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Aperitif: Can you solve this zero-sum game over [0, 1]?
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u1(x , y) = min {|x − y |, 1− |x − y |}

S1 = S2 = [0, 1]

u1(x , y) + u2(x , y) = 0
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Using the reflection symmetry

u1(x , y) = g(x − y)

u1(x , y) = u1(1− x , 1− y)

Every optimal strategy must also be

reflection-invariant ⇒ uniform distribution

Uniform distributions are optimal

Since the support of uniform distribution

is [0, 1], it suffices to check that every

x ∈ [0, 1] is a best response:

1

∫
0
u1(x , y) dy =

1

∫
0
g(t) dt = 1

4



General strategic games

Definition

• Player set N = {1, . . . , n}
• Strategy set Si , ∀i ∈ N

• Utility function ui : S → R, ∀i ∈ N, where S = S1 × · · · × Sn

Strategic game is a tuple (N, (Si )i∈N , (ui )i∈N).

First questions

1. Applications?

2. What is the concept of mixed strategy?

3. Existence of Nash equilibria?

4. Computing Nash equilibria?



First answers, briefly

1. Strategic situations in which agents decide about a quantity, timing,

position, or real-valued parameters of some system:

• Economic market, Cournot duopoly competition

• Games of timing–duels

• Position games

• Adversarial machine learning games

2. Mixed strategy of player i = probability measure on Si

3. Existence of Nash equilibria can be guaranteed in a broader class

of games than the class of games with finite strategy sets Si

4. Computing Nash equilibria is a difficult infinite-dimensional

optimization problem even for two-person zero-sum games



Our setting – continuous games

Definition

A strategic game (N, (Si )i∈N , (ui )i∈N) is continuous if

• Each strategy set Si is a compact subset of Rdi for some di ∈ N

• Each utility function ui : S → R is continuous

Continuous games include the following important families of games:

Finite games ⊂ Polynomial games ⊂ Separable games



Hunting for mixed strategies with small support

• In general, equilibrium strategies in a continuous game can be

arbitrarily complicated probability measures!

• Occam’s razor or practical applications ask for equilibrium strategies

having a small (ideally finite) support

• Upper bounds on the supports of equilibria exist in finite games:

Lipton et al. (2003)

Consider a two-person game given by payoff matrices A1 and A2.

For any Nash equilibrium (µ1, µ2) there is a Nash equilibrium

• giving the same payoff to both players as (µ1, µ2) and

• in which each player i mixes at most (rank Ai + 1) pure strategies.



Main theme of this course

For a given continuous game

1. Decide existence of a mixed strategy equilibrium in which each

player randomizes among finitely-many pure strategies only

2. If such an equilibrium exists, then

• Compute the bounds on the support of equilibrium strategies

• Compute at least one such equilibrium!



Agenda

1. Short primer on measure theory

2. Continuous games and existence results

3. Separable games



Short primer on measure theory



Probability measures

Finite probability spaces

Ω finite set

P(Ω) powerset of Ω

µ probability measure P(Ω)→ [0, 1]

Probability measure is given by p : Ω→ [0, 1] such that
∑
ω∈Ω

p(ω) = 1

Infinite probability spaces

Ω compact subset of Rn for some n ∈ N

B(Ω) σ-algebra of Borel measurable subsets of Ω

µ probability measure B(Ω)→ [0, 1]



Classes of probability measures

Support of µ is the smallest compact set K ⊆ Ω such that µ(K ) = 1.

Example (Dirac)

Let x ∈ Ω. Probability measure δx has the support sptµ = {x}:

δx(A) =

{
1 x ∈ A

0 x /∈ A

Example (Atomic)

Let x1, . . . , xk ∈ Ω and p1, . . . , pk > 0 satisfy
∑k

i=1 pi = 1.

Probability measure
∑k

i=1 pi · δxi is supported by {x1, . . . , xk}.

Example (Limit of atomic measures)

µ = w∗ lim
n→∞

µn with each µn atomic



Lebesgue integral
∫

Ω
f dµ

The standard way to integrate a continuous (even measurable) function

f : Ω→ R with respect to a probability measure µ over Ω.

Example

• If µ = δx , then ∫
Ω

f dδx = f (x)

• If µ =
∑k

i=1 pi · δxi , then

∫
Ω

f dµ =
k∑

i=1

pi · f (xi )

• If µ = w∗ lim
n→∞

µn with each µn atomic, then∫
Ω

f dµ = lim
n→∞

∫
Ω

f dµn



Sets of probability measures – comparison

∆(Ω) Set of probability measures over Ω

extC Extreme points of a set C

Property of ∆(Ω) Ω

finite compact

Convex X X

Compact X X

ext ∆(Ω) is finite X no

ext ∆(Ω) = Dirac measures X X

ext ∆(Ω) is compact X X

conv ext ∆(Ω) = ∆(Ω) X no

conv ext ∆(Ω) is compact X no

Continuous map ∆(Ω)→ R attains extrema X X



Existence of equilibria



Mixed strategies and Nash equilibria in a continuous game

• Mixed strategy of player i is a probability measure µi ∈ ∆i := ∆(Si )

• Expected utility of player i for µ = (µ1, . . . , µn) ∈ ∆ :=×
i∈N

∆i is

Ui (µ) :=

∫
S

ui d(µ1 × · · · × µn)

Definition

µ = (µ1, . . . , µn) ∈ ∆ is a Nash equilibrium if ∀i ∈ N ∀σi ∈ ∆i

Ui (σi ,µ−i ) ≤ Ui (µ)

Nash equilibrium is atomic if each µi is atomic.



Existence of equilibria

Glicksberg’s theorem (1952)

Any continuous game has a Nash equilibrium in mixed strategies.

• For any ε > 0 find δ > 0 satisfying ∀xi , x ′i ∈ Si and ∀x−i ∈ S−i

‖xi − x ′i ‖ < δ ⇒ |ui (xi , x−i )− ui (x
′
i , x−i )| < ε

• We can choose a finite subset Ti ⊆ Si such that for all xi ∈ Si ,

there is x ′i ∈ Ti with ‖xi − x ′i ‖ < δ

• The finite game (N, (Ti )i∈N , (ui |Ti )i∈N) has an equilibrium

• This is an atomic ε-Nash equilibrium of the continuous game

• For any εk → 0, the sequence of εk -Nash equilibria converges to

a Nash equilibrium of the continuous game



Characterization of Nash equilibrium µ = (µ1, . . . , µn)

No deviation by pure strategies

Ui (xi ,µ−i ) ≤ Ui (µ) ∀i ∈ N ∀xi ∈ Si

Support strategies are among best response strategies

sptµi ⊆ arg max
xi∈Si

Ui (xi ,µ−i ) ∀i ∈ N

For two-person zero-sum games only

max
µ1∈∆1

min
µ2∈∆2

U1(µ1, µ2) = min
µ2∈∆2

max
µ1∈∆1

U1(µ1, µ2)



Discontinuous game with no solution

Example (M. Dresher - Games of Strategy)

For any 0 < ε < 1
2 :

sup
µ1∈∆1

inf
µ2∈∆2

U1(µ1, µ2) ≤ ε−1 and inf
µ2∈∆2

sup
µ1∈∆1

U1(µ1, µ2) ≥ 1−ε



Discontinuous game with a solution

Example (G. Owen - Game theory)

Two generals commanding an equal number of units fight to take

3 battlefields. The side having more units at a given field will win it.

Assumption: the two armies are infinitely divisible and the payoff is

the number of captured battlefields.

S1 = S2 =
{
x ∈ R3 | x1, x2, x3 ≥ 0, x1 + x2 + x3 = 1

}
u1(x , y) = sgn(x1 − y1) + sgn(x2 − y2) + sgn(x3 − y3)

u2(x , y) = −u1(x , y)

An optimal solution is the density function

f (x) =


9

2
√

1−9‖x−c‖2
‖x − c‖ ≤ 1

3

0 otherwise
where c = ( 1

3 ,
1
3 ,

1
3 )



Continuous game with a bizarre solution

Example (Gross 1952; Karlin 1959)

Two-person zero-sum game with strategy sets S1 = S2 = [0, 1]

and a utility function of the first player defined by

u1(x , y)=
(
y − 1

2

)[ 1 + (x − 1
2 )(y − 1

2 )2

1 + (x − 1
2 )2(y − 1

2 )4
− 1

1 + ( x
3 −

1
2 )2(y − 1

2 )4

]

0

1

0

1

x
y

The unique equilibrium strategy for each

player is the Cantor distribution.



Why solving continuous games is hard

• Global maximization of a polynomial is hard (1-player game)

• Solution of a particular continuous game is a combination of

heuristics and insight into the special structure of the game

• Selected families of continuous games have special equilibria:

• Convex/concave games

• Games with bell-shaped utility functions

• Games invariant under symmetries

• Games of timing



Separable games



Separable games

A continuous game is separable if there exist m1, . . . ,mn ∈ N and,

for each player i ∈ N,

• continuous functions f 1
i , . . . , f

mi

i : Si → R
• real coefficients aαi , for all α = (α1, . . . , αn) ∈ [m1]× · · · × [mn],

such that each utility function ui is of the form

ui (x) =
∑

α∈[m1]×···×[mn]

aαi · f
α1

1 (x1) · · · f αn
n (xn), x ∈ S

Example

• Every finite game

• Every polynomial game

• Two-player zero-sum game with u1(x1, x2) = x1 sin x2 + x1e
x2 + 3x2

1



Equivalence of mixed strategies

Mixed strategies µi , σi ∈ ∆i of a player i ∈ N in a separable game are

• Payoff equivalent (PE) if, for all j ∈ N and all x−i ∈ S−i ,

Uj(µi , x−i ) = Uj(σi , x−i )

• Moment equivalent (ME) if, for all α ∈ [mi ],∫
Si

f αi dµi =

∫
Si

f αi dσi

For any separable game

1. (ME) implies (PE)

2. If (µ1, . . . , µn) is an equilibrium and each µi is (PE) to some σi ,

then (σ1, . . . , σn) is also an equilibrium



Atomic equilibria in separable games

Claim

In a separable game any mixed strategy of player i is moment

equivalent to an atomic mixed strategy over ≤ mi + 1 pure strategies.

The claim immediately implies

Theorem (Karlin, 1959)

Every separable game has an atomic equilibrium in which each player i

mixes at most mi + 1 pure strategies.

The main idea of the proof can be shown for polynomial games.



Special case

Example (Polynomial game)

u1(x , y) = 2xy + 3y3 − 2x3 − x − 3x2y2

u2(x , y) = 2x2y2 − 4y3 − x2 + 4y + x2y x , y ∈ [−1, 1]

m1 = m2 = 4, the functions are 1, x , x2, x3 and 1, y , y2, y3, respectively

The idea is to replace the infinite-dimensional

set of all mixed strategies ∆i

with the finite-dimensional

moment space.



Moment space

Definition

Moment map M : ∆i → R4 is given by

M(µ) =
(
∫1
−1 x

0 dµ, . . . , ∫1
−1 x

3 dµ
)

∀µ ∈ ∆i

Moment space is the set M(∆i ) ⊆ R4.

Moment space can be identified with conv
{

(x , x2, x3) | x ∈ [−1, 1]
}

0

1

0

1

1

µ1

µ2

µ
3



Remarks

• The bound mi + 1 is not tight, which motivated the introduction

of the notion of rank for any continuous game (Stein et al., 2008)

• For ε > 0, there exists an algorithm computing an ε-equilibrium

of a two-person separable game with Lipschitz utility functions

• For two-person zero-sum polynomial games, an equilibrium can be

found by solving a single semidefinite program (Parrilo, 2006)
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