
Computing and Approximating Nash Equilibrium

Branislav Bošanský

Czech Technical University in Prague

branislav.bosansky@agents.fel.cvut.cz

March 13, 2019

Computing a Nash Equilibrium

computing a Nash Equilibrium in Bimatrix Games

there are two matrices of utility values A,B ∈ RM×N , where
player 1 has m actions and player 2 has n actions

we are going to use the following indexes:

M = {1, . . . ,m} N = {m+ 1, . . . ,m+ n}

Theorem (Best response condition)

Let x and y be mixed strategies of player 1 and 2, respectively.
Then x is a best response to y if and only if for all i ∈M

xi > 0 ⇒ (Ay)i = u = max{(Ay)k : k ∈M}

Computing a Nash Equilibrium

Definition (Nondegenerate games)

A two-player game is called nondegenerate if no mixed strategy of
support size k has more than k pure best responses.

Lemma (Nondegenerate games)

In any Nash equilibrium (x, y) of a nondegenerate bimatrix game,
x and y have supports of equal size.

we can use this observation for the first algorithm:

Equilibria by support enumeration

Equilibria by support enumeration

Method: For each k = 1, . . . ,min{m,n} and each pair (I, J) of
k-sized subsets of M and N , respectively, solve the equations:∑

i∈I
xibij = v for ∀j ∈ J,

∑
i∈I

xi = 1,

∑
j∈J

aijyj = u for ∀i ∈ I,
∑
j∈J

yj = 1,

and check that x ≥ 0, y ≥ 0, and that both x and y satisfy the
best response condition.

Equilibria by Labeled Polytopes

we will use best response polyhedra: the set of mixed strategies
together with the “upper envelope” of expected payoffs (and any
larger payoffs) to the other player.

consider an example game

A =

3 3
2 5
0 6

 , B =

3 2
2 6
3 1


BR polyhedron Q is the set of triplets (y4, y5, u) that satisfy:

3y4 + 3y5 ≤u
2y4 + 5y5 ≤u
0y4 + 6y5 ≤u
y4 ≥ 0, y5 ≥0, y4 + y5 = 1

Equilibria by Labeled Polytopes

Generally:

P = {(x, v) ∈ RM × R : x ≥ 0,1>x = 1, B>x ≤ 1v}
Q = {(y, u) ∈ RN × R : Ay ≤ 1u, y ≥ 0,1>y = 1}

each vertex of the polyhedron Q has label k ∈M ∪N , for which
k-th inequality in the definition of Q is binding:{∑

j∈N akjyj = u if k ∈M
yk = 0 if k ∈ N

An equilibrium is a pair (x, y) of mixed strategies so that with the
corresponding expected payoffs v and u, the pair ((x, v), (y, u)) in
P ×Q is completely labeled.

Equilibria by Labeled Polytopes

We can simplify polyhedra by removing the expected values

P = {x ∈ RM : x ≥ 0, B>x ≤ 1}
Q = {y ∈ RN : Ay ≤ 1, y ≥ 0}

New vectors x ∈ P and y ∈ Q are not mixed strategies – they need
to be scaled by v = 1

1>x
, or u = 1

1>y
, respectively.

This transformation preserves the labels on vertexes, since a
binding inequality in P corresponds to a binding inequality in P
(and the same holds for Q).

Equilibria by Vertex Enumeration

we can use the polytopes P and Q to improve the algorithm for
finding all Nash equilibria

For each vertex x of P − {0}, and each vertex y of Q− {0}, if

(x, y) is completely labeled, then
(
x · 1

1>x
, y · 1

1>y

)
is a Nash

equilibrium.

A more efficient approach compared to the support enumeration.

The Lemke-Howson Algorithm

we assign labels to edges of the polytopes – since we are in
nondegenerate polytopes, each vertex has m (or n, respectively)
labels, and an edge has m− 1 labels.

To drop a label l means to move from vertex x by an edge that
has all labels but l.

LH starts from (0,0) by dropping some label.

At the end of the corresponding edge, a new label is picked-up that
is a duplicate. Therefore, we must drop this label in the second
polytope. If there is no duplicate, we can output a Nash
equilibrium.

The Lemke-Howson Algorithm

Degenerate Games

What about degenerate games?

there can be infinitely many Nash equilibria

Lemke-Howson algorithm may fail since the continuation is
not unique

one needs to create a perturbed game

Theorem

Let (A,B) be a bimatrix game, and (x, y) ∈ P ×Q. Then (x, y)
(rescaled) is a Nash equilibrium if and only if there is a set U of
vertices of P − {0} and a set V of vertices of Q− {0} so that
x ∈ convU and y ∈ convV , and every (u, v) ∈ U × V is completely
labeled.

Equilibria by LCP/MILP Mathematical Programs

LCP formulation: ∑
j∈N

aijyj + qi =u ∀i ∈M

∑
i∈M

bijxi + pj =v ∀j ∈ N∑
i∈M

xi = 1
∑
j∈N

yj =1

xi ≥ 0, pi ≥ 0, yj ≥ 0, qj ≥0 ∀i ∈M, ∀j ∈ N
xi · pi = 0, yj · qj =0 ∀i ∈M, ∀j ∈ N

Equilibria by LCP/MILP Mathematical Programs

MILP formulation: ∑
j∈N

aijyj + qi =u ∀i ∈M

∑
i∈M

bijxi + pj =v ∀j ∈ N∑
i∈M

xi = 1
∑
j∈N

yj =1

wi, zj ∈ {0, 1}, wi ≥ xi ≥ 0, zj ≥ yj ≥0 ∀i ∈M,∀j ∈ N
0 ≤ pi ≤ (1− wi)Z, 0 ≤ qj ≤(1− zj)Z ∀i ∈M,∀j ∈ N

Nash Equilibria in Bimatrix Games

There are 3 main algorithms:

support enumeration search (PNS; R. Porter, E. Nudelman, and Y. Shoham, “Simple

search methods for finding a Nash equilibrium,” in AAAI, 2004, pp. 664669.)

Lemke-Howson (LH; C. Lemke and J. Howson, “Equilibrium points of bimatrix games,” SIAM J

APPL MATH, vol. 12, no. 2, pp. 413423, 1964.)

MILP variants (MILP; T. Sandholm, A. Gilpin, and V. Conitzer, “Mixed-integer programming

methods for finding Nash equilibria,” in AAAI, Pittsburgh, USA, 2005, pp. 495501.)

advantages/disadvantages:

LH and PNS are typically faster than MILP

MILP is much better when a specific equilibrium needs to be
found

MILP performance is getting better over time as the
development of solver evolves

Approximation of Nash Equilbria

We will focus on computing a Nash equilibrium in multi-player
games and on approximate algorithms.

Why do we need to approximate NE in multi-player games?

1 2

Left Right

Top 3, 0, 2 0, 2, 0

Down 0, 1, 0 1, 0, 0

Left Right

Top 1, 0, 0 0, 1, 0

Down 0, 3, 0 2, 0, 3

All Nash equilibria use irrational strategies even is such simple
game:

σrow(T) =
(
−13 +

√
601
)
/24

...

Approximation of Nash

different kinds of approximations of Nash:

σ is an ε-approximation of Nash if

i ∈ N ∀σ′i ∈ Σi σ
′ := (σ′i, σ−i)∑
s∈S

ui(s)σ(s) ≥
∑
s∈S

ui(s)σ
′(s)− ε

σ is an ε-approximately well-supported NE (or ε-NE), if

i ∈ N ∀si, s′i ∈ Si σi(si) > 0∑
s−i∈S−i

ui(si, s−i)σ−i(s−i) ≥
∑

s−i∈S−i

ui(s
′
i, s−i)σ−i(s−i)− ε

The above definition is an additive approximation.

Approximation of Nash

We can also define a relative approximation:

σ is a relative ε-approximation of Nash if

i ∈ N ∀σ′i ∈ Σi σ
′ := (σ′i, σ−i)∑

s∈S
ui(s)σ(s) ≥

∑
s∈S

ui(s)σ
′(s)−ε|

∑
s∈S

ui(s)σ
′(s)|

relative ε-Nash is defined analogously

Approximation of Nash

The simplest and the best known approximation algorithm is due
to Lipton et al. [2].

Theorem

In a two player game, for any Nash equilibrium (σ∗1, σ
∗
2) and for

any ε > 0 there exists, for every k ≥ 12 lnn
ε2

, a pair of k-uniform
strategies (σ′1, σ

′
2), such that:

1 (σ′1, σ
′
2) is a ε-Nash equilibrium1

2
∣∣∑

s∈S ui(s)σ
′(s)−

∑
s∈S ui(s)σ

∗(s)
∣∣ < ε for each player i,

where σ′i is a k-uniform strategy if it is a uniform distribution on a
multiset S ′i ⊆ Si, such that |S ′i| = k.

1Originally, it has been stated for ε-approximate Nash, but later
strengthened to ε-NE [4].

Approximation of Nash

This theorem gives the possibility to devise a simple
quasi-polynomial algorithm

Corollary

For a two-player game, there exists a quasi-polynomial algorithm
for computing all k-uniform ε-equilibria.

Given an ε > 0, fix k = 12 lnn
ε2

and perform an exhaustive search.
The running time is quasi-polynomial since k is bounded by lnn.

These results generalize to multi-player games, where the number
of pure strategies for each player is independent from the number
of players [8].

Approximation of Nash, negative results

Theorem (Chen et al. [1])

Bimatrix games do not have a fully polynomial-time approximation
scheme unless every problem in PPAD is solvable in polynomial
time.

Theorem (Daskalakis [5])

For any constant ε ∈ [0, 1), it is PPAD-complete to find a relative
ε-Nash equilibrium in bimatrix games with payoffs in [-1,1]. This
remains true even if the expected payoffs are positive in every
relative ε-Nash equilibrium of the game.

Homotopy Methods and Computing/Approximating
Equilibria [6]

A general method of using a simplification of a problem to solve
the target problem.

In topology, two continuous functions from one topological space
to another are called homotopic if one can be “continuously
deformed” into the other.

Formally, we have two continuous functions f(x) and g(x) from a
topological space X to Y . A homotopy is a continuous function
H : [0, 1]×X → Y such that for all points x in X,
H(0, x) = f(x) and H(1, x) = g(x).

g(x) is the target problem we want to solve

f(x) is the easy-to-solve problem

we assume that we want to find a fixed point in both of these
functions

Homotopy Methods and Computing/Approximating
Equilibria

Theorem (Browder fixed point)

Let S be a non-empty, compact, convex subset of Rd and let
H : [0, 1]× S → S be a continuous function. Then the set of fixed
points, FH = {(λ, s) ∈ [0, 1]× S : s = H(λ, s)} contains a
connected set, F cH , such that ({0} × S) ∩ F cH 6= ∅ and
({1} × S) ∩ F cH 6= ∅.

General algorithm scheme:

formulate the target problem as a fixed-point problem

formulate an artificial as a fixed-point problem with a starting
point s0 that can be computed easily

define H|(0,1)×S : (0, 1)× S → S in any way that makes H
continuous on [0, 1]× S.

Homotopy Methods and Computing/Approximating
Equilibria

In equilibrium computation:

Homotopy function is defined on mixed strategies
H : [0, 1]× Σ→ Σ,

we seek Nash equilibrium; hence, g(σ) :=
∏
i∈N BRi(σ−i),

for each t ∈ [0, 1), the set of fixed points of H|{t}×Σ

corresponds with the set of Nash equilibria of a particular
perturbation of the game G(t),

the starting problem is a game (with a unique Nash
equilibrium) that is easily computed.

Lemke-Howson as a Homotopy Method

Lemke-Howson algorithm as a homotopy method:

Let G be a bimatrix game and let α be a bonus sufficiently
large to make any pure strategy a dominant strategy.

Let G(t) := (N ,S, {vi(t, ·)}i∈N) for t ∈ [0, 1], where for
player i and strategy s′i it holds:

vi(t, s) =

{
ui(s) + (1− t)α ifsi = s′i
ui(s) otherwise

(1)

the homotopy function H is defined as

H(t, σ) =
∏
i∈N
BRi(t, σ−i),

where the best responses are from G(t) and use utility
function vi

Lemke-Howson as a Homotopy Method

Recall the Lemke-Howson – the algorithm seeks a fully labeled
vertex (a mixed strategy profile), where the label comes from
either (1) a pure strategy is a best response, or (2) a pure strategy
is played with probability 0.

Let’s start in a initial game G(0) for some strategy si.

si is clearly a dominating pure strategy (due to construction) and
there is a unique best response of the opponent (we have
nondegenerate games) s−i.

We have a solution (NE) of G(0) and we can increase t towards 1.
There are two possibilities:

1 it is also a NE in G(1) = G, or
2 there exist a 0 < t′ < 1 such that another strategy is a best

response (we are decreasing the impact of bonus α)

Homotopy Methods for n-Player Games

The homotopy path is piecewise linear in case of two-player games,
thus can be computed exactly.

This is not true for the multi-player case – there it either needs to
be approximated (e.g., using piecewise linear approximations) or a
predictor-corrector method can be used.

Homotopy function is as before

H(t, σ) =
∏
i∈N
BRi(t, σ−i),

and perturbed games G(t) have utility function
vi(t, σ) := t · ui(σ) + (1− t)ui(σi, p−i), where p ∈ Σ is some fixed
prior belief over the strategies.

Computing a Quantal Response Equilibrium as a
Homotopy Method

Recall the quantal response that is, in general, parametrized with λ

BRQRi (λ, σ) =
exp(λ · ui(si, σ−i))∑

s′i∈Si
exp(λ · ui(s′i, σ−i))

(2)

λ = 0 corresponds to a uniform strategy; λ =∞ to a Nash
equilbrium.

This corresponds to a homotopy method, where λ = t
1−t for

t ∈ [0, 1) (H(1, σ) is defined as before using standard best
response).

Using Polymatrix Games to solve n-Player NFGs

Polymatrix games can be used to approximate n-Player NFGs [7]
using a homotopy method.

Why polymatrix approximation?

For each matrix we can use exact (and fast) Lemke-Howson
algorithm.

The polymatrix game approximation has a natural interpretation:
player i bilateral interaction with each other player j 6= i is
approximated by averaging over the strategies of all other players
k 6= i, j using their mixed strategies σk as the weights for
computing the average payoff obtained from each combination of
the pure strategies of players i and j.

Recent Approximate Algorithms

The most recent complete approximate algorithm is based on
dividing the simplexes (Exclusion Method for Finding Nash
Equilibrium in Multiplayer Games) [9]:

select a subsimplex of strategies of an n-player game

run an exclusion oracle that can provably tell whether there is
no Nash equilibrium (NE) in this subsimplex

if the exclusion tells that there is no NE, we can prune this
subsimplex out

otherwise we divide this subsimplex and repeat

References I

(besides the books)

X. Chen and X. Deng, “Settling the complexity of two-player nash
equilibrium,” in IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 261–272, 2006.

R. J. Lipton, E. Markakis, and A. Mehta, “Playing Large Games using
Simple Strategies,” in Proceedings of ACM EC, 2003.

C. Daskalakis, A. Fabrikant, and C. H. Papadimitriou, “The Game World
Is Flat: The Complexity of Nash Equilibria in Succinct Games,” in ICALP,
pp. 513–524, 2006.

C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The Complexity
of Computing a Nash Equilibrium,” in Proceedings of the 38th annual
ACM symposium on Theory of computing, 2006.

C. Daskalakis, “On the complexity of approximating a nash equilibrium,”
ACM Trans. Algorithms, vol. 9, pp. 23:1–23:35, June 2013.

References II

P. J.-J. Herings and R. Peeters, “Homotopy methods to compute equilibria
in game theory,” Economic Theory, vol. 42, no. 1, pp. 119–156, 2009.

S. Govindan and R. Wilson, “Computing nash equilibria by iterated
polymatrix approximation,” Journal of Economic Dynamics and Control,
vol. 28, no. 7, pp. 1229 – 1241, 2004.

Y. Babichenko, S. Barman, and R. Peretz, “Simple approximate equilibria
in large games,” EC, pp. 753–770, 2014.

K. Berg and T. Sandholm, “Exclusion Method for Finding Nash
Equilibrium in Multiplayer Games,” Proceedings of AAAI Conference on
Artificial Intelligence, 2017.

