Computing Correlated Equilibrium and Succinct Representation of Games

Branislav Bošanský

Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague

branislav.bosansky@agents.fel.cvut.cz

March 25, 2019

Correlated Equilibrium

(ロト (個) (E) (E) (E) (E) の(C)

Correlated Equilibrium – a probability distribution over pure strategy profiles $p = \Delta(S)$ that recommends each player *i* to play the best response; $\forall s_i, s'_i \in S_i$:

$$\sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s'_i, s_{-i})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Correlated Equilibrium – a probability distribution over pure strategy profiles $p = \Delta(S)$ that recommends each player *i* to play the best response; $\forall s_i, s'_i \in S_i$:

$$\sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s'_i, s_{-i})$$

Coarse Correlated Equilibrium – a probability distribution over pure strategy profiles $p = \Delta(S)$ that in expectation recommends each player *i* to play the best response; $\forall s_i \in S_i$:

$$\sum_{s' \in \mathcal{S}'} p(s')u_i(s') \ge \sum_{s' \in \mathcal{S}'} p(s')u_i(s_i, s'_{-i})$$

Correlated Equilibrium

(ロト (個) (E) (E) (E) (E) の(C)

The solution concept describes situations with a correlation device present in the environment.

(ロ)、(型)、(E)、(E)、(E)、(D)へ(C)

The solution concept describes situations with a correlation device present in the environment.

Correlated equilibrium is closely related to learning in competitive scenarios.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The solution concept describes situations with a correlation device present in the environment.

Correlated equilibrium is closely related to learning in competitive scenarios.

(Coarse) Correlated equilibrium is often a result of a no-regret learning strategy in a game.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Correlated Equilibrium

(ロト (個) (E) (E) (E) (E) の(C)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$\sum_{s_{-i}\in\mathcal{S}_{-i}} p(s_i, s_{-i})u_i(s_i, s_{-i}) \ge \sum_{s_{-i}\in\mathcal{S}_{-i}} p(s_i, s_{-i})u_i(s'_i, s_{-i}) \quad \forall s_i, s'_i\in\mathcal{S}_i$$

(ロ)、(型)、(E)、(E)、(E)、(D)へ(C)

$$\sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s'_i, s_{-i}) \quad \forall s_i, s'_i \in \mathcal{S}_i$$

・ロト・日本・ヨト・ヨト・日・ シック

$$\sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s'_i, s_{-i}) \quad \forall s_i, s'_i \in \mathcal{S}_i$$

・ロト・日本・ヨト・ヨト・日・ シック

$$\sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s'_i, s_{-i}) \quad \forall s_i, s'_i \in \mathcal{S}_i$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Computation in succinct games:

polymatrix games

$$\sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s'_i, s_{-i}) \quad \forall s_i, s'_i \in \mathcal{S}_i$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- polymatrix games
- congestion games

$$\sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s'_i, s_{-i}) \quad \forall s_i, s'_i \in \mathcal{S}_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- polymatrix games
- congestion games
- anonymous games

$$\sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s'_i, s_{-i}) \quad \forall s_i, s'_i \in \mathcal{S}_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- polymatrix games
- congestion games
- anonymous games
- symmetric games

$$\sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in \mathcal{S}_{-i}} p(s_i, s_{-i}) u_i(s'_i, s_{-i}) \quad \forall s_i, s'_i \in \mathcal{S}_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- polymatrix games
- congestion games
- anonymous games
- symmetric games
- graphical games with a bounded tree-width

Succinct Representations

(ロト (個) (E) (E) (E) (E) の(C)

・ロト・日本・ヨト・ヨト・日・ シック

we want to reduce the input from $|\mathcal{S}|^{|\mathcal{N}|}$ to $|\mathcal{S}|^d$, where $d \ll |\mathcal{N}|$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

we want to reduce the input from $|\mathcal{S}|^{|\mathcal{N}|}$ to $|\mathcal{S}|^d$, where $d \ll |\mathcal{N}|$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which succinct representations are we going to talk about:

we want to reduce the input from $|\mathcal{S}|^{|\mathcal{N}|}$ to $|\mathcal{S}|^d$, where $d \ll |\mathcal{N}|$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which succinct representations are we going to talk about:

■ congestion games (network congestion games, ...)

we want to reduce the input from $|\mathcal{S}|^{|\mathcal{N}|}$ to $|\mathcal{S}|^d$, where $d \ll |\mathcal{N}|$

which succinct representations are we going to talk about:

- congestion games (network congestion games, ...)
- polymatrix games (zero-sum polymatrix games)

we want to reduce the input from $|\mathcal{S}|^{|\mathcal{N}|}$ to $|\mathcal{S}|^d$, where $d \ll |\mathcal{N}|$

which succinct representations are we going to talk about:

- congestion games (network congestion games, ...)
- polymatrix games (zero-sum polymatrix games)
- graphical games (action graph games)

Definition (Papadimitriou and Roughgarden, 2008)

A succinct game G = (I, T, U) is defined, like all computational problems, in terms of a set of efficiently recognizable inputs I, and two polynomial algorithms T and U. For each $z \in I$, T(z) returns a type, that is, an integer $n \ge 2$ (the number of players) and an n-tuple of integers (t_1, \ldots, t_n) , each at least 2 (the cardinalities of the strategy sets). If n and the t_p 's are polynomially bounded in |z|, the game is said to be of polynomial type. Given any n-tuple of positive integers $s = (s_1, \ldots, s_n)$, with $s_p \le t_p$ for all $p \le n$, U(z, p, s) returns an integer standing for the utility $u_p(s)$. The resulting game is denoted G(z).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider a general *n*-player game.

Consider a general *n*-player game. Let σ_s be the product of distributions over pure strategies for all players for strategy profile s; $\sigma_s = \prod_i \sigma_i(s_i)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider a general *n*-player game. Let σ_s be the product of distributions over pure strategies for all players for strategy profile s; $\sigma_s = \prod_i \sigma_i(s_i)$. For a *correlated equilibrium* σ it must hold:

 $\sum_{s_{-i} \in \mathcal{S}_{-i}} \sigma(s_i, s_{-i}) \left(u_i(s_i, s_{-i}) - u_i(s'_i, s_{-i}) \right) \ge 0 \quad \forall i \in \mathcal{N}, \forall s_i, s'_i \in \mathcal{S}_i$

Consider a general *n*-player game. Let σ_s be the product of distributions over pure strategies for all players for strategy profile s; $\sigma_s = \prod_i \sigma_i(s_i)$. For a *correlated equilibrium* σ it must hold:

 $\sum_{s_{-i} \in \mathcal{S}_{-i}} \sigma(s_i, s_{-i}) \left(u_i(s_i, s_{-i}) - u_i(s'_i, s_{-i}) \right) \ge 0 \quad \forall i \in \mathcal{N}, \forall s_i, s'_i \in \mathcal{S}_i$

Consider the linear program:

Consider a general *n*-player game. Let σ_s be the product of distributions over pure strategies for all players for strategy profile s; $\sigma_s = \prod_i \sigma_i(s_i)$. For a *correlated equilibrium* σ it must hold:

$$\sum_{s_{-i} \in \mathcal{S}_{-i}} \sigma(s_i, s_{-i}) \left(u_i(s_i, s_{-i}) - u_i(s'_i, s_{-i}) \right) \ge 0 \quad \forall i \in \mathcal{N}, \forall s_i, s'_i \in \mathcal{S}_i$$

Consider the linear program:

$$\max \sum_{s \in S} \sigma_s$$
$$U\sigma \ge 0$$
$$\sigma \ge 0$$

= 900

Consider the linear program:

$$\max \sum_{s \in \mathcal{S}} \sigma_s$$
$$U\sigma \ge 0$$
$$\sigma \ge 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $U\sigma$ are the constraints for correlated equilibrium.

Consider the linear program:

$$\max \sum_{s \in \mathcal{S}} \sigma_s$$
$$U\sigma \ge 0$$
$$\sigma \ge 0$$

where $U\sigma$ are the constraints for correlated equilibrium. If there exists a correlated equilibrium, then this LP is unbounded. Consider the dual:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider the linear program:

$$\max \sum_{s \in \mathcal{S}} \sigma_s$$
$$U\sigma \ge 0$$
$$\sigma \ge 0$$

where $U\sigma$ are the constraints for correlated equilibrium. If there exists a correlated equilibrium, then this LP is unbounded. Consider the dual:

$$U^T y \le -1$$
$$y \ge 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider the linear program:

$$\max \sum_{s \in \mathcal{S}} \sigma_s$$
$$U\sigma \ge 0$$
$$\sigma \ge 0$$

where $U\sigma$ are the constraints for correlated equilibrium. If there exists a correlated equilibrium, then this LP is unbounded. Consider the dual:

$$U^T y \le -1$$
$$y \ge 0$$

Lemma:

For every $y \ge 0$, there is a product distribution σ such that $\sigma U^T y = 0.$

Therefore, the dual program is infeasible.

We can make use of the ellipsoid method for the dual (*ellipsoid* against hope) – we iteratively add constraints $\sigma_{\ell}U^T y \leq -1$ to the dual for some product distributions σ_{ℓ} .

We can make use of the ellipsoid method for the dual (*ellipsoid* against hope) – we iteratively add constraints $\sigma_{\ell}U^T y \leq -1$ to the dual for some product distributions σ_{ℓ} .

Say, after L iterations the dual becomes infeasible – we have added L constraints and we have L added product distributions $\sigma_\ell.$

We can make use of the ellipsoid method for the dual (*ellipsoid* against hope) – we iteratively add constraints $\sigma_{\ell}U^T y \leq -1$ to the dual for some product distributions σ_{ℓ} .

Say, after L iterations the dual becomes infeasible – we have added L constraints and we have L added product distributions σ_{ℓ} . We can translate them to the original LP, where

$$[U\sigma_{\ell}^T]\alpha \ge 0 \qquad \alpha \ge 0$$

and α is a correlated equilibrium (a convex combination of product distributions over S that satisfies CE constraints).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Some details were omitted:

 L is guaranteed to be polynomial, however, there is a problem with precision (in practice; addressed by the follow-up work [2])

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- L is guaranteed to be polynomial, however, there is a problem with precision (in practice; addressed by the follow-up work [2])
- we need a polynomial algorithm for computing an expected utility (the product $U\sigma_{\ell}^{T}$) i.e., the *polynomial expectation property*

- L is guaranteed to be polynomial, however, there is a problem with precision (in practice; addressed by the follow-up work [2])
- we need a polynomial algorithm for computing an expected utility (the product $U\sigma_{\ell}^{T}$) i.e., the *polynomial expectation property*
- this algorithm is specific for each type of a succinct game:

- L is guaranteed to be polynomial, however, there is a problem with precision (in practice; addressed by the follow-up work [2])
- we need a polynomial algorithm for computing an expected utility (the product $U\sigma_{\ell}^{T}$) i.e., the *polynomial expectation property*
- this algorithm is specific for each type of a succinct game:

polymatrix games

- L is guaranteed to be polynomial, however, there is a problem with precision (in practice; addressed by the follow-up work [2])
- we need a polynomial algorithm for computing an expected utility (the product $U\sigma_{\ell}^{T}$) i.e., the *polynomial expectation property*
- this algorithm is specific for each type of a succinct game:

- polymatrix games
- congestion games

- L is guaranteed to be polynomial, however, there is a problem with precision (in practice; addressed by the follow-up work [2])
- we need a polynomial algorithm for computing an expected utility (the product $U\sigma_{\ell}^{T}$) i.e., the *polynomial expectation property*
- this algorithm is specific for each type of a succinct game:

- polymatrix games
- congestion games

This approach does not generalize to finding some optimum correlated equilibrium. For example, maximizing the expected utility of players (max $\sum_s u_s \sigma_s$) and constraining σ to be a probability distribution ($\sum_s \sigma_s = 1$) would lead to dual constraints

$$(U_s)^T y \le -u_s + z,$$

for which it is often not possible to find a polynomial-time separating oracle necessary for the ellipsoid algorithm.

This approach does not generalize to finding some optimum correlated equilibrium. For example, maximizing the expected utility of players (max $\sum_{s} u_s \sigma_s$) and constraining σ to be a probability distribution ($\sum_{s} \sigma_s = 1$) would lead to dual constraints

$$(U_s)^T y \le -u_s + z,$$

for which it is often not possible to find a polynomial-time separating oracle necessary for the ellipsoid algorithm.

For some games it is possible to find optimal correlated equilibrium in polynomial time:

This approach does not generalize to finding some optimum correlated equilibrium. For example, maximizing the expected utility of players (max $\sum_s u_s \sigma_s$) and constraining σ to be a probability distribution ($\sum_s \sigma_s = 1$) would lead to dual constraints

 $(U_s)^T y \le -u_s + z,$

for which it is often not possible to find a polynomial-time separating oracle necessary for the ellipsoid algorithm.

For some games it is possible to find optimal correlated equilibrium in polynomial time:

1 anonymous games

This approach does not generalize to finding some optimum correlated equilibrium. For example, maximizing the expected utility of players (max $\sum_s u_s \sigma_s$) and constraining σ to be a probability distribution ($\sum_s \sigma_s = 1$) would lead to dual constraints

 $(U_s)^T y \le -u_s + z,$

for which it is often not possible to find a polynomial-time separating oracle necessary for the ellipsoid algorithm.

For some games it is possible to find optimal correlated equilibrium in polynomial time:

- 1 anonymous games
- 2 symmetric games

This approach does not generalize to finding some optimum correlated equilibrium. For example, maximizing the expected utility of players $(\max \sum_{s} u_s \sigma_s)$ and constraining σ to be a probability distribution $(\sum_{s} \sigma_s = 1)$ would lead to dual constraints

 $(U_s)^T y \le -u_s + z,$

for which it is often not possible to find a polynomial-time separating oracle necessary for the ellipsoid algorithm.

For some games it is possible to find optimal correlated equilibrium in polynomial time:

- **1** anonymous games
- 2 symmetric games
- Is graphical games with a bounded tree-width

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Ellipsoid Against Hope has been simplified by [2].

Ellipsoid Against Hope has been simplified by [2].

Instead of adding a randomized vector $x^{(k)}$, Jiang and Leyton-Brown proved that it is sufficient to use a "purified separation oracle" that adds cuts according to pure strategies.

Ellipsoid Against Hope has been simplified by [2].

Instead of adding a randomized vector $x^{(k)}$, Jiang and Leyton-Brown proved that it is sufficient to use a "purified separation oracle" that adds cuts according to pure strategies.

As a consequence, their algorithm computes an exact and rational CE with support at most

Ellipsoid Against Hope has been simplified by [2].

Instead of adding a randomized vector $x^{(k)}$, Jiang and Leyton-Brown proved that it is sufficient to use a "purified separation oracle" that adds cuts according to pure strategies.

As a consequence, their algorithm computes an exact and rational CE with support at most

$$1 + \sum_{i \in \mathcal{N}} |\mathcal{S}_i| \left(|\mathcal{S}_i| - 1 \right)$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

in polynomial time.

1 Apply the ellipsoid method using the Purified Separation Oracle, a starting ball with radius of $R = u_{max}^{5N^3}$ centered at 0, and stopping when the volume of the ellipsoid is below $v = \alpha_N u_{max}^{-7N^5}$, where α_N is the volume of the N-dimensional unit ball.

- 1 Apply the ellipsoid method using the Purified Separation Oracle, a starting ball with radius of $R = u_{max}^{5N^3}$ centered at 0, and stopping when the volume of the ellipsoid is below $v = \alpha_N u_{max}^{-7N^5}$, where α_N is the volume of the N-dimensional unit ball.
- 2 Form the matrix U' whose columns are $U_{s^{(1)},\ldots,s^{(L)}}$ generated by the separation oracle during the run of the ellipsoid method.

- 1 Apply the ellipsoid method using the Purified Separation Oracle, a starting ball with radius of $R = u_{max}^{5N^3}$ centered at 0, and stopping when the volume of the ellipsoid is below $v = \alpha_N u_{max}^{-7N^5}$, where α_N is the volume of the N-dimensional unit ball.
- 2 Form the matrix U' whose columns are $U_{s^{(1)},\ldots,s^{(L)}}$ generated by the separation oracle during the run of the ellipsoid method.
- **3** Find a feasible solution x' of the linear feasibility program

$$U'x' \ge 0, \ x' \ge 0, \ \mathbf{1}^{\top}x' = 1.$$

Correlated Equilibrium in Dynamic Games

Correlated Equilibrium in Dynamic Games

Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

The signals can arrive in two different settings:

 a player receives a signal (a recommendation) that is a strategy in the whole game (standard correlated equilibrium)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The signals can arrive in two different settings:

- a player receives a signal (a recommendation) that is a strategy in the whole game (standard correlated equilibrium)
- a player receives a signal (a recommendation) that is an action to play when a certain decision point in the game is reached

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

The signals can arrive in two different settings:

- a player receives a signal (a recommendation) that is a strategy in the whole game (standard correlated equilibrium)
- a player receives a signal (a recommendation) that is an action to play when a certain decision point in the game is reached
 - formally defined as Extensive-Form Correlated Equilibrium (EFCE)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

The signals can arrive in two different settings:

- a player receives a signal (a recommendation) that is a strategy in the whole game (standard correlated equilibrium)
- a player receives a signal (a recommendation) that is an action to play when a certain decision point in the game is reached
 - formally defined as *Extensive-Form Correlated Equilibrium* (EFCE)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

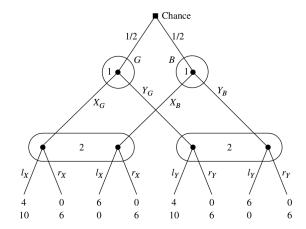
computing one EFCE is computable in polynomial time

Correlated equilibrium in sequential games.

The signals can arrive in two different settings:

- a player receives a signal (a recommendation) that is a strategy in the whole game (standard correlated equilibrium)
- a player receives a signal (a recommendation) that is an action to play when a certain decision point in the game is reached
 - formally defined as *Extensive-Form Correlated Equilibrium* (EFCE)
 - computing one EFCE is computable in polynomial time
 - computing an optimal EFCE is NP-hard for almost all cases (two-player games with no chance is the exception)

Extensive-Form Correlated Equilibrium



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Representation of strategies in the two-player case: probability distribution over pairs of *relevant sequences*.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Representation of strategies in the two-player case: probability distribution over pairs of *relevant sequences*.

$$p(\emptyset, \emptyset) = 1; \quad 0 \le p(\sigma_1, \sigma_2) \le 1$$

$$p(\sigma_i, \sigma_{-i}) = \sum_{a \in A(I)} p(\sigma_i a, \sigma_{-i}) \quad \forall I \in \mathcal{I}_i, \sigma_i = \mathsf{seq}_i(I), \forall \sigma_{-i} \in rel(\sigma_i)$$

$$v(\sigma_{-i}) = \sum_{\sigma_i \in rel(\sigma_{-i})} p(\sigma_i, \sigma_{-i})g_{-i}(\sigma_i, \sigma_{-i}) + \sum_{a \in A_{-i}(I)} v(\sigma_{-i}a) \quad \forall \sigma_{-i} \in \Sigma_{-i}$$

$$(3)$$

$$v(I,\sigma_{-i}) \ge \sum_{\sigma_i \in rel(\sigma_{-i})} p(\sigma_i,\sigma_{-i})g_{-i}(\sigma_i,\mathsf{seq}_{-i}(I)a) + \sum_{\substack{I' \in \mathcal{I}_{-i}; \; \mathsf{seq}_{-i}(I') = \sigma_{-i}(I)a}} v(I',\sigma_{-i})$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $v(\mathsf{seq}_{-i}(I)a) = v(I, \mathsf{seq}_{-i}(I)a) \qquad \forall I \in \mathcal{I}_{-i}, \forall a \in A(I)$ (5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EFCE can be generalized also to infinite (turn-based/concurrent-move) stochastic games.

We can seek for a probability distribution over a space of joint actions applicable in states of a stochastic games.

We can seek for a probability distribution over a space of joint actions applicable in states of a stochastic games.

$$V_i^{\pi}(h) = \sum_{a} \pi(h, a) Q_i^{\pi}(h, a, a)$$
$$Q_i^{\pi}(h, a, a') = R(s(h), a') + \gamma \sum_{s'} P(s'|s(h), a') V_i^{\pi}(\langle h, a, a', s' \rangle)$$

We can seek for a probability distribution over a space of joint actions applicable in states of a stochastic games.

$$V_i^{\pi}(h) = \sum_{a} \pi(h, a) Q_i^{\pi}(h, a, a)$$
$$Q_i^{\pi}(h, a, a') = R(s(h), a') + \gamma \sum_{s'} P(s'|s(h), a') V_i^{\pi}(\langle h, a, a', s' \rangle)$$

Each recommended action must be a best action to play in given state and given possible future policies:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We can seek for a probability distribution over a space of joint actions applicable in states of a stochastic games.

$$V_i^{\pi}(h) = \sum_{a} \pi(h, a) Q_i^{\pi}(h, a, a)$$
$$Q_i^{\pi}(h, a, a') = R(s(h), a') + \gamma \sum_{s'} P(s'|s(h), a') V_i^{\pi}(\langle h, a, a', s' \rangle)$$

Each recommended action must be a best action to play in given state and given possible future policies:

$$\forall (h, i, a_i, a'_i) \qquad Q_i^{\pi}(h, a_i, a_i) \ge Q_i^{\pi}(h, a_i, a'_i)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is constrained due to incentives constraints of players; hence, there can be many of such constraints (undbounded number due to [3]).

This is constrained due to incentives constraints of players; hence, there can be many of such constraints (undbounded number due to [3]).

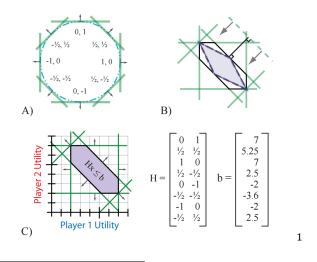
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

We can approximate the polytope using a predefined set of half-spaces $H = [H_1, \ldots, H_m]$.

This is constrained due to incentives constraints of players; hence, there can be many of such constraints (undbounded number due to [3]).

We can approximate the polytope using a predefined set of half-spaces $H = [H_1, \ldots, H_m]$.

This gives us a compact approximate representation (it is sufficient to remember the offset) that further simplifies value backup functions – this generally leads to Minkowski sum of convex sets.



¹Figure from [3]

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 = • • • • • ○ • • •

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The general outline of QPACE algorithm [3] per iteration, is:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The general outline of QPACE algorithm [3] per iteration, is:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1 Calculate the action achievable sets Q(s, a, a').

The general outline of QPACE algorithm [3] per iteration, is:

- **1** Calculate the action achievable sets Q(s, a, a').
- 2 Construct a set of inequalities that defines the set of correlated equilibria.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The general outline of QPACE algorithm [3] per iteration, is:

- **1** Calculate the action achievable sets Q(s, a, a').
- 2 Construct a set of inequalities that defines the set of correlated equilibria.
- 3 Approximately project the feasible set into value-vector space by solving a linear program for each hyperplane of V(s).

The general outline of QPACE algorithm [3] per iteration, is:

- **1** Calculate the action achievable sets Q(s, a, a').
- 2 Construct a set of inequalities that defines the set of correlated equilibria.
- 3 Approximately project the feasible set into value-vector space by solving a linear program for each hyperplane of V(s).

The policy after a deviation can be pre-computed – so called *grim trigger strategy*, where all the other players try to punish the deviating player [3].

The general outline of QPACE algorithm [3] per iteration, is:

- **1** Calculate the action achievable sets Q(s, a, a').
- 2 Construct a set of inequalities that defines the set of correlated equilibria.
- 3 Approximately project the feasible set into value-vector space by solving a linear program for each hyperplane of V(s).

The policy after a deviation can be pre-computed – so called *grim trigger strategy*, where all the other players try to punish the deviating player [3].

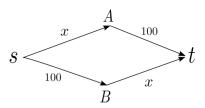
Alternatively, we may require subgame perfection - i.e., even after a deviation the players play rationally [4].

Atomic Congestion Games

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

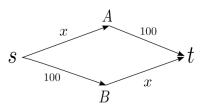
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

Braess' paradox



(日本)(四本)(日本)(日本)(日本)

Braess' paradox



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

100 drivers that want to go from s to t.

Braess' paradox



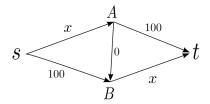
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

100 drivers that want to go from s to t. What is Nash equilibrium?

Atomic Congestion Games

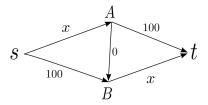
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Now consider that we introduce a new edge between A and B, such that $c_{(A,B)}(x) = 0, \forall x \in \ell_{(A,B)}$.



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Now consider that we introduce a new edge between A and B, such that $c_{(A,B)}(x) = 0, \forall x \in \ell_{(A,B)}$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

What is Nash equilibrium?

Atomic Congestion Games

Theorem

Every atomic congestion game has a pure Nash equilibrium.

Proof Sketch:

Every atomic congestion game has a pure Nash equilibrium.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof Sketch:

We define a potential function $\phi(s) = \sum_{e} \sum_{j=1}^{\ell_s(e)} c_e(j)$.

Every atomic congestion game has a pure Nash equilibrium.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof Sketch:

We define a potential function $\phi(s) = \sum_{e} \sum_{j=1}^{\ell_s(e)} c_e(j)$. Define $\ell_s^{\leq i}(e) = |\{s_j : e \in s_j \land j = 1, \dots, i\}|.$

Every atomic congestion game has a pure Nash equilibrium.

Proof Sketch:

We define a potential function $\phi(s) = \sum_{e} \sum_{j=1}^{\ell_s(e)} c_e(j)$. Define $\ell_s^{\leq i}(e) = |\{s_j : e \in s_j \land j = 1, \dots, i\}|$. Now,

$$\phi(s) = \sum_{i=1}^{n} \sum_{e \in s_i} c_e(\ell_s^{\leq i}(e))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Every atomic congestion game has a pure Nash equilibrium.

Proof Sketch:

We define a potential function $\phi(s) = \sum_{e} \sum_{j=1}^{\ell_s(e)} c_e(j)$. Define $\ell_s^{\leq i}(e) = |\{s_j : e \in s_j \land j = 1, \dots, i\}|$. Now,

$$\phi(s) = \sum_{i=1}^n \sum_{e \in s_i} c_e(\ell_s^{\leq i}(e))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Consider player n switching from s_n to s'_n

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Proof Continued:

$$\phi(s) = \sum_{i=1}^{n} \sum_{e \in s_i} c_e(\ell_s^{\leq i}(e))$$

Proof Continued:

$$\phi(s) = \sum_{i=1}^{n} \sum_{e \in s_i} c_e(\ell_s^{\leq i}(e))$$

・ロト・日本・ヨト・ヨト・ヨー うへぐ

Consider a player (WLOG n) switching from s_i to s'_n :

Proof Continued:

$$\phi(s) = \sum_{i=1}^{n} \sum_{e \in s_i} c_e(\ell_s^{\leq i}(e))$$

Consider a player (WLOG n) switching from s_i to s'_n :

$$\phi(s) - \phi(s') = \sum_{e \in s_n} c_e(\ell_s^{\le n}(e)) - \sum_{e \in s'_n} c_e(\ell_{s'}^{\le n}(e))$$
(6)
$$= \sum_{e \in s_n} c_e(\ell_s(e)) - \sum_{e \in s'_n} c_e(\ell_{s'}(e))$$
(7)
$$= c_n(s) - c_n(s') = u_n(s') - u_n(s)$$
(8)

・ロト・日本・ヨト・ヨト・日・ シック

Proof Continued:

$$\phi(s) = \sum_{i=1}^n \sum_{e \in s_i} c_e(\ell_s^{\leq i}(e))$$

Consider a player (WLOG n) switching from s_i to s'_n :

$$\phi(s) - \phi(s') = \sum_{e \in s_n} c_e(\ell_s^{\le n}(e)) - \sum_{e \in s'_n} c_e(\ell_{s'}^{\le n}(e))$$
(6)
$$= \sum_{e \in s_n} c_e(\ell_s(e)) - \sum_{e \in s'_n} c_e(\ell_{s'}(e))$$
(7)
$$= c_n(s) - c_n(s') = u_n(s') - u_n(s)$$
(8)

Function ϕ attains a minimum (that must exist) at a Nash equilibrium.

Congestion Games

This holds for generalizations:

- This holds for generalizations:
 - weighted congestion games

- This holds for generalizations:
 - weighted congestion games
 - offers a strongly polynomial approximate algorithm for non-atomic congestion games

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- This holds for generalizations:
 - weighted congestion games
 - offers a strongly polynomial approximate algorithm for non-atomic congestion games

For some subclasses, it is polynomial to find a pure NE (e.g., for symmetric network congestion games due to min-cost flow).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- This holds for generalizations:
 - weighted congestion games
 - offers a strongly polynomial approximate algorithm for non-atomic congestion games

For some subclasses, it is polynomial to find a pure NE (e.g., for symmetric network congestion games due to min-cost flow).

Many works study *Price of Anarchy* (or other) concepts in such games.

Generalization to Potential Games

Generalization to Potential Games

This result generalizes to a wider class of *potential games* [6].

 This result generalizes to a wider class of *potential games* [6]. Informally, a potential game is such that has a potential function same as in the proof for the congestion games²:

$$\phi(s') - \phi(s) = u_i(s') - u_i(s),$$

where i is the deviating player.

This result generalizes to a wider class of *potential games* [6]. Informally, a potential game is such that has a potential function same as in the proof for the congestion games²:

$$\phi(s') - \phi(s) = u_i(s') - u_i(s),$$

where i is the deviating player.

Theorem ([5])

Any exact potential game is isomorphic to a congestion game.

This result generalizes to a wider class of *potential games* [6]. Informally, a potential game is such that has a potential function same as in the proof for the congestion games²:

$$\phi(s') - \phi(s) = u_i(s') - u_i(s),$$

where i is the deviating player.

Theorem ([5])

Any exact potential game is isomorphic to a congestion game.

Theorem (shortened [5])

Any PLS problem can be reduced in polynomial time to a general potential game.

Example of Potential Games

(ロト (個) (E) (E) (E) (E) の(C)

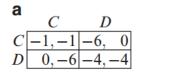
Example of Potential Games

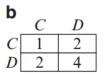
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Prisoners' Dilemma:

Example of Potential Games

Prisoners' Dilemma:





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

(ロト (個) (E) (E) (E) (E) の(C)

A *polymatrix game* \mathcal{G} consists of the following:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

A polymatrix game \mathcal{G} consists of the following:

a finite set of players N = {1,...,n}, where each player corresponds to a node in a graph, and a set of edges E that are unordered pairs of players (i, j) such that i ≠ j

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A polymatrix game \mathcal{G} consists of the following:

a finite set of players N = {1,...,n}, where each player corresponds to a node in a graph, and a set of edges E that are unordered pairs of players (i, j) such that i ≠ j

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• a finite set of strategies for each player S_i

A polymatrix game \mathcal{G} consists of the following:

- a finite set of players N = {1,...,n}, where each player corresponds to a node in a graph, and a set of edges E that are unordered pairs of players (i, j) such that i ≠ j
- a finite set of strategies for each player \mathcal{S}_i
- for each edge $e \in \mathcal{E}$, there is a two-player game (u^{ij}, u^{ji}) where the players are i, j, strategy sets $\mathcal{S}_i, \mathcal{S}_j$ respectively, and utility function $u^{ij} : \mathcal{S}_i \times \mathcal{S}_j \to \mathbb{R}$ (similarly for u^{ji})

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A polymatrix game \mathcal{G} consists of the following:

- a finite set of players N = {1,...,n}, where each player corresponds to a node in a graph, and a set of edges E that are unordered pairs of players (i, j) such that i ≠ j
- a finite set of strategies for each player \mathcal{S}_i
- for each edge $e \in \mathcal{E}$, there is a two-player game (u^{ij}, u^{ji}) where the players are i, j, strategy sets $\mathcal{S}_i, \mathcal{S}_j$ respectively, and utility function $u^{ij}: \mathcal{S}_i \times \mathcal{S}_j \to \mathbb{R}$ (similarly for u^{ji})
- for each player $i \in \mathcal{N}$ and strategy profile $s = (s_1, \ldots, s_n)$, the utility of player i is

$$u_i(s) = \sum_{\forall j \in \mathcal{N}: (i,j) \in \mathcal{E}} u^{ij}(s_i, s_j)$$

(ロト (個) (E) (E) (E) (E) の(C)

For some subclasses that admit pure Nash equilibria, it is PLS-hard to compute one (e.g., in case we have symmetric two-player games over the edges – also known as "team polymatrix games").

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For some subclasses that admit pure Nash equilibria, it is PLS-hard to compute one (e.g., in case we have symmetric two-player games over the edges – also known as "team polymatrix games").

Examples: coordination game among agents, games among agents in a network

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We talk about zero-sum polymatrix games if for all strategy profiles $s \in S$ it holds that $\sum_{i \in N} u_i(s) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We talk about zero-sum polymatrix games if for all strategy profiles $s\in\mathcal{S}$ it holds that $\sum_{i\in\mathcal{N}}u_i(s)=0.$ Example: security game between multiple defenders and multiple attackers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We talk about zero-sum polymatrix games if for all strategy profiles $s \in \mathcal{S}$ it holds that $\sum_{i \in \mathcal{N}} u_i(s) = 0$. Example: security game between multiple defenders and multiple attackers

Theorem

A Nash equilibrium of a zero-sum polymatrix game can be found in polynomial time by solving a single linear program.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

We talk about zero-sum polymatrix games if for all strategy profiles $s \in \mathcal{S}$ it holds that $\sum_{i \in \mathcal{N}} u_i(s) = 0$. Example: security game between multiple defenders and multiple attackers

Theorem

A Nash equilibrium of a zero-sum polymatrix game can be found in polynomial time by solving a single linear program.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Proof Sketch:

We talk about zero-sum polymatrix games if for all strategy profiles $s \in \mathcal{S}$ it holds that $\sum_{i \in \mathcal{N}} u_i(s) = 0$. Example: security game between multiple defenders and multiple attackers

Theorem

A Nash equilibrium of a zero-sum polymatrix game can be found in polynomial time by solving a single linear program.

Proof Sketch:

$$\min_{\substack{x,w \ i \in \mathcal{N}}} \sum_{i \in \mathcal{N}} w_i$$
s.t. $w_i \ge u_i(s_i, x_{-i}) \quad \forall i \in \mathcal{N}, \ \forall s_i \in \mathcal{S}_i$
 $x_i \in \Delta(\mathcal{S}_i)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Proof Sketch:

Proof Sketch:

$$\min_{x,w} \sum_{i \in \mathcal{N}} w_i$$

s.t. $w_i \ge u_i(s_i, x_{-i}) \quad \forall i \in \mathcal{N}, \forall s_i \in \mathcal{S}_i$
 $x_i \in \Delta(\mathcal{S}_i)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

It holds

Proof Sketch:

$$\min_{\substack{x,w \ i \in \mathcal{N}}} \sum_{i \in \mathcal{N}} w_i$$

s.t. $w_i \ge u_i(s_i, x_{-i}) \quad \forall i \in \mathcal{N}, \ \forall s_i \in \mathcal{S}_i$
 $x_i \in \Delta(\mathcal{S}_i)$

It holds

$$\sum_{i \in \mathcal{N}} w_i \ge \sum_{i \in \mathcal{N}} \max_{s \in \mathcal{S}_i} u_i(s, x_{-i}) = \max_{x_i \in \Delta(\mathcal{S}_i)} \sum_{i \in \mathcal{N}} u_i(s, x_{-i}) \ge 0$$

Setting $w_i = \max_{s \in S_i} u_i(s, x_{-i}^*)$, where x^* is a NE is a feasible solution (and vice versa).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Many "nice properties" of two-player zero-sum games **do not hold**:

Many "nice properties" of two-player zero-sum games **do not hold**:

players do not have unique payoff value (or value of the game)

Many "nice properties" of two-player zero-sum games **do not hold**:

players do not have unique payoff value (or value of the game)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• equilibrium strategies are not max-min strategies

Many "nice properties" of two-player zero-sum games **do not hold**:

players do not have unique payoff value (or value of the game)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- equilibrium strategies are not max-min strategies
- equilibrium strategies are not exchangeable

References I

(besides the books)

- C. H. Papadimitriou and T. Roughgarden. Computing Correlated Equilbria in Multi-Player Games. *Journal of ACM*, 2008.
- [2] A. X. Jiang and K. Leyton-Brown, "Polynomial-time computation of exact correlated equilibrium in compact games," in *Proceedings of the 12th ACM Conference on Electronic Commerce*, EC '11, (New York, NY, USA), pp. 119–126, ACM, 2011.
- [3] L. MacDermed, K. S. Narayan, C. L. Isbell, and L. Weiss, "Quick polytope approximation of all correlated equilibria in stochastic games," in *Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence*, AAAI'11, pp. 707–712, AAAI Press, 2011.
- [4] C. Murray and G. Gordon, "Finding correlated equilibria in general sum stochastic games," tech. rep., CMU-ML-07-113, Carnegie Mellon University, 2007.

- [5] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The Complexity of Pure Nash Equilibria. In STOC, 2004.
- [6] D. Monderer and L. S. Shapley. Potential games.

Games and Economic Behavior, 14:124–143, 1996.

[7] Y. Cai, O. Candogan, C. Daskalakis, and C. Papadimitriou. Zero-sum polymatrix games: A generalization of minmax. *Mathematics of Operations Research.*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●