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Stackelberg Equilibrium

Players have different roles in the Stackelberg solution concept:

the leader – publicly commits to a strategy

the follower(s) – play a Nash equilibrium with respect to the
commitment of the leader

Stackelberg equilibrium is a strategy profile that satisfies the above
conditions and maximizes the expected utility value of the leader:

arg max
σ∈Σ;∀i∈N\{1}σi∈BRi(σ−i)

u1(σ)
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There may be multiple Nash equilibria

The followers need to break ties in case there are multiple NE:

arbitrary but fixed tie breaking rule

Strong SE – the followers select such NE that maximizes the
outcome of the leader (when the tie-braking is not specified
we mean SSE),

Weak SE – the followers select such NE that minimizes the
outcome of the leader.

Exact Weak Stackelberg equilibrium does not have to exist.

1 \ 2 a b c d e

U (2, 4) (6, 4) (9, 0) (1, 2) (7, 4)

D (8, 4) (0, 4) (3, 6) (1, 5) (0, 0)
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Computing a Stackelberg equilibrium in NFGs

The problem is polynomial for two-players normal-form games; 1 is
the leader, 2 is the follower.

Baseline polynomial algorithm requires solving |S2| linear programs:

max
σ1∈Σ1

∑
s1∈S1

σ1(s1)u1(s1, s2)

∑
s1∈S1

σ1(s1)u2(s1, s2) ≥
∑
s1∈S1

σ1(s1)u2(s1, s
′
2) ∀s′2 ∈ S2∑

s1∈S1

σ1(s1) =1

one for each s2 ∈ S2 assuming s2 is the best response of the
follower.



Computing a Stackelberg equilibrium in NFGs

The problem is polynomial for two-players normal-form games; 1 is
the leader, 2 is the follower.

Baseline polynomial algorithm requires solving |S2| linear programs:

max
σ1∈Σ1

∑
s1∈S1

σ1(s1)u1(s1, s2)

∑
s1∈S1

σ1(s1)u2(s1, s2) ≥
∑
s1∈S1

σ1(s1)u2(s1, s
′
2) ∀s′2 ∈ S2∑

s1∈S1

σ1(s1) =1

one for each s2 ∈ S2 assuming s2 is the best response of the
follower.



Computing a Stackelberg equilibrium in NFGs

The problem is polynomial for two-players normal-form games; 1 is
the leader, 2 is the follower.

Baseline polynomial algorithm requires solving |S2| linear programs:

max
σ1∈Σ1

∑
s1∈S1

σ1(s1)u1(s1, s2)

∑
s1∈S1

σ1(s1)u2(s1, s2) ≥
∑
s1∈S1

σ1(s1)u2(s1, s
′
2) ∀s′2 ∈ S2∑

s1∈S1

σ1(s1) =1

one for each s2 ∈ S2 assuming s2 is the best response of the
follower.



Computing a Stackelberg equilibrium in NFGs

The problem is polynomial for two-players normal-form games; 1 is
the leader, 2 is the follower.

Baseline polynomial algorithm requires solving |S2| linear programs:

max
σ1∈Σ1

∑
s1∈S1

σ1(s1)u1(s1, s2)

∑
s1∈S1

σ1(s1)u2(s1, s2) ≥
∑
s1∈S1

σ1(s1)u2(s1, s
′
2) ∀s′2 ∈ S2∑

s1∈S1

σ1(s1) =1

one for each s2 ∈ S2 assuming s2 is the best response of the
follower.



Computing a Stackelberg equilibrium in NFGs

We can reformulate the program as a mixed-integer linear program
(MILP) that is a basis for the hard cases (e.g., computing a SE in
Bayesian games):

max
σ∈Σ,y∈{0,1}|S2|

∑
s∈S
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Computing a Stackelberg equilibrium in EFGs

The problem is typically NP-hard [6, 2]:

two-player EFGs with chance (there exists a FPTAS for this
case [2]),

two-player EFGs with imperfect information,

two-player EFGs with perfect information but imperfect recall
(games on DAGs).

Main algorithms are based on the sequence-form LCP for
computing NE:

vinfi(σi) = sσi +
∑

I′i∈Ii:seqi(I
′
i)=σi

vI′i +
∑

σ−i∈Σ−i

gi(σi, σ−i) · r−i(σ−i) ∀i, σi

ri(σi) =
∑

a∈A(Ii)

ri(σia) ∀i ∈ N ∀Ii ∈ Ii, σi = seqi(Ii)

ri(∅) = 1 0 = ri(σi) · sσi ∀i ∈ N ∀σi ∈ Σi

0 ≤ ri(σi) ; 0 ≤ sσi ∀i ∈ N ∀σi ∈ Σi
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Computing a Stackelberg equilibrium in EFGs

MILP for computing SE for two-player extensive-form game with
perfect recall:

max
p,r,v,s

∑
z∈Z

p(z)u1(z)C(z)

vinf2(σ2) = sσ2
+

∑
I′∈I2:seq2(I′)=σ2

vI′ +
∑
σ1∈Σ1

r1(σ1)g2(σ1, σ2) ∀σ2 ∈ Σ2

ri(∅) = 1 ri(σi) =
∑

a∈Ai(Ii)

ri(σia) ∀i ∈ N ∀Ii ∈ Ii, σi = seqi(Ii)

0 ≤ sσ2 ≤ (1− r2(σ2)) ·M ∀σ2 ∈ Σ2

0 ≤ p(z) ≤ r2(seq2(z)) ∀z ∈ Z
0 ≤ p(z) ≤ r1(seq1(z)) ∀z ∈ Z

1 =
∑
z∈Z

p(z)C(z)

r2(σ2) ∈ {0, 1} ∀σ2 ∈ Σ2

0 ≤ r1(σ1) ≤ 1 ∀σ1 ∈ Σ1
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Stackelberg and Correlated Equilibrium

Recall the MILP program Stackelberg equilibrium and compare it
to the LP for correlated equilibrium:

we maximize the expected utility of the leader

we restrict the joint probability distribution so that the
follower plays a pure strategy

there are no incentive constraints of the leader

We can compute a Stackelberg equilibrium if we modify an
algorithm for computing an optimal correlated equilibrium.
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Computing a Stackelberg equilibrium in NFGs (2)

We can reformulate the MILP program as a single LP:

max
σ∈Σ

∑
s∈S

σ(s1, s2)u1(s1, s2)∑
s1,s2∈S1,2

σ(s1, s2)u2(s1, s2) ≥
∑

s1,s2∈S1,2

σ(s1, s2)u2(s1, s
′
2) ∀s′2 ∈ S2∑

s1,s2∈S1,2

σ(s1, s2) =1

Properties:

the objective is the same as in the MILP case (or multiple
LPs) case,

strategy σ does not necessarily corresponds to Stackelberg
equilibrium (the follower can receive multiple
recommendations that are best responses).
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equilibrium (the follower can receive multiple
recommendations that are best responses).
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