
Algorithmic Game Theory

Computing Correlated Equilibrium and Succinct
Representation of Games

Branislav Bošanský

Artificial Intelligence Center,
Department of Computer Science,
Faculty of Electrical Engineering,

Czech Technical University in Prague

branislav.bosansky@agents.fel.cvut.cz

March 25, 2019

Correlated Equilibrium

Correlated Equilibrium – a probability distribution over pure
strategy profiles p = ∆(S) that recommends each player i to play
the best response; ∀si, s′i ∈ Si:∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i)

Coarse Correlated Equilibrium – a probability distribution over pure
strategy profiles p = ∆(S) that in expectation recommends each
player i to play the best response; ∀si ∈ Si:∑

s′∈S′
p(s′)ui(s

′) ≥
∑
s′∈S′

p(s′)ui(si, s
′
−i)

Correlated Equilibrium

Correlated Equilibrium – a probability distribution over pure
strategy profiles p = ∆(S) that recommends each player i to play
the best response; ∀si, s′i ∈ Si:∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i)

Coarse Correlated Equilibrium – a probability distribution over pure
strategy profiles p = ∆(S) that in expectation recommends each
player i to play the best response; ∀si ∈ Si:∑

s′∈S′
p(s′)ui(s

′) ≥
∑
s′∈S′

p(s′)ui(si, s
′
−i)

Correlated Equilibrium

Correlated Equilibrium – a probability distribution over pure
strategy profiles p = ∆(S) that recommends each player i to play
the best response; ∀si, s′i ∈ Si:∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i)

Coarse Correlated Equilibrium – a probability distribution over pure
strategy profiles p = ∆(S) that in expectation recommends each
player i to play the best response; ∀si ∈ Si:∑

s′∈S′
p(s′)ui(s

′) ≥
∑
s′∈S′

p(s′)ui(si, s
′
−i)

Correlated Equilibrium

The solution concept describes situations with a correlation device
present in the environment.

Correlated equilibrium is closely related to learning in competitive
scenarios.

(Coarse) Correlated equilibrium is often a result of a no-regret
learning strategy in a game.

Correlated Equilibrium

The solution concept describes situations with a correlation device
present in the environment.

Correlated equilibrium is closely related to learning in competitive
scenarios.

(Coarse) Correlated equilibrium is often a result of a no-regret
learning strategy in a game.

Correlated Equilibrium

The solution concept describes situations with a correlation device
present in the environment.

Correlated equilibrium is closely related to learning in competitive
scenarios.

(Coarse) Correlated equilibrium is often a result of a no-regret
learning strategy in a game.

Correlated Equilibrium

The solution concept describes situations with a correlation device
present in the environment.

Correlated equilibrium is closely related to learning in competitive
scenarios.

(Coarse) Correlated equilibrium is often a result of a no-regret
learning strategy in a game.

Correlated Equilibrium

Computing a CE in normal-form games:∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i) ∀si, s′i ∈ Si

Computation in succinct games:

polymatrix games

congestion games

anonymous games

symmetric games

graphical games with a bounded tree-width

Correlated Equilibrium

Computing a CE in normal-form games:

∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i) ∀si, s′i ∈ Si

Computation in succinct games:

polymatrix games

congestion games

anonymous games

symmetric games

graphical games with a bounded tree-width

Correlated Equilibrium

Computing a CE in normal-form games:∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i) ∀si, s′i ∈ Si

Computation in succinct games:

polymatrix games

congestion games

anonymous games

symmetric games

graphical games with a bounded tree-width

Correlated Equilibrium

Computing a CE in normal-form games:∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i) ∀si, s′i ∈ Si

Computation in succinct games:

polymatrix games

congestion games

anonymous games

symmetric games

graphical games with a bounded tree-width

Correlated Equilibrium

Computing a CE in normal-form games:∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i) ∀si, s′i ∈ Si

Computation in succinct games:

polymatrix games

congestion games

anonymous games

symmetric games

graphical games with a bounded tree-width

Correlated Equilibrium

Computing a CE in normal-form games:∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i) ∀si, s′i ∈ Si

Computation in succinct games:

polymatrix games

congestion games

anonymous games

symmetric games

graphical games with a bounded tree-width

Correlated Equilibrium

Computing a CE in normal-form games:∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i) ∀si, s′i ∈ Si

Computation in succinct games:

polymatrix games

congestion games

anonymous games

symmetric games

graphical games with a bounded tree-width

Correlated Equilibrium

Computing a CE in normal-form games:∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i) ∀si, s′i ∈ Si

Computation in succinct games:

polymatrix games

congestion games

anonymous games

symmetric games

graphical games with a bounded tree-width

Correlated Equilibrium

Computing a CE in normal-form games:∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i) ∀si, s′i ∈ Si

Computation in succinct games:

polymatrix games

congestion games

anonymous games

symmetric games

graphical games with a bounded tree-width

Correlated Equilibrium

Computing a CE in normal-form games:∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i) ∀si, s′i ∈ Si

Computation in succinct games:

polymatrix games

congestion games

anonymous games

symmetric games

graphical games with a bounded tree-width

Succinct Representations

compact representation of the game with n = |N | players

we want to reduce the input from |S||N | to |S|d, where d� |N|

which succinct representations are we going to talk about:

congestion games (network congestion games, ...)

polymatrix games (zero-sum polymatrix games)

graphical games (action graph games)

Succinct Representations

compact representation of the game with n = |N | players

we want to reduce the input from |S||N | to |S|d, where d� |N|

which succinct representations are we going to talk about:

congestion games (network congestion games, ...)

polymatrix games (zero-sum polymatrix games)

graphical games (action graph games)

Succinct Representations

compact representation of the game with n = |N | players

we want to reduce the input from |S||N | to |S|d, where d� |N|

which succinct representations are we going to talk about:

congestion games (network congestion games, ...)

polymatrix games (zero-sum polymatrix games)

graphical games (action graph games)

Succinct Representations

compact representation of the game with n = |N | players

we want to reduce the input from |S||N | to |S|d, where d� |N|

which succinct representations are we going to talk about:

congestion games (network congestion games, ...)

polymatrix games (zero-sum polymatrix games)

graphical games (action graph games)

Succinct Representations

compact representation of the game with n = |N | players

we want to reduce the input from |S||N | to |S|d, where d� |N|

which succinct representations are we going to talk about:

congestion games (network congestion games, ...)

polymatrix games (zero-sum polymatrix games)

graphical games (action graph games)

Succinct Representations

compact representation of the game with n = |N | players

we want to reduce the input from |S||N | to |S|d, where d� |N|

which succinct representations are we going to talk about:

congestion games (network congestion games, ...)

polymatrix games (zero-sum polymatrix games)

graphical games (action graph games)

Succinct Representations

compact representation of the game with n = |N | players

we want to reduce the input from |S||N | to |S|d, where d� |N|

which succinct representations are we going to talk about:

congestion games (network congestion games, ...)

polymatrix games (zero-sum polymatrix games)

graphical games (action graph games)

Succinct Representations

Definition (Papadimitriou and Roughgarden, 2008)

A succinct game G = (I, T, U) is defined, like all computational
problems, in terms of a set of efficiently recognizable inputs I, and
two polynomial algorithms T and U . For each z ∈ I, T (z) returns
a type, that is, an integer n ≥ 2 (the number of players) and an
n-tuple of integers (t1, . . . , tn), each at least 2 (the cardinalities of
the strategy sets). If n and the tp’s are polynomially bounded in
|z|, the game is said to be of polynomial type. Given any n-tuple
of positive integers s = (s1, . . . , sn), with sp ≤ tp for all p ≤ n,
U(z, p, s) returns an integer standing for the utility up(s). The
resulting game is denoted G(z).

Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game. Let σs be the product of
distributions over pure strategies for all players for strategy profile
s; σs = Πiσi(si).
For a correlated equilibrium σ it must hold:∑
s−i∈S−i

σ(si, s−i)
(
ui(si, s−i)− ui(s′i, s−i)

)
≥ 0 ∀i ∈ N ,∀si, s′i ∈ Si

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game. Let σs be the product of
distributions over pure strategies for all players for strategy profile
s; σs = Πiσi(si).
For a correlated equilibrium σ it must hold:∑
s−i∈S−i

σ(si, s−i)
(
ui(si, s−i)− ui(s′i, s−i)

)
≥ 0 ∀i ∈ N ,∀si, s′i ∈ Si

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game.

Let σs be the product of
distributions over pure strategies for all players for strategy profile
s; σs = Πiσi(si).
For a correlated equilibrium σ it must hold:∑
s−i∈S−i

σ(si, s−i)
(
ui(si, s−i)− ui(s′i, s−i)

)
≥ 0 ∀i ∈ N , ∀si, s′i ∈ Si

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game. Let σs be the product of
distributions over pure strategies for all players for strategy profile
s; σs = Πiσi(si).

For a correlated equilibrium σ it must hold:∑
s−i∈S−i

σ(si, s−i)
(
ui(si, s−i)− ui(s′i, s−i)

)
≥ 0 ∀i ∈ N , ∀si, s′i ∈ Si

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game. Let σs be the product of
distributions over pure strategies for all players for strategy profile
s; σs = Πiσi(si).
For a correlated equilibrium σ it must hold:∑
s−i∈S−i

σ(si, s−i)
(
ui(si, s−i)− ui(s′i, s−i)

)
≥ 0 ∀i ∈ N , ∀si, s′i ∈ Si

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game. Let σs be the product of
distributions over pure strategies for all players for strategy profile
s; σs = Πiσi(si).
For a correlated equilibrium σ it must hold:∑
s−i∈S−i

σ(si, s−i)
(
ui(si, s−i)− ui(s′i, s−i)

)
≥ 0 ∀i ∈ N , ∀si, s′i ∈ Si

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game. Let σs be the product of
distributions over pure strategies for all players for strategy profile
s; σs = Πiσi(si).
For a correlated equilibrium σ it must hold:∑
s−i∈S−i

σ(si, s−i)
(
ui(si, s−i)− ui(s′i, s−i)

)
≥ 0 ∀i ∈ N , ∀si, s′i ∈ Si

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

Computing Correlated Equilibria in Succinct Games [1]

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

where Uσ are the constraints for correlated equilibrium.

If there
exists a correlated equilibrium, then this LP is unbounded.
Consider the dual:

UT y ≤ −1

y ≥ 0

Lemma:
For every y ≥ 0, there is a product distribution σ such that
σUT y = 0.

Computing Correlated Equilibria in Succinct Games [1]

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

where Uσ are the constraints for correlated equilibrium. If there
exists a correlated equilibrium, then this LP is unbounded.
Consider the dual:

UT y ≤ −1

y ≥ 0

Lemma:
For every y ≥ 0, there is a product distribution σ such that
σUT y = 0.

Computing Correlated Equilibria in Succinct Games [1]

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

where Uσ are the constraints for correlated equilibrium. If there
exists a correlated equilibrium, then this LP is unbounded.
Consider the dual:

UT y ≤ −1

y ≥ 0

Lemma:
For every y ≥ 0, there is a product distribution σ such that
σUT y = 0.

Computing Correlated Equilibria in Succinct Games [1]

Consider the linear program:

max
∑
s∈S

σs

Uσ ≥ 0

σ ≥ 0

where Uσ are the constraints for correlated equilibrium. If there
exists a correlated equilibrium, then this LP is unbounded.
Consider the dual:

UT y ≤ −1

y ≥ 0

Lemma:
For every y ≥ 0, there is a product distribution σ such that
σUT y = 0.

Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible. Thanks to the duality we
know that the original LP has exponentially many variables (σ)
and the dual has exponentially many constraints.

We can make use of the ellipsoid method for the dual (ellipsoid
against hope) – we iteratively add constraints σ`U

T y ≤ −1 to the
dual for some product distributions σ`.

Say, after L iterations the dual becomes infeasible – we have added
L constraints and we have L added product distributions σ`. We
can translate them to the original LP, where

[UσT`]α ≥ 0 α ≥ 0

and α is a correlated equilibrium (a convex combination of product
distributions over S that satisfies CE constraints).

Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible.

Thanks to the duality we
know that the original LP has exponentially many variables (σ)
and the dual has exponentially many constraints.

We can make use of the ellipsoid method for the dual (ellipsoid
against hope) – we iteratively add constraints σ`U

T y ≤ −1 to the
dual for some product distributions σ`.

Say, after L iterations the dual becomes infeasible – we have added
L constraints and we have L added product distributions σ`. We
can translate them to the original LP, where

[UσT`]α ≥ 0 α ≥ 0

and α is a correlated equilibrium (a convex combination of product
distributions over S that satisfies CE constraints).

Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible. Thanks to the duality we
know that the original LP has exponentially many variables (σ)
and the dual has exponentially many constraints.

We can make use of the ellipsoid method for the dual (ellipsoid
against hope) – we iteratively add constraints σ`U

T y ≤ −1 to the
dual for some product distributions σ`.

Say, after L iterations the dual becomes infeasible – we have added
L constraints and we have L added product distributions σ`. We
can translate them to the original LP, where

[UσT`]α ≥ 0 α ≥ 0

and α is a correlated equilibrium (a convex combination of product
distributions over S that satisfies CE constraints).

Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible. Thanks to the duality we
know that the original LP has exponentially many variables (σ)
and the dual has exponentially many constraints.

We can make use of the ellipsoid method for the dual (ellipsoid
against hope) – we iteratively add constraints σ`U

T y ≤ −1 to the
dual for some product distributions σ`.

Say, after L iterations the dual becomes infeasible – we have added
L constraints and we have L added product distributions σ`. We
can translate them to the original LP, where

[UσT`]α ≥ 0 α ≥ 0

and α is a correlated equilibrium (a convex combination of product
distributions over S that satisfies CE constraints).

Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible. Thanks to the duality we
know that the original LP has exponentially many variables (σ)
and the dual has exponentially many constraints.

We can make use of the ellipsoid method for the dual (ellipsoid
against hope) – we iteratively add constraints σ`U

T y ≤ −1 to the
dual for some product distributions σ`.

Say, after L iterations the dual becomes infeasible – we have added
L constraints and we have L added product distributions σ`.

We
can translate them to the original LP, where

[UσT`]α ≥ 0 α ≥ 0

and α is a correlated equilibrium (a convex combination of product
distributions over S that satisfies CE constraints).

Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible. Thanks to the duality we
know that the original LP has exponentially many variables (σ)
and the dual has exponentially many constraints.

We can make use of the ellipsoid method for the dual (ellipsoid
against hope) – we iteratively add constraints σ`U

T y ≤ −1 to the
dual for some product distributions σ`.

Say, after L iterations the dual becomes infeasible – we have added
L constraints and we have L added product distributions σ`. We
can translate them to the original LP, where

[UσT`]α ≥ 0 α ≥ 0

and α is a correlated equilibrium (a convex combination of product
distributions over S that satisfies CE constraints).

Computing Correlated Equilibria in Succinct Games [1]

Some details were omitted:

L is guaranteed to be polynomial, however, there is a problem
with precision (in practice; addressed by the follow-up
work [2])

we need a polynomial algorithm for computing an expected
utility (the product UσT`) – i.e., the polynomial expectation
property

this algorithm is specific for each type of a succinct game:

polymatrix games
congestion games

Computing Correlated Equilibria in Succinct Games [1]

Some details were omitted:

L is guaranteed to be polynomial, however, there is a problem
with precision (in practice; addressed by the follow-up
work [2])

we need a polynomial algorithm for computing an expected
utility (the product UσT`) – i.e., the polynomial expectation
property

this algorithm is specific for each type of a succinct game:

polymatrix games
congestion games

Computing Correlated Equilibria in Succinct Games [1]

Some details were omitted:

L is guaranteed to be polynomial, however, there is a problem
with precision (in practice; addressed by the follow-up
work [2])

we need a polynomial algorithm for computing an expected
utility (the product UσT`) – i.e., the polynomial expectation
property

this algorithm is specific for each type of a succinct game:

polymatrix games
congestion games

Computing Correlated Equilibria in Succinct Games [1]

Some details were omitted:

L is guaranteed to be polynomial, however, there is a problem
with precision (in practice; addressed by the follow-up
work [2])

we need a polynomial algorithm for computing an expected
utility (the product UσT`) – i.e., the polynomial expectation
property

this algorithm is specific for each type of a succinct game:

polymatrix games
congestion games

Computing Correlated Equilibria in Succinct Games [1]

Some details were omitted:

L is guaranteed to be polynomial, however, there is a problem
with precision (in practice; addressed by the follow-up
work [2])

we need a polynomial algorithm for computing an expected
utility (the product UσT`) – i.e., the polynomial expectation
property

this algorithm is specific for each type of a succinct game:

polymatrix games
congestion games

Computing Correlated Equilibria in Succinct Games [1]

Some details were omitted:

L is guaranteed to be polynomial, however, there is a problem
with precision (in practice; addressed by the follow-up
work [2])

we need a polynomial algorithm for computing an expected
utility (the product UσT`) – i.e., the polynomial expectation
property

this algorithm is specific for each type of a succinct game:

polymatrix games

congestion games

Computing Correlated Equilibria in Succinct Games [1]

Some details were omitted:

L is guaranteed to be polynomial, however, there is a problem
with precision (in practice; addressed by the follow-up
work [2])

we need a polynomial algorithm for computing an expected
utility (the product UσT`) – i.e., the polynomial expectation
property

this algorithm is specific for each type of a succinct game:

polymatrix games
congestion games

Computing Correlated Equilibria in Succinct Games [1]

Some details were omitted:

L is guaranteed to be polynomial, however, there is a problem
with precision (in practice; addressed by the follow-up
work [2])

we need a polynomial algorithm for computing an expected
utility (the product UσT`) – i.e., the polynomial expectation
property

this algorithm is specific for each type of a succinct game:

polymatrix games
congestion games

Computing Correlated Equilibria in Succinct Games [1]

This approach does not generalize to finding some optimum
correlated equilibrium. For example, maximizing the expected
utility of players (max

∑
s usσs) and constraining σ to be a

probability distribution (
∑

s σs = 1) would lead to dual constraints

(Us)
T y ≤ −us + z,

for which it is often not possible to find a polynomial-time
separating oracle necessary for the ellipsoid algorithm.

For some games it is possible to find optimal correlated equilibrium
in polynomial time:

1 anonymous games

2 symmetric games

3 graphical games with a bounded tree-width

Computing Correlated Equilibria in Succinct Games [1]

This approach does not generalize to finding some optimum
correlated equilibrium. For example, maximizing the expected
utility of players (max

∑
s usσs) and constraining σ to be a

probability distribution (
∑

s σs = 1) would lead to dual constraints

(Us)
T y ≤ −us + z,

for which it is often not possible to find a polynomial-time
separating oracle necessary for the ellipsoid algorithm.

For some games it is possible to find optimal correlated equilibrium
in polynomial time:

1 anonymous games

2 symmetric games

3 graphical games with a bounded tree-width

Computing Correlated Equilibria in Succinct Games [1]

This approach does not generalize to finding some optimum
correlated equilibrium. For example, maximizing the expected
utility of players (max

∑
s usσs) and constraining σ to be a

probability distribution (
∑

s σs = 1) would lead to dual constraints

(Us)
T y ≤ −us + z,

for which it is often not possible to find a polynomial-time
separating oracle necessary for the ellipsoid algorithm.

For some games it is possible to find optimal correlated equilibrium
in polynomial time:

1 anonymous games

2 symmetric games

3 graphical games with a bounded tree-width

Computing Correlated Equilibria in Succinct Games [1]

This approach does not generalize to finding some optimum
correlated equilibrium. For example, maximizing the expected
utility of players (max

∑
s usσs) and constraining σ to be a

probability distribution (
∑

s σs = 1) would lead to dual constraints

(Us)
T y ≤ −us + z,

for which it is often not possible to find a polynomial-time
separating oracle necessary for the ellipsoid algorithm.

For some games it is possible to find optimal correlated equilibrium
in polynomial time:

1 anonymous games

2 symmetric games

3 graphical games with a bounded tree-width

Computing Correlated Equilibria in Succinct Games [1]

This approach does not generalize to finding some optimum
correlated equilibrium. For example, maximizing the expected
utility of players (max

∑
s usσs) and constraining σ to be a

probability distribution (
∑

s σs = 1) would lead to dual constraints

(Us)
T y ≤ −us + z,

for which it is often not possible to find a polynomial-time
separating oracle necessary for the ellipsoid algorithm.

For some games it is possible to find optimal correlated equilibrium
in polynomial time:

1 anonymous games

2 symmetric games

3 graphical games with a bounded tree-width

Exact Polynomial Algorithm for Correlated Equilibrium

Ellipsoid Against Hope has been simplified by [2].

Instead of adding a randomized vector x(k), Jiang and
Leyton-Brown proved that it is sufficient to use a “purified
separation oracle” that adds cuts according to pure strategies.

As a consequence, their algorithm computes an exact and rational
CE with support at most

1 +
∑
i∈N
|Si| (|Si| − 1)

in polynomial time.

Exact Polynomial Algorithm for Correlated Equilibrium

Ellipsoid Against Hope has been simplified by [2].

Instead of adding a randomized vector x(k), Jiang and
Leyton-Brown proved that it is sufficient to use a “purified
separation oracle” that adds cuts according to pure strategies.

As a consequence, their algorithm computes an exact and rational
CE with support at most

1 +
∑
i∈N
|Si| (|Si| − 1)

in polynomial time.

Exact Polynomial Algorithm for Correlated Equilibrium

Ellipsoid Against Hope has been simplified by [2].

Instead of adding a randomized vector x(k), Jiang and
Leyton-Brown proved that it is sufficient to use a “purified
separation oracle” that adds cuts according to pure strategies.

As a consequence, their algorithm computes an exact and rational
CE with support at most

1 +
∑
i∈N
|Si| (|Si| − 1)

in polynomial time.

Exact Polynomial Algorithm for Correlated Equilibrium

Ellipsoid Against Hope has been simplified by [2].

Instead of adding a randomized vector x(k), Jiang and
Leyton-Brown proved that it is sufficient to use a “purified
separation oracle” that adds cuts according to pure strategies.

As a consequence, their algorithm computes an exact and rational
CE with support at most

1 +
∑
i∈N
|Si| (|Si| − 1)

in polynomial time.

Exact Polynomial Algorithm for Correlated Equilibrium

Ellipsoid Against Hope has been simplified by [2].

Instead of adding a randomized vector x(k), Jiang and
Leyton-Brown proved that it is sufficient to use a “purified
separation oracle” that adds cuts according to pure strategies.

As a consequence, their algorithm computes an exact and rational
CE with support at most

1 +
∑
i∈N
|Si| (|Si| − 1)

in polynomial time.

Exact Polynomial Algorithm for Correlated Equilibrium

1 Apply the ellipsoid method using the Purified Separation
Oracle, a starting ball with radius of R = u5N 3

max centered at 0,
and stopping when the volume of the ellipsoid is below
v = αNu

−7N5

max , where αN is the volume of the N -dimensional
unit ball.

2 Form the matrix U ′ whose columns are Us(1),...,s(L) generated
by the separation oracle during the run of the ellipsoid
method.

3 Find a feasible solution x′ of the linear feasibility program

U ′x′ ≥ 0, x′ ≥ 0, 1>x′ = 1.

Exact Polynomial Algorithm for Correlated Equilibrium

1 Apply the ellipsoid method using the Purified Separation
Oracle, a starting ball with radius of R = u5N 3

max centered at 0,
and stopping when the volume of the ellipsoid is below
v = αNu

−7N5

max , where αN is the volume of the N -dimensional
unit ball.

2 Form the matrix U ′ whose columns are Us(1),...,s(L) generated
by the separation oracle during the run of the ellipsoid
method.

3 Find a feasible solution x′ of the linear feasibility program

U ′x′ ≥ 0, x′ ≥ 0, 1>x′ = 1.

Exact Polynomial Algorithm for Correlated Equilibrium

1 Apply the ellipsoid method using the Purified Separation
Oracle, a starting ball with radius of R = u5N 3

max centered at 0,
and stopping when the volume of the ellipsoid is below
v = αNu

−7N5

max , where αN is the volume of the N -dimensional
unit ball.

2 Form the matrix U ′ whose columns are Us(1),...,s(L) generated
by the separation oracle during the run of the ellipsoid
method.

3 Find a feasible solution x′ of the linear feasibility program

U ′x′ ≥ 0, x′ ≥ 0, 1>x′ = 1.

Exact Polynomial Algorithm for Correlated Equilibrium

1 Apply the ellipsoid method using the Purified Separation
Oracle, a starting ball with radius of R = u5N 3

max centered at 0,
and stopping when the volume of the ellipsoid is below
v = αNu

−7N5

max , where αN is the volume of the N -dimensional
unit ball.

2 Form the matrix U ′ whose columns are Us(1),...,s(L) generated
by the separation oracle during the run of the ellipsoid
method.

3 Find a feasible solution x′ of the linear feasibility program

U ′x′ ≥ 0, x′ ≥ 0, 1>x′ = 1.

Correlated Equilibrium in Dynamic Games

Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

a player receives a signal (a recommendation) that is a
strategy in the whole game (standard correlated equilibrium)

a player receives a signal (a recommendation) that is an action
to play when a certain decision point in the game is reached

formally defined as Extensive-Form Correlated Equilibrium
(EFCE)
computing one EFCE is computable in polynomial time
computing an optimal EFCE is NP-hard for almost all cases
(two-player games with no chance is the exception)

Correlated Equilibrium in Dynamic Games

Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

a player receives a signal (a recommendation) that is a
strategy in the whole game (standard correlated equilibrium)

a player receives a signal (a recommendation) that is an action
to play when a certain decision point in the game is reached

formally defined as Extensive-Form Correlated Equilibrium
(EFCE)
computing one EFCE is computable in polynomial time
computing an optimal EFCE is NP-hard for almost all cases
(two-player games with no chance is the exception)

Correlated Equilibrium in Dynamic Games

Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

a player receives a signal (a recommendation) that is a
strategy in the whole game (standard correlated equilibrium)

a player receives a signal (a recommendation) that is an action
to play when a certain decision point in the game is reached

formally defined as Extensive-Form Correlated Equilibrium
(EFCE)
computing one EFCE is computable in polynomial time
computing an optimal EFCE is NP-hard for almost all cases
(two-player games with no chance is the exception)

Correlated Equilibrium in Dynamic Games

Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

a player receives a signal (a recommendation) that is a
strategy in the whole game (standard correlated equilibrium)

a player receives a signal (a recommendation) that is an action
to play when a certain decision point in the game is reached

formally defined as Extensive-Form Correlated Equilibrium
(EFCE)
computing one EFCE is computable in polynomial time
computing an optimal EFCE is NP-hard for almost all cases
(two-player games with no chance is the exception)

Correlated Equilibrium in Dynamic Games

Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

a player receives a signal (a recommendation) that is a
strategy in the whole game (standard correlated equilibrium)

a player receives a signal (a recommendation) that is an action
to play when a certain decision point in the game is reached

formally defined as Extensive-Form Correlated Equilibrium
(EFCE)
computing one EFCE is computable in polynomial time
computing an optimal EFCE is NP-hard for almost all cases
(two-player games with no chance is the exception)

Correlated Equilibrium in Dynamic Games

Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

a player receives a signal (a recommendation) that is a
strategy in the whole game (standard correlated equilibrium)

a player receives a signal (a recommendation) that is an action
to play when a certain decision point in the game is reached

formally defined as Extensive-Form Correlated Equilibrium
(EFCE)

computing one EFCE is computable in polynomial time
computing an optimal EFCE is NP-hard for almost all cases
(two-player games with no chance is the exception)

Correlated Equilibrium in Dynamic Games

Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

a player receives a signal (a recommendation) that is a
strategy in the whole game (standard correlated equilibrium)

a player receives a signal (a recommendation) that is an action
to play when a certain decision point in the game is reached

formally defined as Extensive-Form Correlated Equilibrium
(EFCE)
computing one EFCE is computable in polynomial time

computing an optimal EFCE is NP-hard for almost all cases
(two-player games with no chance is the exception)

Correlated Equilibrium in Dynamic Games

Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

a player receives a signal (a recommendation) that is a
strategy in the whole game (standard correlated equilibrium)

a player receives a signal (a recommendation) that is an action
to play when a certain decision point in the game is reached

formally defined as Extensive-Form Correlated Equilibrium
(EFCE)
computing one EFCE is computable in polynomial time
computing an optimal EFCE is NP-hard for almost all cases
(two-player games with no chance is the exception)

Extensive-Form Correlated Equilibrium

Extensive-Form Correlated Equilibrium

Representation of strategies in the two-player case: probability
distribution over pairs of relevant sequences.

p(∅, ∅) = 1; 0 ≤ p(σ1, σ2) ≤ 1 (1)

p(σi, σ−i) =
∑

a∈A(I)

p(σia, σ−i) ∀I ∈ Ii, σi = seqi(I),∀σ−i ∈ rel(σi) (2)

v(σ−i) =
∑

σi∈rel(σ−i)

p(σi, σ−i)g−i(σi, σ−i) +
∑

a∈A−i(I)

v(σ−ia) ∀σ−i ∈ Σ−i

(3)

v(I, σ−i) ≥
∑

σi∈rel(σ−i)

p(σi, σ−i)g−i(σi, seq−i(I)a) +
∑

I′∈I−i; seq−i(I
′)=σ−i(I)a

v(I ′, σ−i) (4)

v(seq−i(I)a) = v(I, seq−i(I)a) ∀I ∈ I−i, ∀a ∈ A(I) (5)

Extensive-Form Correlated Equilibrium

Representation of strategies in the two-player case: probability
distribution over pairs of relevant sequences.

p(∅, ∅) = 1; 0 ≤ p(σ1, σ2) ≤ 1 (1)

p(σi, σ−i) =
∑

a∈A(I)

p(σia, σ−i) ∀I ∈ Ii, σi = seqi(I),∀σ−i ∈ rel(σi) (2)

v(σ−i) =
∑

σi∈rel(σ−i)

p(σi, σ−i)g−i(σi, σ−i) +
∑

a∈A−i(I)

v(σ−ia) ∀σ−i ∈ Σ−i

(3)

v(I, σ−i) ≥
∑

σi∈rel(σ−i)

p(σi, σ−i)g−i(σi, seq−i(I)a) +
∑

I′∈I−i; seq−i(I
′)=σ−i(I)a

v(I ′, σ−i) (4)

v(seq−i(I)a) = v(I, seq−i(I)a) ∀I ∈ I−i, ∀a ∈ A(I) (5)

Computing Correlated Equilibrium in Stochastic Games

EFCE can be generalized also to infinite
(turn-based/concurrent-move) stochastic games.

We can seek for a probability distribution over a space of joint
actions applicable in states of a stochastic games.

V π
i (h) =

∑
a

π(h, a)Qπi (h, a, a)

Qπi (h, a, a′) =R(s(h), a′) + γ
∑
s′

P (s′|s(h), a′)V π
i (〈h, a, a′, s′〉)

Each recommended action must be a best action to play in given
state and given possible future policies:

∀(h, i, ai, a′i) Qπi (h, ai, ai) ≥ Qπi (h, ai, a
′
i)

Computing Correlated Equilibrium in Stochastic Games

EFCE can be generalized also to infinite
(turn-based/concurrent-move) stochastic games.

We can seek for a probability distribution over a space of joint
actions applicable in states of a stochastic games.

V π
i (h) =

∑
a

π(h, a)Qπi (h, a, a)

Qπi (h, a, a′) =R(s(h), a′) + γ
∑
s′

P (s′|s(h), a′)V π
i (〈h, a, a′, s′〉)

Each recommended action must be a best action to play in given
state and given possible future policies:

∀(h, i, ai, a′i) Qπi (h, ai, ai) ≥ Qπi (h, ai, a
′
i)

Computing Correlated Equilibrium in Stochastic Games

EFCE can be generalized also to infinite
(turn-based/concurrent-move) stochastic games.

We can seek for a probability distribution over a space of joint
actions applicable in states of a stochastic games.

V π
i (h) =

∑
a

π(h, a)Qπi (h, a, a)

Qπi (h, a, a′) =R(s(h), a′) + γ
∑
s′

P (s′|s(h), a′)V π
i (〈h, a, a′, s′〉)

Each recommended action must be a best action to play in given
state and given possible future policies:

∀(h, i, ai, a′i) Qπi (h, ai, ai) ≥ Qπi (h, ai, a
′
i)

Computing Correlated Equilibrium in Stochastic Games

EFCE can be generalized also to infinite
(turn-based/concurrent-move) stochastic games.

We can seek for a probability distribution over a space of joint
actions applicable in states of a stochastic games.

V π
i (h) =

∑
a

π(h, a)Qπi (h, a, a)

Qπi (h, a, a′) =R(s(h), a′) + γ
∑
s′

P (s′|s(h), a′)V π
i (〈h, a, a′, s′〉)

Each recommended action must be a best action to play in given
state and given possible future policies:

∀(h, i, ai, a′i) Qπi (h, ai, ai) ≥ Qπi (h, ai, a
′
i)

Computing Correlated Equilibrium in Stochastic Games

EFCE can be generalized also to infinite
(turn-based/concurrent-move) stochastic games.

We can seek for a probability distribution over a space of joint
actions applicable in states of a stochastic games.

V π
i (h) =

∑
a

π(h, a)Qπi (h, a, a)

Qπi (h, a, a′) =R(s(h), a′) + γ
∑
s′

P (s′|s(h), a′)V π
i (〈h, a, a′, s′〉)

Each recommended action must be a best action to play in given
state and given possible future policies:

∀(h, i, ai, a′i) Qπi (h, ai, ai) ≥ Qπi (h, ai, a
′
i)

Computing Correlated Equilibrium in Stochastic Games

EFCE can be generalized also to infinite
(turn-based/concurrent-move) stochastic games.

We can seek for a probability distribution over a space of joint
actions applicable in states of a stochastic games.

V π
i (h) =

∑
a

π(h, a)Qπi (h, a, a)

Qπi (h, a, a′) =R(s(h), a′) + γ
∑
s′

P (s′|s(h), a′)V π
i (〈h, a, a′, s′〉)

Each recommended action must be a best action to play in given
state and given possible future policies:

∀(h, i, ai, a′i) Qπi (h, ai, ai) ≥ Qπi (h, ai, a
′
i)

Computing Correlated Equilibrium in Stochastic Games

The achievable set of values V (s) in a correlated equilibrium is a
polytope in R|N |.

This is constrained due to incentives constraints of players; hence,
there can be many of such constraints (undbounded number due
to [3]).

We can approximate the polytope using a predefined set of
half-spaces H = [H1, . . . ,Hm].

This gives us a compact approximate representation (it is sufficient
to remember the offset) that further simplifies value backup
functions – this generally leads to Minkowski sum of convex sets.

Computing Correlated Equilibrium in Stochastic Games

The achievable set of values V (s) in a correlated equilibrium is a
polytope in R|N |.

This is constrained due to incentives constraints of players; hence,
there can be many of such constraints (undbounded number due
to [3]).

We can approximate the polytope using a predefined set of
half-spaces H = [H1, . . . ,Hm].

This gives us a compact approximate representation (it is sufficient
to remember the offset) that further simplifies value backup
functions – this generally leads to Minkowski sum of convex sets.

Computing Correlated Equilibrium in Stochastic Games

The achievable set of values V (s) in a correlated equilibrium is a
polytope in R|N |.

This is constrained due to incentives constraints of players; hence,
there can be many of such constraints (undbounded number due
to [3]).

We can approximate the polytope using a predefined set of
half-spaces H = [H1, . . . ,Hm].

This gives us a compact approximate representation (it is sufficient
to remember the offset) that further simplifies value backup
functions – this generally leads to Minkowski sum of convex sets.

Computing Correlated Equilibrium in Stochastic Games

The achievable set of values V (s) in a correlated equilibrium is a
polytope in R|N |.

This is constrained due to incentives constraints of players; hence,
there can be many of such constraints (undbounded number due
to [3]).

We can approximate the polytope using a predefined set of
half-spaces H = [H1, . . . ,Hm].

This gives us a compact approximate representation (it is sufficient
to remember the offset) that further simplifies value backup
functions – this generally leads to Minkowski sum of convex sets.

Computing Correlated Equilibrium in Stochastic Games

The achievable set of values V (s) in a correlated equilibrium is a
polytope in R|N |.

This is constrained due to incentives constraints of players; hence,
there can be many of such constraints (undbounded number due
to [3]).

We can approximate the polytope using a predefined set of
half-spaces H = [H1, . . . ,Hm].

This gives us a compact approximate representation (it is sufficient
to remember the offset) that further simplifies value backup
functions – this generally leads to Minkowski sum of convex sets.

Computing Correlated Equilibrium in Stochastic Games

1

1Figure from [3]

Computing Correlated Equilibrium in Stochastic Games

The general outline of QPACE algorithm [3] per iteration, is:

1 Calculate the action achievable sets Q(s, a, a′).

2 Construct a set of inequalities that defines the set of
correlated equilibria.

3 Approximately project the feasible set into value-vector space
by solving a linear program for each hyperplane of V (s).

The policy after a deviation can be pre-computed – so called grim
trigger strategy, where all the other players try to punish the
deviating player [3].

Alternatively, we may require subgame perfection – i.e., even after
a deviation the players play rationally [4].

Computing Correlated Equilibrium in Stochastic Games

The general outline of QPACE algorithm [3] per iteration, is:

1 Calculate the action achievable sets Q(s, a, a′).

2 Construct a set of inequalities that defines the set of
correlated equilibria.

3 Approximately project the feasible set into value-vector space
by solving a linear program for each hyperplane of V (s).

The policy after a deviation can be pre-computed – so called grim
trigger strategy, where all the other players try to punish the
deviating player [3].

Alternatively, we may require subgame perfection – i.e., even after
a deviation the players play rationally [4].

Computing Correlated Equilibrium in Stochastic Games

The general outline of QPACE algorithm [3] per iteration, is:

1 Calculate the action achievable sets Q(s, a, a′).

2 Construct a set of inequalities that defines the set of
correlated equilibria.

3 Approximately project the feasible set into value-vector space
by solving a linear program for each hyperplane of V (s).

The policy after a deviation can be pre-computed – so called grim
trigger strategy, where all the other players try to punish the
deviating player [3].

Alternatively, we may require subgame perfection – i.e., even after
a deviation the players play rationally [4].

Computing Correlated Equilibrium in Stochastic Games

The general outline of QPACE algorithm [3] per iteration, is:

1 Calculate the action achievable sets Q(s, a, a′).

2 Construct a set of inequalities that defines the set of
correlated equilibria.

3 Approximately project the feasible set into value-vector space
by solving a linear program for each hyperplane of V (s).

The policy after a deviation can be pre-computed – so called grim
trigger strategy, where all the other players try to punish the
deviating player [3].

Alternatively, we may require subgame perfection – i.e., even after
a deviation the players play rationally [4].

Computing Correlated Equilibrium in Stochastic Games

The general outline of QPACE algorithm [3] per iteration, is:

1 Calculate the action achievable sets Q(s, a, a′).

2 Construct a set of inequalities that defines the set of
correlated equilibria.

3 Approximately project the feasible set into value-vector space
by solving a linear program for each hyperplane of V (s).

The policy after a deviation can be pre-computed – so called grim
trigger strategy, where all the other players try to punish the
deviating player [3].

Alternatively, we may require subgame perfection – i.e., even after
a deviation the players play rationally [4].

Computing Correlated Equilibrium in Stochastic Games

The general outline of QPACE algorithm [3] per iteration, is:

1 Calculate the action achievable sets Q(s, a, a′).

2 Construct a set of inequalities that defines the set of
correlated equilibria.

3 Approximately project the feasible set into value-vector space
by solving a linear program for each hyperplane of V (s).

The policy after a deviation can be pre-computed – so called grim
trigger strategy, where all the other players try to punish the
deviating player [3].

Alternatively, we may require subgame perfection – i.e., even after
a deviation the players play rationally [4].

Computing Correlated Equilibrium in Stochastic Games

The general outline of QPACE algorithm [3] per iteration, is:

1 Calculate the action achievable sets Q(s, a, a′).

2 Construct a set of inequalities that defines the set of
correlated equilibria.

3 Approximately project the feasible set into value-vector space
by solving a linear program for each hyperplane of V (s).

The policy after a deviation can be pre-computed – so called grim
trigger strategy, where all the other players try to punish the
deviating player [3].

Alternatively, we may require subgame perfection – i.e., even after
a deviation the players play rationally [4].

Atomic Congestion Games

We have n players, set of edges E, strategies for each player are
paths in the network (S), and there is a congestion function
ce : {0, 1, . . . , n} → Z+. When all players choose their strategy
path si ∈ Si we have the load of edge e, `s(e) = |{si : e ∈ si}| and
ui = −

∑
e∈si ce(`s(e)).

Braess’ paradox

100 drivers that want to go from s to t.
What is Nash equilibrium?

Atomic Congestion Games

We have n players, set of edges E, strategies for each player are
paths in the network (S), and there is a congestion function
ce : {0, 1, . . . , n} → Z+. When all players choose their strategy
path si ∈ Si we have the load of edge e, `s(e) = |{si : e ∈ si}| and
ui = −

∑
e∈si ce(`s(e)).

Braess’ paradox

100 drivers that want to go from s to t.
What is Nash equilibrium?

Atomic Congestion Games

We have n players, set of edges E, strategies for each player are
paths in the network (S), and there is a congestion function
ce : {0, 1, . . . , n} → Z+. When all players choose their strategy
path si ∈ Si we have the load of edge e, `s(e) = |{si : e ∈ si}| and
ui = −

∑
e∈si ce(`s(e)).

Braess’ paradox

100 drivers that want to go from s to t.
What is Nash equilibrium?

Atomic Congestion Games

We have n players, set of edges E, strategies for each player are
paths in the network (S), and there is a congestion function
ce : {0, 1, . . . , n} → Z+. When all players choose their strategy
path si ∈ Si we have the load of edge e, `s(e) = |{si : e ∈ si}| and
ui = −

∑
e∈si ce(`s(e)).

Braess’ paradox

100 drivers that want to go from s to t.

What is Nash equilibrium?

Atomic Congestion Games

We have n players, set of edges E, strategies for each player are
paths in the network (S), and there is a congestion function
ce : {0, 1, . . . , n} → Z+. When all players choose their strategy
path si ∈ Si we have the load of edge e, `s(e) = |{si : e ∈ si}| and
ui = −

∑
e∈si ce(`s(e)).

Braess’ paradox

100 drivers that want to go from s to t.
What is Nash equilibrium?

Atomic Congestion Games

Now consider that we introduce a new edge between A and B,
such that c(A,B)(x) = 0, ∀x ∈ `(A,B).

What is Nash equilibrium?

Atomic Congestion Games

Now consider that we introduce a new edge between A and B,
such that c(A,B)(x) = 0, ∀x ∈ `(A,B).

What is Nash equilibrium?

Atomic Congestion Games

Now consider that we introduce a new edge between A and B,
such that c(A,B)(x) = 0, ∀x ∈ `(A,B).

What is Nash equilibrium?

Atomic Congestion Games

Theorem

Every atomic congestion game has a pure Nash equilibrium.

Proof Sketch:

We define a potential function φ(s) =
∑

e

∑`s(e)
j=1 ce(j).

Define `≤is (e) = |{sj : e ∈ sj ∧ j = 1, . . . , i}|. Now,

φ(s) =
n∑
i=1

∑
e∈si

ce(`
≤i
s (e))

Consider player n switching from sn to s′n

Atomic Congestion Games

Theorem

Every atomic congestion game has a pure Nash equilibrium.

Proof Sketch:
We define a potential function φ(s) =

∑
e

∑`s(e)
j=1 ce(j).

Define `≤is (e) = |{sj : e ∈ sj ∧ j = 1, . . . , i}|. Now,

φ(s) =
n∑
i=1

∑
e∈si

ce(`
≤i
s (e))

Consider player n switching from sn to s′n

Atomic Congestion Games

Theorem

Every atomic congestion game has a pure Nash equilibrium.

Proof Sketch:
We define a potential function φ(s) =

∑
e

∑`s(e)
j=1 ce(j).

Define `≤is (e) = |{sj : e ∈ sj ∧ j = 1, . . . , i}|.

Now,

φ(s) =
n∑
i=1

∑
e∈si

ce(`
≤i
s (e))

Consider player n switching from sn to s′n

Atomic Congestion Games

Theorem

Every atomic congestion game has a pure Nash equilibrium.

Proof Sketch:
We define a potential function φ(s) =

∑
e

∑`s(e)
j=1 ce(j).

Define `≤is (e) = |{sj : e ∈ sj ∧ j = 1, . . . , i}|. Now,

φ(s) =

n∑
i=1

∑
e∈si

ce(`
≤i
s (e))

Consider player n switching from sn to s′n

Atomic Congestion Games

Theorem

Every atomic congestion game has a pure Nash equilibrium.

Proof Sketch:
We define a potential function φ(s) =

∑
e

∑`s(e)
j=1 ce(j).

Define `≤is (e) = |{sj : e ∈ sj ∧ j = 1, . . . , i}|. Now,

φ(s) =

n∑
i=1

∑
e∈si

ce(`
≤i
s (e))

Consider player n switching from sn to s′n

Atomic Congestion Games

Proof Continued:

φ(s) =
n∑
i=1

∑
e∈si

ce(`
≤i
s (e))

Consider a player (WLOG n) switching from si to s′n:

φ(s)− φ(s′) =
∑
e∈sn

ce(`
≤n
s (e))−

∑
e∈s′n

ce(`
≤n
s′ (e)) (6)

=
∑
e∈sn

ce(`s(e))−
∑
e∈s′n

ce(`s′(e)) (7)

= cn(s)− cn(s′) = un(s′)− un(s) (8)

Function φ attains a minimum (that must exist) at a Nash
equilibrium.

Atomic Congestion Games

Proof Continued:

φ(s) =

n∑
i=1

∑
e∈si

ce(`
≤i
s (e))

Consider a player (WLOG n) switching from si to s′n:

φ(s)− φ(s′) =
∑
e∈sn

ce(`
≤n
s (e))−

∑
e∈s′n

ce(`
≤n
s′ (e)) (6)

=
∑
e∈sn

ce(`s(e))−
∑
e∈s′n

ce(`s′(e)) (7)

= cn(s)− cn(s′) = un(s′)− un(s) (8)

Function φ attains a minimum (that must exist) at a Nash
equilibrium.

Atomic Congestion Games

Proof Continued:

φ(s) =

n∑
i=1

∑
e∈si

ce(`
≤i
s (e))

Consider a player (WLOG n) switching from si to s′n:

φ(s)− φ(s′) =
∑
e∈sn

ce(`
≤n
s (e))−

∑
e∈s′n

ce(`
≤n
s′ (e)) (6)

=
∑
e∈sn

ce(`s(e))−
∑
e∈s′n

ce(`s′(e)) (7)

= cn(s)− cn(s′) = un(s′)− un(s) (8)

Function φ attains a minimum (that must exist) at a Nash
equilibrium.

Atomic Congestion Games

Proof Continued:

φ(s) =

n∑
i=1

∑
e∈si

ce(`
≤i
s (e))

Consider a player (WLOG n) switching from si to s′n:

φ(s)− φ(s′) =
∑
e∈sn

ce(`
≤n
s (e))−

∑
e∈s′n

ce(`
≤n
s′ (e)) (6)

=
∑
e∈sn

ce(`s(e))−
∑
e∈s′n

ce(`s′(e)) (7)

= cn(s)− cn(s′) = un(s′)− un(s) (8)

Function φ attains a minimum (that must exist) at a Nash
equilibrium.

Atomic Congestion Games

Proof Continued:

φ(s) =

n∑
i=1

∑
e∈si

ce(`
≤i
s (e))

Consider a player (WLOG n) switching from si to s′n:

φ(s)− φ(s′) =
∑
e∈sn

ce(`
≤n
s (e))−

∑
e∈s′n

ce(`
≤n
s′ (e)) (6)

=
∑
e∈sn

ce(`s(e))−
∑
e∈s′n

ce(`s′(e)) (7)

= cn(s)− cn(s′) = un(s′)− un(s) (8)

Function φ attains a minimum (that must exist) at a Nash
equilibrium.

Congestion Games

Finding a pure Nash equilibrium is PLS-complete for congestion
games.

This holds for generalizations:

weighted congestion games

offers a strongly polynomial approximate algorithm for
non-atomic congestion games

For some subclasses, it is polynomial to find a pure NE (e.g., for
symmetric network congestion games due to min-cost flow).

Many works study Price of Anarchy (or other) concepts in such
games.

Congestion Games

Finding a pure Nash equilibrium is PLS-complete for congestion
games.

This holds for generalizations:

weighted congestion games

offers a strongly polynomial approximate algorithm for
non-atomic congestion games

For some subclasses, it is polynomial to find a pure NE (e.g., for
symmetric network congestion games due to min-cost flow).

Many works study Price of Anarchy (or other) concepts in such
games.

Congestion Games

Finding a pure Nash equilibrium is PLS-complete for congestion
games.

This holds for generalizations:

weighted congestion games

offers a strongly polynomial approximate algorithm for
non-atomic congestion games

For some subclasses, it is polynomial to find a pure NE (e.g., for
symmetric network congestion games due to min-cost flow).

Many works study Price of Anarchy (or other) concepts in such
games.

Congestion Games

Finding a pure Nash equilibrium is PLS-complete for congestion
games.

This holds for generalizations:

weighted congestion games

offers a strongly polynomial approximate algorithm for
non-atomic congestion games

For some subclasses, it is polynomial to find a pure NE (e.g., for
symmetric network congestion games due to min-cost flow).

Many works study Price of Anarchy (or other) concepts in such
games.

Congestion Games

Finding a pure Nash equilibrium is PLS-complete for congestion
games.

This holds for generalizations:

weighted congestion games

offers a strongly polynomial approximate algorithm for
non-atomic congestion games

For some subclasses, it is polynomial to find a pure NE (e.g., for
symmetric network congestion games due to min-cost flow).

Many works study Price of Anarchy (or other) concepts in such
games.

Congestion Games

Finding a pure Nash equilibrium is PLS-complete for congestion
games.

This holds for generalizations:

weighted congestion games

offers a strongly polynomial approximate algorithm for
non-atomic congestion games

For some subclasses, it is polynomial to find a pure NE (e.g., for
symmetric network congestion games due to min-cost flow).

Many works study Price of Anarchy (or other) concepts in such
games.

Congestion Games

Finding a pure Nash equilibrium is PLS-complete for congestion
games.

This holds for generalizations:

weighted congestion games

offers a strongly polynomial approximate algorithm for
non-atomic congestion games

For some subclasses, it is polynomial to find a pure NE (e.g., for
symmetric network congestion games due to min-cost flow).

Many works study Price of Anarchy (or other) concepts in such
games.

Generalization to Potential Games

This result generalizes to a wider class of potential games [6].
Informally, a potential game is such that has a potential function
same as in the proof for the congestion games2:

φ(s′)− φ(s) = ui(s
′)− ui(s),

where i is the deviating player.

Theorem ([5])

Any exact potential game is isomorphic to a congestion game.

Theorem (shortened [5])

Any PLS problem can be reduced in polynomial time to a general
potential game.

2In potential games, a maximum of the potential function is sought which is
different to the congestion games case.

Generalization to Potential Games

This result generalizes to a wider class of potential games [6].

Informally, a potential game is such that has a potential function
same as in the proof for the congestion games2:

φ(s′)− φ(s) = ui(s
′)− ui(s),

where i is the deviating player.

Theorem ([5])

Any exact potential game is isomorphic to a congestion game.

Theorem (shortened [5])

Any PLS problem can be reduced in polynomial time to a general
potential game.

2In potential games, a maximum of the potential function is sought which is
different to the congestion games case.

Generalization to Potential Games

This result generalizes to a wider class of potential games [6].
Informally, a potential game is such that has a potential function
same as in the proof for the congestion games2:

φ(s′)− φ(s) = ui(s
′)− ui(s),

where i is the deviating player.

Theorem ([5])

Any exact potential game is isomorphic to a congestion game.

Theorem (shortened [5])

Any PLS problem can be reduced in polynomial time to a general
potential game.

2In potential games, a maximum of the potential function is sought which is
different to the congestion games case.

Generalization to Potential Games

This result generalizes to a wider class of potential games [6].
Informally, a potential game is such that has a potential function
same as in the proof for the congestion games2:

φ(s′)− φ(s) = ui(s
′)− ui(s),

where i is the deviating player.

Theorem ([5])

Any exact potential game is isomorphic to a congestion game.

Theorem (shortened [5])

Any PLS problem can be reduced in polynomial time to a general
potential game.

2In potential games, a maximum of the potential function is sought which is
different to the congestion games case.

Generalization to Potential Games

This result generalizes to a wider class of potential games [6].
Informally, a potential game is such that has a potential function
same as in the proof for the congestion games2:

φ(s′)− φ(s) = ui(s
′)− ui(s),

where i is the deviating player.

Theorem ([5])

Any exact potential game is isomorphic to a congestion game.

Theorem (shortened [5])

Any PLS problem can be reduced in polynomial time to a general
potential game.

2In potential games, a maximum of the potential function is sought which is
different to the congestion games case.

Example of Potential Games

Prisoners’ Dilemma:

Example of Potential Games

Prisoners’ Dilemma:

Example of Potential Games

Prisoners’ Dilemma:

Polymatrix Games

A polymatrix game G consists of the following:

a finite set of players N = {1, . . . , n}, where each player
corresponds to a node in a graph, and a set of edges E that
are unordered pairs of players (i, j) such that i 6= j

a finite set of strategies for each player Si
for each edge e ∈ E , there is a two-player game (uij , uji)
where the players are i, j, strategy sets Si,Sj respectively, and
utility function uij : Si × Sj → R (similarly for uji)

for each player i ∈ N and strategy profile s = (s1, . . . , sn),
the utility of player i is

ui(s) =
∑

∀j∈N :(i,j)∈E

uij(si, sj)

Polymatrix Games

A polymatrix game G consists of the following:

a finite set of players N = {1, . . . , n}, where each player
corresponds to a node in a graph, and a set of edges E that
are unordered pairs of players (i, j) such that i 6= j

a finite set of strategies for each player Si
for each edge e ∈ E , there is a two-player game (uij , uji)
where the players are i, j, strategy sets Si,Sj respectively, and
utility function uij : Si × Sj → R (similarly for uji)

for each player i ∈ N and strategy profile s = (s1, . . . , sn),
the utility of player i is

ui(s) =
∑

∀j∈N :(i,j)∈E

uij(si, sj)

Polymatrix Games

A polymatrix game G consists of the following:

a finite set of players N = {1, . . . , n}, where each player
corresponds to a node in a graph, and a set of edges E that
are unordered pairs of players (i, j) such that i 6= j

a finite set of strategies for each player Si
for each edge e ∈ E , there is a two-player game (uij , uji)
where the players are i, j, strategy sets Si,Sj respectively, and
utility function uij : Si × Sj → R (similarly for uji)

for each player i ∈ N and strategy profile s = (s1, . . . , sn),
the utility of player i is

ui(s) =
∑

∀j∈N :(i,j)∈E

uij(si, sj)

Polymatrix Games

A polymatrix game G consists of the following:

a finite set of players N = {1, . . . , n}, where each player
corresponds to a node in a graph, and a set of edges E that
are unordered pairs of players (i, j) such that i 6= j

a finite set of strategies for each player Si

for each edge e ∈ E , there is a two-player game (uij , uji)
where the players are i, j, strategy sets Si,Sj respectively, and
utility function uij : Si × Sj → R (similarly for uji)

for each player i ∈ N and strategy profile s = (s1, . . . , sn),
the utility of player i is

ui(s) =
∑

∀j∈N :(i,j)∈E

uij(si, sj)

Polymatrix Games

A polymatrix game G consists of the following:

a finite set of players N = {1, . . . , n}, where each player
corresponds to a node in a graph, and a set of edges E that
are unordered pairs of players (i, j) such that i 6= j

a finite set of strategies for each player Si
for each edge e ∈ E , there is a two-player game (uij , uji)
where the players are i, j, strategy sets Si,Sj respectively, and
utility function uij : Si × Sj → R (similarly for uji)

for each player i ∈ N and strategy profile s = (s1, . . . , sn),
the utility of player i is

ui(s) =
∑

∀j∈N :(i,j)∈E

uij(si, sj)

Polymatrix Games

A polymatrix game G consists of the following:

a finite set of players N = {1, . . . , n}, where each player
corresponds to a node in a graph, and a set of edges E that
are unordered pairs of players (i, j) such that i 6= j

a finite set of strategies for each player Si
for each edge e ∈ E , there is a two-player game (uij , uji)
where the players are i, j, strategy sets Si,Sj respectively, and
utility function uij : Si × Sj → R (similarly for uji)

for each player i ∈ N and strategy profile s = (s1, . . . , sn),
the utility of player i is

ui(s) =
∑

∀j∈N :(i,j)∈E

uij(si, sj)

Polymatrix Games

For some subclasses that admit pure Nash equilibria, it is PLS-hard
to compute one (e.g., in case we have symmetric two-player games
over the edges – also known as “team polymatrix games”).

Examples: coordination game among agents, games among agents
in a network

Polymatrix Games

For some subclasses that admit pure Nash equilibria, it is PLS-hard
to compute one (e.g., in case we have symmetric two-player games
over the edges – also known as “team polymatrix games”).

Examples: coordination game among agents, games among agents
in a network

Polymatrix Games

For some subclasses that admit pure Nash equilibria, it is PLS-hard
to compute one (e.g., in case we have symmetric two-player games
over the edges – also known as “team polymatrix games”).

Examples: coordination game among agents, games among agents
in a network

Zero-Sum Polymatrix Games [7]

We talk about zero-sum polymatrix games if for all strategy
profiles s ∈ S it holds that

∑
i∈N ui(s) = 0.

Example: security game between multiple defenders and multiple
attackers

Theorem

A Nash equilibrium of a zero-sum polymatrix game can be found in
polynomial time by solving a single linear program.

Proof Sketch:

min
x,w

∑
i∈N

wi

s.t. wi ≥ ui(si, x−i) ∀i ∈ N , ∀si ∈ Si
xi ∈ ∆(Si)

Zero-Sum Polymatrix Games [7]

We talk about zero-sum polymatrix games if for all strategy
profiles s ∈ S it holds that

∑
i∈N ui(s) = 0.

Example: security game between multiple defenders and multiple
attackers

Theorem

A Nash equilibrium of a zero-sum polymatrix game can be found in
polynomial time by solving a single linear program.

Proof Sketch:

min
x,w

∑
i∈N

wi

s.t. wi ≥ ui(si, x−i) ∀i ∈ N , ∀si ∈ Si
xi ∈ ∆(Si)

Zero-Sum Polymatrix Games [7]

We talk about zero-sum polymatrix games if for all strategy
profiles s ∈ S it holds that

∑
i∈N ui(s) = 0.

Example: security game between multiple defenders and multiple
attackers

Theorem

A Nash equilibrium of a zero-sum polymatrix game can be found in
polynomial time by solving a single linear program.

Proof Sketch:

min
x,w

∑
i∈N

wi

s.t. wi ≥ ui(si, x−i) ∀i ∈ N , ∀si ∈ Si
xi ∈ ∆(Si)

Zero-Sum Polymatrix Games [7]

We talk about zero-sum polymatrix games if for all strategy
profiles s ∈ S it holds that

∑
i∈N ui(s) = 0.

Example: security game between multiple defenders and multiple
attackers

Theorem

A Nash equilibrium of a zero-sum polymatrix game can be found in
polynomial time by solving a single linear program.

Proof Sketch:

min
x,w

∑
i∈N

wi

s.t. wi ≥ ui(si, x−i) ∀i ∈ N , ∀si ∈ Si
xi ∈ ∆(Si)

Zero-Sum Polymatrix Games [7]

We talk about zero-sum polymatrix games if for all strategy
profiles s ∈ S it holds that

∑
i∈N ui(s) = 0.

Example: security game between multiple defenders and multiple
attackers

Theorem

A Nash equilibrium of a zero-sum polymatrix game can be found in
polynomial time by solving a single linear program.

Proof Sketch:

min
x,w

∑
i∈N

wi

s.t. wi ≥ ui(si, x−i) ∀i ∈ N , ∀si ∈ Si
xi ∈ ∆(Si)

Zero-Sum Polymatrix Games [7]

We talk about zero-sum polymatrix games if for all strategy
profiles s ∈ S it holds that

∑
i∈N ui(s) = 0.

Example: security game between multiple defenders and multiple
attackers

Theorem

A Nash equilibrium of a zero-sum polymatrix game can be found in
polynomial time by solving a single linear program.

Proof Sketch:

min
x,w

∑
i∈N

wi

s.t. wi ≥ ui(si, x−i) ∀i ∈ N , ∀si ∈ Si
xi ∈ ∆(Si)

Zero-Sum Polymatrix Games [7]

Proof Sketch:

min
x,w

∑
i∈N

wi

s.t. wi ≥ ui(si, x−i) ∀i ∈ N , ∀si ∈ Si
xi ∈ ∆(Si)

It holds∑
i∈N

wi ≥
∑
i∈N

max
s∈Si

ui(s, x−i) = max
xi∈∆(Si)

∑
i∈N

ui(s, x−i) ≥ 0

Setting wi = maxs∈Si ui(s, x
∗
−i), where x∗ is a NE is a feasible

solution (and vice versa).

Zero-Sum Polymatrix Games [7]

Proof Sketch:

min
x,w

∑
i∈N

wi

s.t. wi ≥ ui(si, x−i) ∀i ∈ N , ∀si ∈ Si
xi ∈ ∆(Si)

It holds∑
i∈N

wi ≥
∑
i∈N

max
s∈Si

ui(s, x−i) = max
xi∈∆(Si)

∑
i∈N

ui(s, x−i) ≥ 0

Setting wi = maxs∈Si ui(s, x
∗
−i), where x∗ is a NE is a feasible

solution (and vice versa).

Zero-Sum Polymatrix Games [7]

Proof Sketch:

min
x,w

∑
i∈N

wi

s.t. wi ≥ ui(si, x−i) ∀i ∈ N , ∀si ∈ Si
xi ∈ ∆(Si)

It holds

∑
i∈N

wi ≥
∑
i∈N

max
s∈Si

ui(s, x−i) = max
xi∈∆(Si)

∑
i∈N

ui(s, x−i) ≥ 0

Setting wi = maxs∈Si ui(s, x
∗
−i), where x∗ is a NE is a feasible

solution (and vice versa).

Zero-Sum Polymatrix Games [7]

Proof Sketch:

min
x,w

∑
i∈N

wi

s.t. wi ≥ ui(si, x−i) ∀i ∈ N , ∀si ∈ Si
xi ∈ ∆(Si)

It holds∑
i∈N

wi ≥
∑
i∈N

max
s∈Si

ui(s, x−i) = max
xi∈∆(Si)

∑
i∈N

ui(s, x−i) ≥ 0

Setting wi = maxs∈Si ui(s, x
∗
−i), where x∗ is a NE is a feasible

solution (and vice versa).

Zero-Sum Polymatrix Games

Generalization of the min-max theorem and two-player zero-sum
games.

Many “nice properties” of two-player zero-sum games do not
hold:

players do not have unique payoff value (or value of the game)

equilibrium strategies are not max-min strategies

equilibrium strategies are not exchangeable

Zero-Sum Polymatrix Games

Generalization of the min-max theorem and two-player zero-sum
games.

Many “nice properties” of two-player zero-sum games do not
hold:

players do not have unique payoff value (or value of the game)

equilibrium strategies are not max-min strategies

equilibrium strategies are not exchangeable

Zero-Sum Polymatrix Games

Generalization of the min-max theorem and two-player zero-sum
games.

Many “nice properties” of two-player zero-sum games do not
hold:

players do not have unique payoff value (or value of the game)

equilibrium strategies are not max-min strategies

equilibrium strategies are not exchangeable

Zero-Sum Polymatrix Games

Generalization of the min-max theorem and two-player zero-sum
games.

Many “nice properties” of two-player zero-sum games do not
hold:

players do not have unique payoff value (or value of the game)

equilibrium strategies are not max-min strategies

equilibrium strategies are not exchangeable

Zero-Sum Polymatrix Games

Generalization of the min-max theorem and two-player zero-sum
games.

Many “nice properties” of two-player zero-sum games do not
hold:

players do not have unique payoff value (or value of the game)

equilibrium strategies are not max-min strategies

equilibrium strategies are not exchangeable

Zero-Sum Polymatrix Games

Generalization of the min-max theorem and two-player zero-sum
games.

Many “nice properties” of two-player zero-sum games do not
hold:

players do not have unique payoff value (or value of the game)

equilibrium strategies are not max-min strategies

equilibrium strategies are not exchangeable

References I

(besides the books)

[1] C. H. Papadimitriou and T. Roughgarden.

Computing Correlated Equilbria in Multi-Player Games.

Journal of ACM, 2008.

[2] A. X. Jiang and K. Leyton-Brown, “Polynomial-time computation of exact
correlated equilibrium in compact games,” in Proceedings of the 12th
ACM Conference on Electronic Commerce, EC ’11, (New York, NY,
USA), pp. 119–126, ACM, 2011.

[3] L. MacDermed, K. S. Narayan, C. L. Isbell, and L. Weiss, “Quick
polytope approximation of all correlated equilibria in stochastic games,” in
Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, AAAI’11, pp. 707–712, AAAI Press, 2011.

[4] C. Murray and G. Gordon, “Finding correlated equilibria in general sum
stochastic games,” tech. rep., CMU-ML-07-113, Carnegie Mellon
University, 2007.

References II

[5] A. Fabrikant, C. H. Papadimitriou, and K. Talwar.

The Complexity of Pure Nash Equilibria.

In STOC, 2004.

[6] D. Monderer and L. S. Shapley.

Potential games.

Games and Economic Behavior, 14:124–143, 1996.

[7] Y. Cai, O. Candogan, C. Daskalakis, and C. Papadimitriou.

Zero-sum polymatrix games: A generalization of minmax.

Mathematics of Operations Research.

