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strategy profiles p = A(S) that recommends each player i to play
the best response; Vs;, s, € S;:
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Coarse Correlated Equilibrium — a probability distribution over pure
strategy profiles p = A(S) that in expectation recommends each
player i to play the best response; Vs; € S;:

Y (i) = Y p(s uilsiys)
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Correlated Equilibrium

The solution concept describes situations with a correlation device
present in the environment.

Correlated equilibrium is closely related to learning in competitive
scenarios.

(Coarse) Correlated equilibrium is often a result of a no-regret
learning strategy in a game.
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Computing a CE in normal-form games:

Z p(siy s—i)ui(si, s—i) > Z p(siys—i)ui(si,5-:) Vsi,s; €S

S_;ES_; S_;ES_;

Computation in succinct games:
polymatrix games

congestion games

[
[

B anonymous games
® symmetric games
[

graphical games with a bounded tree-width
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Succinct Representations

compact representation of the game with n = |N/| players
we want to reduce the input from |S|V to |S|¢, where d < V]

which succinct representations are we going to talk about:
m congestion games (network congestion games, ...)
m polymatrix games (zero-sum polymatrix games)

m graphical games (action graph games)



Succinct Representations

Definition (Papadimitriou and Roughgarden, 2008)

A succinct game G = (I, T,U) is defined, like all computational
problems, in terms of a set of efficiently recognizable inputs I, and
two polynomial algorithms 7" and U. For each z € I, T'(z) returns
a type, that is, an integer n > 2 (the number of players) and an
n-tuple of integers (¢1,...,ty,), each at least 2 (the cardinalities of
the strategy sets). If n and the t,'s are polynomially bounded in
|z|, the game is said to be of polynomial type. Given any n-tuple
of positive integers s = (s1,...,sy), with s, <, for all p <mn,
U(z,p, s) returns an integer standing for the utility u,(s). The
resulting game is denoted G(z).



Computing Correlated Equilibria in Succinct Games [1]



Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.



Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game.



Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game. Let o, be the product of
distributions over pure strategies for all players for strategy profile
s; 05 = Ioi(si).



Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game. Let o, be the product of
distributions over pure strategies for all players for strategy profile
s; 05 = oi(s4).

For a correlated equilibrium o it must hold:

Z o (sirs—) (uilsi, s—i) —ui(sj,5—)) >0 Vie N,Vs;, s} €S,

S_;ES_;



Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game. Let o, be the product of
distributions over pure strategies for all players for strategy profile
s; 05 = Ioi(si).
For a correlated equilibrium o it must hold:

Z o (sirs—) (uilsi, s—i) —ui(sj,5—)) >0 Vie N,Vs;, s} €S,
S_;ES_;

Consider the linear program:



Computing Correlated Equilibria in Succinct Games [1]

For almost all succinct representations it holds that the problem of
finding any correlated equilibrium can be solved in polynomial time.

Consider a general n-player game. Let o, be the product of
distributions over pure strategies for all players for strategy profile
s; 05 = Ioi(si).
For a correlated equilibrium o it must hold:

Z o (sirs—) (uilsi, s—i) —ui(sj,5—)) >0 Vie N,Vs;, s} €S,
S_;ES_;

Consider the linear program:



Computing Correlated Equilibria in Succinct Games [1]

Consider the linear program:

where Uo are the constraints for correlated equilibrium.



Computing Correlated Equilibria in Succinct Games [1]

Consider the linear program:

where Uo are the constraints for correlated equilibrium. If there
exists a correlated equilibrium, then this LP is unbounded.
Consider the dual:



Computing Correlated Equilibria in Succinct Games [1]

Consider the linear program:

where Uo are the constraints for correlated equilibrium. If there
exists a correlated equilibrium, then this LP is unbounded.
Consider the dual:

UTyg—l
y=>0



Computing Correlated Equilibria in Succinct Games [1]

Consider the linear program:

where Uo are the constraints for correlated equilibrium. If there
exists a correlated equilibrium, then this LP is unbounded.
Consider the dual:

UTyg—l
y>0

Lemma:

For every y > 0, there is a product distribution ¢ such that
oUTy =0.



Computing Correlated Equilibria in Succinct Games [1]



Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible.



Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible. Thanks to the duality we
know that the original LP has exponentially many variables (o)
and the dual has exponentially many constraints.



Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible. Thanks to the duality we
know that the original LP has exponentially many variables (o)
and the dual has exponentially many constraints.

We can make use of the ellipsoid method for the dual (ellipsoid
against hope) — we iteratively add constraints o,U”y < —1 to the
dual for some product distributions oy.



Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible. Thanks to the duality we
know that the original LP has exponentially many variables (o)
and the dual has exponentially many constraints.

We can make use of the ellipsoid method for the dual (ellipsoid
against hope) — we iteratively add constraints o,U”y < —1 to the
dual for some product distributions oy.

Say, after L iterations the dual becomes infeasible — we have added
L constraints and we have L added product distributions .



Computing Correlated Equilibria in Succinct Games [1]

Therefore, the dual program is infeasible. Thanks to the duality we
know that the original LP has exponentially many variables (o)
and the dual has exponentially many constraints.

We can make use of the ellipsoid method for the dual (ellipsoid
against hope) — we iteratively add constraints o,U”y < —1 to the
dual for some product distributions oy.

Say, after L iterations the dual becomes infeasible — we have added
L constraints and we have L added product distributions g,. We
can translate them to the original LP, where

[Uskla >0 a>0

and « is a correlated equilibrium (a convex combination of product
distributions over S that satisfies CE constraints).
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Computing Correlated Equilibria in Succinct Games [1]

This approach does not generalize to finding some optimum
correlated equilibrium. For example, maximizing the expected
utility of players (max ) us05) and constraining o to be a
probability distribution (3, 0, = 1) would lead to dual constraints

(Us)Ty < —us + 2,

for which it is often not possible to find a polynomial-time
separating oracle necessary for the ellipsoid algorithm.

For some games it is possible to find optimal correlated equilibrium
in polynomial time:

anonymous games
symmetric games

graphical games with a bounded tree-width
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Ellipsoid Against Hope has been simplified by [2].

Instead of adding a randomized vector z(*), Jiang and
Leyton-Brown proved that it is sufficient to use a “purified
separation oracle” that adds cuts according to pure strategies.

As a consequence, their algorithm computes an exact and rational
CE with support at most

L+ ISl (1Si = 1)

ieN

in polynomial time.
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Apply the ellipsoid method using the Purified Separation
Oracle, a starting ball with radius of R = uPN? centered at 0,

max
and stopping when the volume of the ellipsoid is below
v = ozNuT_nZgE’, where a,y is the volume of the N-dimensional

unit ball.

Form the matrix U’ whose columns are U ) () generated
by the separation oracle during the run of the ellipsoid
method.

Find a feasible solution x’ of the linear feasibility program

Uz >0, 2" >0 172" =1.
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Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

m a player receives a signal (a recommendation) that is a
strategy in the whole game (standard correlated equilibrium)

m a player receives a signal (a recommendation) that is an action
to play when a certain decision point in the game is reached

m formally defined as Extensive-Form Correlated Equilibrium
(EFCE)

m computing one EFCE is computable in polynomial time

m computing an optimal EFCE is NP-hard for almost all cases
(two-player games with no chance is the exception)
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Representation of strategies in the two-player case: probability
distribution over pairs of relevant sequences.

p(0,0) =1 0<p(o1,02) <1 (1)
plos,0-;) = Zp(aia,a_i) VI € Zi,0; = seq,(I),Vo_; € rel(oi) (2)
acA(I)
v(o—;) = Z p(oi,0-:)g—i(0i,0-i) + Z _ia) Yo_;, € ¥_;
ci€rel(o_;) acA_;(I)
(3)
v(I,0-;) > Z p(oi,0-:)g—i(oi,seq_;(I)a) + Z v(I'yo_;) (4)
oi€rel(o_;) I'eZ_;;seq_;(I")y=o0_;(I)a

v(seq_,;(Ia) = v(I,seq_;(I)a) VI eZ_;,VNae A(I) (5)
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EFCE can be generalized also to infinite
(turn-based/concurrent-move) stochastic games.

We can seek for a probability distribution over a space of joint
actions applicable in states of a stochastic games.

Vi (h) =Y w(h,a)QF (h,a,a)

a

Q7 (h.a,a") =R(s(h),a") + 7Y P(s'|s(h), ")V ((h,a,d’, "))

Each recommended action must be a best action to play in given
state and given possible future policies:

v(haiaaiaa;) Q;r(h)aiva’i) > Q?(hvai’a;)
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The achievable set of values V'(s) in a correlated equilibrium is a
polytope in RWI.

This is constrained due to incentives constraints of players; hence,
there can be many of such constraints (undbounded number due
to [3]).

We can approximate the polytope using a predefined set of
half-spaces H = [H;, ..., Hp].

This gives us a compact approximate representation (it is sufficient
to remember the offset) that further simplifies value backup
functions — this generally leads to Minkowski sum of convex sets.
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The general outline of QPACE algorithm [3] per iteration, is:
Calculate the action achievable sets Q(s, a,d’).

Construct a set of inequalities that defines the set of
correlated equilibria.

Approximately project the feasible set into value-vector space
by solving a linear program for each hyperplane of V (s).
The policy after a deviation can be pre-computed — so called grim

trigger strategy, where all the other players try to punish the
deviating player [3].

Alternatively, we may require subgame perfection — i.e., even after
a deviation the players play rationally [4].
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We have n players, set of edges F, strategies for each player are
paths in the network (S), and there is a congestion function

ce :{0,1,...,n} — ZT. When all players choose their strategy
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Ui = =Y ey, Cells(€)).
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X 100

100
B

100 drivers that want to go from s to ¢.
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Theorem

Every atomic congestion game has a pure Nash equilibrium.

Proof Sketch:
We define a potential function ¢(s) =), Zfsz(i) ce(J)-
Define (=i(e) = [{sj:e €s; Aj=1,...,i}|. Now,

o(s) =D D cellz'(e))

=1 BGSZ‘

Consider player n switching from s, to s/,
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Atomic Congestion Games

Proof Continued:

n

o(s) =D celt5'(e))

=1 e€s;

Consider a player (WLOG n) switching from s; to s}

0(s) = d(s) = Y cellz"(e)) = Y ce(£5" () (6)

= cellsle)) = Y cellule)) (7)
= cn(s) — Cn(sl) = Un(sl) — un(s) (8)

Function ¢ attains a minimum (that must exist) at a Nash
equilibrium. O
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Congestion Games

Finding a pure Nash equilibrium is PLS-complete for congestion
games.

This holds for generalizations:
m weighted congestion games

m offers a strongly polynomial approximate algorithm for
non-atomic congestion games

For some subclasses, it is polynomial to find a pure NE (e.g., for
symmetric network congestion games due to min-cost flow).

Many works study Price of Anarchy (or other) concepts in such
games.
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Generalization to Potential Games

This result generalizes to a wider class of potential games [6].

Informally, a potential game is such that has a potential function

same as in the proof for the congestion games?:

¢(s) = ¢(s) = ui(s') — ui(s),

where 7 is the deviating player.

Theorem ([5
Any exact potential game is isomorphic to a congestion game.

Theorem (shortened [5

Any PLS problem can be reduced in polynomial time to a general
potential game.

2In potential games, a maximum of the potential function is sought which is
different to the congestion games case.
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Prisoners’ Dilemma:

Q
I
I
I
=
=
b=y
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Polymatrix Games

A polymatrix game G consists of the following:

m a finite set of players N = {1,...,n}, where each player
corresponds to a node in a graph, and a set of edges £ that
are unordered pairs of players (i, j) such that i # j

m a finite set of strategies for each player S;

m for each edge e € &, there is a two-player game (u", u/?)
where the players are i, j, strategy sets S;, S; respectively, and
utility function u% : S; x §; — R (similarly for u/*)

m for each player i € N and strategy profile s = (s1,..., $n),
the utility of player i is

ui(s) = Z uij(si, 55)

ViEN:(i,j)EE
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Polymatrix Games

For some subclasses that admit pure Nash equilibria, it is PLS-hard
to compute one (e.g., in case we have symmetric two-player games
over the edges — also known as “team polymatrix games").

Examples: coordination game among agents, games among agents
in a network
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We talk about zero-sum polymatrix games if for all strategy
profiles s € S it holds that »,_\ u;(s) = 0.

Example: security game between multiple defenders and multiple
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Proof Sketch:

’ ieN
s.t. w; > ui(si,azfi) Vi € N, Vs; € S;
x; € A(S;)
It holds
Z w; > Zmaxu,-(s,x_i) = max ui(s,z—;) >0
ieN ien o5 T€AS) o5

Setting w; = maxses, ui(s,z*;), where z* is a NE is a feasible
solution (and vice versa).
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Zero-Sum Polymatrix Games

Generalization of the min-max theorem and two-player zero-sum
games.

Many ‘“nice properties” of two-player zero-sum games do not
hold:

m players do not have unique payoff value (or value of the game)
m equilibrium strategies are not max-min strategies

m equilibrium strategies are not exchangeable
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