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Repeated Games

Repeated Games are the simplest type of a dynamic game that
evolves over time.

As such we can treat them as an extensive-form game (the finitely
repeated case), or a stochastic game (the infinitely repeated case).
However, such representations are very inefficient.

Repeated games can thus be seen as an example of a compact
representation.

C D

C (1, 1) (−1, 2)
D (2,−1) (0, 0)

Natural question: Is a NE of a single game the same as in the
(in)finitely repeated game?
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Repeated Games

Definition

Let G′ = (N ,A, u) be a normal-form game. An infinitely
repeated game with discounted payoff is an extensive-form game
with simultaneous moves G∞ = (N ,H,A, g, δ), where

H = {∅} ∪
⋃∞
t=1A

t ∪A∞

Si : H → Ai
gi(si, s−i) = (1− δ)

∑∞
t=1 δ

tEai∼si,a−i∼s−i(ui(ai, a−i))

δ ∈ (0, 1) is the discount factor



Repeated Games

Definition

Let G′ = (N ,A, u) be a normal-form game. An infinitely
repeated game with discounted payoff is an extensive-form game
with simultaneous moves G∞ = (N ,H,A, g, δ), where

H = {∅} ∪
⋃∞
t=1A

t ∪A∞

Si : H → Ai
gi(si, s−i) = (1− δ)

∑∞
t=1 δ

tEai∼si,a−i∼s−i(ui(ai, a−i))

δ ∈ (0, 1) is the discount factor



Repeated Games

Definition

Let G′ = (N ,A, u) be a normal-form game. An infinitely
repeated game with discounted payoff is an extensive-form game
with simultaneous moves G∞ = (N ,H,A, g, δ), where

H = {∅} ∪
⋃∞
t=1A

t ∪A∞

Si : H → Ai
gi(si, s−i) = (1− δ)

∑∞
t=1 δ

tEai∼si,a−i∼s−i(ui(ai, a−i))

δ ∈ (0, 1) is the discount factor



Repeated Games

Definition

Let G′ = (N ,A, u) be a normal-form game. An infinitely
repeated game with discounted payoff is an extensive-form game
with simultaneous moves G∞ = (N ,H,A, g, δ), where

H = {∅} ∪
⋃∞
t=1A

t ∪A∞

Si : H → Ai

gi(si, s−i) = (1− δ)
∑∞

t=1 δ
tEai∼si,a−i∼s−i(ui(ai, a−i))

δ ∈ (0, 1) is the discount factor



Repeated Games

Definition

Let G′ = (N ,A, u) be a normal-form game. An infinitely
repeated game with discounted payoff is an extensive-form game
with simultaneous moves G∞ = (N ,H,A, g, δ), where

H = {∅} ∪
⋃∞
t=1A

t ∪A∞

Si : H → Ai
gi(si, s−i) = (1− δ)

∑∞
t=1 δ

tEai∼si,a−i∼s−i(ui(ai, a−i))

δ ∈ (0, 1) is the discount factor



Repeated Games

Definition

Let G′ = (N ,A, u) be a normal-form game. An infinitely
repeated game with discounted payoff is an extensive-form game
with simultaneous moves G∞ = (N ,H,A, g, δ), where

H = {∅} ∪
⋃∞
t=1A

t ∪A∞

Si : H → Ai
gi(si, s−i) = (1− δ)

∑∞
t=1 δ

tEai∼si,a−i∼s−i(ui(ai, a−i))

δ ∈ (0, 1) is the discount factor



Repeated Games

We can define alternative utility functions in repeated games based
on payoff vectors vti for each:

overtaking payoff: limT→∞
∑T

t=1 v
t
i

average payoff (or limit mean payoff): limT→∞
∑T

t=1 v
t
i/T

Definition

Player i’s min-max payoff is

vi = min
s−i

max
si

gi(si, s−i)

A strategy s is individually rational if gi(s) ≥ vi
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Repeated Games

Theorem (Nash Folk Theorem)

If vi is a feasible and an individually rational payoff, then there
exists a discount factor δ < 1 such that for all δ > δ, there is a
Nash equilibrium of G with payoff vi.

Proof.

If vi is feasible then there exist a strategy s such that gi(s) = vi
and let m−i be the minmax strategy of other players to reach value
vi for player i. Let consider the following strategy:

1 play according to si as long as no one deviates

2 let vi be the maximum value player i can get by a deviation in
step t

(1− δ)[vi + δvi + . . .+ δtvi + δt+1vi + . . .] ≤
≤ (1− δ)[vi + δvi + . . .+ δtvi+ δt+1vi + . . .]
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Repeated Games

(Proof cont.)

By setting δ sufficiently large approaching 1 the above inequality
holds.

The Nash folk theorem says that essentially anything goes as a
Nash equilibrium payoff in a discounted repeated game.

The players threat by playing grim trigger strategies.
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Stochastic Games

Let’s generalize the repeated games. We do not have to play the
same normal-form game repeatedly. We can play different
normal-form games (possibly for infinitely long time).

Definition (Stochastic game)

A stochastic game is a tuple (Q,N ,A,P,R), where:

Q is a finite set of games

N is a finite set of players

A is a finite set of actions, Ai are actions available to player i

P is a transition function P : Q×A×Q :→ [0, 1], where
P(q, a, q′) is a probability of reaching game q′ after a joint
action a is played in game q

R is a set of reward functions ri : Q×A → R
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Stochastic Games

Similarly to repeated games we can have several different rewards
(or objectives):

discounted

average

reachability/safety

In reachability objectives a player wants to visit certain games
infinitely often.

Related to reaching some target state (for example attacking a
target) in a game without a pre-determined horizon.
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Stochastic Games - Examples

Repeated prisoners dilemma:

Dante’s purgatory:
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Equilibria in Stochastic Games

Definition (History)

Let ht = (q0, a0, q1, a1, . . . , at1, qt) denote a history of t stages of a
stochastic game, and let Ht be the set of all possible histories of
this length.

Definition (Behavioral strategy)

A behavioral strategy si(ht, aij ) returns the probability of playing
action aij for history ht.

Definition (Markov strategy)

A Markov strategy si is a behavioral strategy in which
si(ht, aij ) = si(h

′
t, aij ) if qt = q′t, where qt and q′t are the final

games of ht and h′t, respectively.
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Equilibria in Stochastic Games

Definition

A strategy profile is called a Markov perfect equilibrium if it
consists of only Markov strategies, and is a Nash equilibrium.

Theorem

Every n-player, general-sum, discounted-reward stochastic game
has a Markov perfect equilibrium.

Theorem

Problem of computing an optimal strategy in simple (turn-taking)
stochastic games, where pure stationary strategies are known to be
optimal, is in PLS.
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Equilibria in Stochastic Games

For other rewards, Markov perfect equilibrium does not have to
exist.
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Approximating Optimal Strategies in Stochastic Games

Standard algorithms from Markov Decision Processes, value and
strategy iteration, translate to stochastic games.

1

1Pseudocode from [3].
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Approximating Optimal Strategies in Stochastic Games

2

2Pseudocode from [3].



Stochastic Games with Imperfect Information

Extending stochastic games to imperfect information (known as
partial observability, hence termed Partially Observable Stochastic
Games (POSGs)) is lot more complicated compared to finite EFGs.

The problem lies with Nested beliefs. Consider a two-player game
where each player has some private state unobserved by the
opponent:

A player i has uncertainty about the exact state of the
opponent −i – there is a belief (a probability distribution)
over possible states.

The optimal strategy of player i depends on the strategy of
the opponent −i that depends on the belief over possible
private states of player i.

Each player needs to consider beliefs, belief of beliefs, ... etc.
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Partially Observable Stochastic Games (POSGs)

Solving general POSGs is not tractable (even solving related
single-player decision problems is often undecidable [2]).

We can restrict to subclasses of games with limited partial
observability:

One-Sided Partially Observable Stochastic Games [4]

Partially Observable Stochastic Games with Public
Observations [5]
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Partially Observable Stochastic Games (POSGs)

Theoretical results:

Value function (function that assigns a belief point value of a
(sub)-game) is convex (or convex-concave).

We can define dynamic-programming operator – a
generalization of Bellman update.

[Hv](b) = min
π2

max
π1

(
Rimm
π1,π2 + γ ·Rsubs

π1,π2(v)
)

Rimm
π1,π2 =

∑
s∈S

∑
a∈A1

∑
a′∈A2

b(s) · π1(a) · π2(s, a′) · R(s, a, a′)

Rsubs
π1,π2(v) =

∑
a∈A1

∑
o∈O

π1(a) · Pr[o|a, π2] · v(ba,oπ2 )
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Partially Observable Stochastic Games (POSGs)

We can generalize value-iteration algorithms for POMDPs to
POSGs.

Heuristic Search Value Iteration (HSVI):
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