝑡
𝑇

𝑡=0

 

 

The adversary may choose ∀𝑖 ∈ 𝐴 ,  𝑢𝑡 𝑖 = 0 and we have minimal 

reward regardless of the used algorithm.  

 

Any algorithm has (optimal) 0 regret. 
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Regret towards best strategy in hindsight  

𝑅𝑏𝑒𝑠𝑡
𝑇 = 𝑚𝑎𝑥𝑖∈𝐴 𝑢

𝑡(𝑖)

𝑇

𝑡=0

−  𝑥𝑡
𝑇

𝑡=0

 

Proposition: There is no algorithm with no regret towards the 

best sequence of choices. 

Proof: Let 𝐴 = {𝑈, 𝐷}. For an arbitrary sequence of strategies 𝜎𝑡, 
choose a reward vector 𝑢𝑡 = 0,1  if  𝜎𝑡 𝑈 ≥

1

2
 and 𝑢𝑡 = 1,0  

otherwise. 

The cumulative reward of the algorithm  𝑥𝑡𝑇
𝑡=0 ≤

𝑇

2
, while the best 

strategy in hindsight has reward  𝑚𝑎𝑥𝑖∈𝐴 𝑢
𝑡(𝑖)𝑇

𝑡=0 = 𝑇. Therefore 

 𝑅𝑏𝑒𝑠𝑡
𝑇 ≥

𝑇

2
 and 𝑟 𝑏𝑒𝑠𝑡

𝑇 → 𝑧 ≥
1

2
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Regret of deterministic algorithms 

Proposition: There is no deterministic no-external-regret 

algorithm. 

Proof: We assume that the adversary selects rewards 𝑢𝑡 
knowing strategy 𝜎𝑡 . (For example, it can simulate the 

deterministic algorithm from the beginning.) Therefore, with 

𝑛 = 2, he can always give reward 0 for the selected action and 1 

for the other action. One of the action got reward 1 at least 𝑇/2 
times, therefore 𝑟 𝑡 ≥

1

2
. 
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Lower bound on external regret 

Theorem:No (randomized) algorithm over 𝑛 actions has 
expected external regret vanishing faster than Θ( ln (𝑛)/𝑇).  

Proof sketch: Assume n=2. Consider an adversary that, 

independently on each step t, chooses uniformly at random 

between the cost vectors (1, 0) and (0, 1) regardless of the 

decision-making algorithm. The cumulative expected reward is 

exactly 𝑇/2. In hindsight, however, with constant probability one 

of the two fixed actions has cumulative reward T/2 + Θ( 𝑇). The 

reason is that T fair coin flips have standard deviation Θ( 𝑇). 
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Lower bound on external regret 

Theorem: There exist no-regret algorithms with expected 
external regret 𝑂( ln 𝑛 /𝑇). 

Proof: We will show Randomized Weighted Majority algorithm. 

 

Corollary: There exists a decision-making algorithm that, for 

every 𝜖 > 0, has expected regret less than 𝜖 after 𝑂(ln 𝑛 /𝜖2) 
iterations. 
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Randomized Weighted Majority 

Aka Hedge or multiplicative weights (MW) algorithm. It is easier 

to analyze in costs 𝑐 𝑖 = (1 − 𝑢 𝑖 ). The algorithm maintains 

weights 𝑤(𝑖) for each action 𝑖 ∈ 𝐴. 

 

Initialize 𝑤1 𝑖 = 1 for every 𝑖 ∈ 𝐴 

For each time 𝑡 = 1,2,… , 𝑇 

Let 𝑊𝑡 =  𝑤𝑡(𝑖)𝑖∈𝐴  and play 𝜎𝑡(𝑖) = 𝑤𝑡(𝑖)/𝑊𝑡 

Given costs 𝑐𝑡, set 𝑤𝑡+1 𝑖 = 𝑤𝑡 𝑖 1 − 𝛾 𝑐𝑡(𝑖) for each 𝑖 ∈ 𝐴 

(Equivalently 𝑤𝑡+1 𝑖 = 𝑤𝑡 𝑖 𝑒−𝜂𝑐
𝑡(𝑖) for 𝜂 = −ln (1 − 𝛾) ) 
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Hedge Regret Bound 

Theorem: Expected external regret of Hedge is 𝑟 𝑇 < 2 𝑙𝑛(𝑛)/𝑇 

Proof: W.L.O.G. we assume oblivious adversary. 

Let 𝑂𝑃𝑇 = min
𝑖∈𝐴

 𝑐𝑡(𝑖)𝑇
𝑡=1  be the cost for optimal action 𝑖∗ and 

 𝜈𝑡 =  𝜎𝑡 𝑖 𝑐𝑡 𝑖 =𝑖∈𝐴  
𝑤𝑡 𝑖

𝑊𝑡  𝑐
𝑡 𝑖𝑖∈𝐴  be the algorithms cost at 𝑡. 

 𝑊𝑇 ≥ 𝑤𝑇 𝑖∗ = 𝑤1 𝑖∗  1 − 𝛾 𝑐𝑡 𝑖∗𝑇
𝑡=1 = 1 − 𝛾 𝑂𝑃𝑇  

 𝑊𝑡+1 =  𝑤𝑡+1 𝑖 =𝑖∈𝐴  𝑤𝑡 𝑖 1 − 𝛾 𝑐𝑡(𝑖)
𝑖∈𝐴  

 ≤  𝑤𝑡 𝑖 1 − 𝛾𝑐𝑡 𝑖𝑖∈𝐴 = 𝑊𝑡(1 − 𝛾𝜈𝑡) 

 1 − 𝛾 𝑂𝑃𝑇 ≤ 𝑊𝑇 ≤ 𝑊1 1 − 𝛾𝜈𝑡𝑇
𝑡=1  

 𝑂𝑃𝑇 ln 1 − 𝛾 ≤ ln 𝑛 +  ln (1 − 𝛾𝜈𝑡)𝑇
𝑡=1  

…  𝜈𝑡𝑇
𝑡 ≤ 𝑂𝑃𝑇 + 𝛾𝑇 +

ln 𝑛

𝛾
   => 

1

T
 𝜈𝑡𝑇
𝑡 ≤

𝑂𝑃𝑇

𝑇
+ 2

ln 𝑛

𝑇
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Hedge Implementation Tricks 

Weights 𝑤𝑡(𝑖) may quickly become very small.  

We can instead store cumulative cost 𝐶𝑡 𝑖 =  𝑐𝜏(𝑖)𝑡
𝜏=1 . 

Than 𝑤𝑡 𝑖 = 1 − 𝛾 𝐶𝑡(𝑖) 

and 𝜎𝑡 𝑖 =
𝑤𝑡 𝑖

 𝑤𝑡 𝑗𝑗∈𝐴
=

1

1+ 1−𝛾 (𝐶𝑡 𝑗 −𝐶𝑡(𝑖))
𝑗≠𝑖

 

We can see that 𝜎𝑡 𝑖  depends only on differences between 

𝐶𝑡(𝑖), therefore we can use 𝐶𝑡 𝑖 − 𝐾 for any constant 𝐾. 
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Regret Matching 

The algorithm maintains cummulative regrets R(𝑖) for each 

action 𝑖 ∈ 𝐴. 

 

Initialize 𝑅1 𝑖 = 0 for every 𝑖 ∈ 𝐴 

For each time 𝑡 = 1,2,… , 𝑇 

Let S𝑡 =  max(0, 𝑅𝑡(𝑖))𝑖∈𝐴  and play 𝜎𝑡(𝑖) = max(0, 𝑅𝑡(𝑖))/S𝑡 

Given rewards 𝑢𝑡, for each 𝑖 ∈ 𝐴 set  

 𝑅𝑡+1 𝑖 = 𝑅𝑡 𝑖 + 𝑟𝑡(𝑖) = 𝑅𝑡 𝑖 + (𝑢𝑡 𝑖 − 𝜎𝑡 𝑗 𝑢𝑡(𝑗))

𝑗∈𝐴
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Regret Matching+ 

The algorithm maintains cumulative regrets-like values Q(𝑖) for 

each action 𝑖 ∈ 𝐴. 

 

Initialize 𝑄1 𝑖 = 0 for every 𝑖 ∈ 𝐴 

For each time 𝑡 = 1,2,… , 𝑇 

Play 𝜎𝑡(𝑖) = 𝑄𝑡(𝑖)/ 𝑄𝑡(𝑗)𝑗∈𝐴  

Given rewards 𝑢𝑡, for each 𝑖 ∈ 𝐴 set  

 𝑄𝑡+1 𝑖 = max(0, 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 ) = max(0, 𝑢𝑡 𝑖 − 𝜎𝑡 𝑗 𝑢𝑡(𝑗))

𝑗∈𝐴

 

19 



RM+ Regret Bound 

Lemma: Regret-like values 𝑄𝑡 𝑖  are an upper bound on 𝑅𝑡 𝑖 . 

Proof: 𝑄𝑡+1 𝑖 − 𝑄𝑡 𝑖 = max 0, 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 − 𝑄𝑡 𝑖  
≥ 𝑄𝑡 𝑖 + 𝑟𝑡 𝑖 − 𝑄𝑡 𝑖 = 𝑟𝑡(𝑖) 

Lemma: For any 𝑖 and value functions 𝑄𝑇 𝑖 ≤ 𝑛𝑇. 

Proof: max
𝑖∈A 

𝑄𝑇 𝑖
2
= max

𝑖∈A 
𝑄𝑇 𝑖 2 ≤  𝑄𝑇 𝑖 2

𝑖∈𝐴 = 

 =  max(0, 𝑄𝑇−1 𝑖 + 𝑢𝑇(𝑖) −  𝜎𝑇 𝑗 𝑢𝑇 𝑗𝑗∈𝐴 )2𝑖∈𝐴  

 … ≤  𝑄𝑇−1 𝑖 2 + 𝑛𝑖  

By induction 𝑄𝑇 𝑖 2 ≤ 𝑛𝑇. 
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𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2 

… 

𝜎𝑇 𝑢𝑇 

𝑎1 0.2 0 0.1 1 0.3 0 

𝑎2 0.5 0.5 0.4 0.5 0.3 1 

𝑎3 0.3 1 0.5 0 0.4 0 

Adversarial Multi-Armed Bandit Problem 
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Problem definition 

Set of 𝑛 actions (experts)  𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} 
Set of time steps  𝑡 = 1,2, … , 𝑇  

In each step 

Decision-maker selects a mixed strategy 𝜎𝑡 
An adversary selects rewards  𝑢𝑡: 𝐴 → [0,1]  (adaptive vs oblivious) 

Action at ∈ 𝐴 is selected based on 𝜎𝑡 
The decision-maker receives reward 𝑢𝑡(𝑎𝑡)  (learns only 𝑢𝑡(𝑎𝑡)) 

0.5 

0 



Adversarial MAB 

Goal is to minimize regret as before. 

The problem is harder than prediction with expert advice 

No deterministic strategy has no regret 

No algorithm has regret below Θ( ln(𝑛) /𝑇) 
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Importance Sampling Trick 

How to estimate 𝑈𝑇(𝑖) =  𝑢𝑡(𝑖)𝑇
𝑡=1  from limited observations? 

After choosing 𝑖𝑡, update 𝑈 𝑡(𝑖) +=
𝑢𝑡 𝑖

𝜎𝑡(𝑖)
 and 𝑈 𝑡(𝑗) += 0 for 𝑗 ≠ 𝑖.  

 𝐄𝑈 𝑇 𝑖 =  𝜎𝑡 𝑖𝑇
𝑡=1

𝑢𝑡 𝑖

𝜎𝑡(𝑖)
+ 1 − 𝜎𝑡 𝑖 0 =  𝑢𝑡 𝑖𝑇

𝑡=1 = 𝑈𝑇(𝑖)  
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𝜎0 𝑢0 𝜎1 𝑢1 𝜎2 𝑢2 

… 

𝜎𝑇 𝑢𝑇 

𝑎1 0.2 0 0.1 1 0.3 0 

𝑎2 0.5 0.5 0.4 0.5 0.3 1 

𝑎3 0.3 1 0.5 0 0.4 0 



Exp3 

Exponential weights for Exploration and Exploitation. 

 

It is easier to analyze in costs 𝑐 𝑖 = (1 − 𝑢 𝑖 ). The algorithm 

maintains estimates of cumulative loss C(𝑖) for each action 𝑖 ∈ 𝐴. 

 

Initialize 𝐶1 𝑖 = 0 for every 𝑖 ∈ 𝐴 

For each time 𝑡 = 1,2,… , 𝑇 

Let 𝜎𝑡(𝑖) = 1 − 𝛾 𝐶𝑡 𝑖 / 1 − 𝛾 𝐶𝑡(𝑗)
𝑗∈𝐴  

Play action 𝑖𝑡 from distribution 𝜎𝑡, receive cost  𝑐𝑡(𝑖𝑡) 

Update 𝐶𝑡 𝑖𝑡 += 𝑐𝑡(𝑖𝑡)/𝜎𝑡(𝑖𝑡) 
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Expected Regret and Pseudo-regret 

Expected external regret 

 
𝐄𝑅𝑇 = 𝐄 max 

b∈𝐴
 𝑢𝑡 𝑏 − 𝑢𝑡(𝑖𝑡)

𝑇

𝑡=1

  

Pseudo-regret 

 
𝑅 𝑇 = max 

b∈𝐴
𝐄 𝑢𝑡 𝑏 − 𝐄 𝑢𝑡(𝑖𝑡)

𝑇

𝑡=1

𝑇

𝑡=1

 

Observation:  𝑅 𝑇 ≤ 𝐄𝑅𝑇 
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Exp3 Regret Bounds 

Theorem: For Exp3 run with a suitable 𝛾 holds 𝑅 𝑇 ≤ 2𝑇𝑛 ln 𝑛. 
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Exp3.P 

 

Initialize 𝐺1 𝑖 = 0 for every 𝑖 ∈ 𝐴 

For each time 𝑡 = 1,2,… , 𝑇 

 
Let 𝜎𝑡 𝑖 = 1 − 𝛼

1−𝛾 𝐺𝑡 𝑖

 1−𝛾 𝐺𝑡 𝑗
𝑗∈𝐴

+
𝛼

𝑛
  

 

Play action 𝑖𝑡 from distribution 𝜎𝑡, receive reward  = 𝑢𝑡(𝑖𝑡) 

 

Update 𝐺𝑡 𝑖𝑡 +=
𝑢𝑡 𝑖𝑡 +𝛽

𝜎𝑡 𝑖𝑡
  and 𝐺𝑡 𝑗 +=

𝛽

𝜎𝑡 𝑗
 for 𝑗 ≠ 𝑖𝑡 
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Exp3.P Regret Bound 

Theorem: For any 𝛿 ∈ 0,1  there are 𝛾, 𝛼, 𝛽 such that with 

probability at least 1 − 𝛿 , 

 
𝑅𝑇 ≤ 5.15 𝑇𝑛 ln

𝑛

𝛿
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Summary 

It is possible to perform as well as taking the best action in the 

limit very tiny amount of information about the problem. 
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